
TI2736-B: Assignment 2
Big Data Processing

Due date: 04.12.2016 @ 11.59pm

Please submit your report and code via Blackboard (please do not copy & paste your
code directly into the report). Make sure to include your name and student number in
your report.
The assignment has two parts: a pen-and-paper part, as well as a practical part. The
Hadoop programming exercises aim to familiarize you with Hadoop. Please submit
your source code, and the output you get once you run your code alongside the an-
swers to the exercises.

1. Data streams

(a) Assume we have a data stream of salary information across the Netherlands.
The stream elements have the form: (employer, department, employeeID, salary).
Employers are unique, but department titles are only unique within a single
employer - different employers may have the same department “Human Re-
sources”. Similarly, employeeID are unique within an employer, but different
employers can use the same IDs to identify their employees.
Suppose we want to answer certain queries approximately from a 1/20th
sample of the data. For each of the following queries, indicate how you
would construct the sample to end up with a good estimate:

i. For each employer, estimate the average number of employees in a de-
partment.

ii. Estimate the percentage of employees who earn more than 100,000 Euros
per year.

iii. Estimate the percentage of departments where all employees make less
than 40,000 Euros a year.

iv. Estimate the percentage of employers with more than 10 employees.
v. For each employer, estimate the average salary the employees receive

across all departments.
(b) Suppose you have a stream of integers: 3, 1, 4, 1, 5, 9, 2, 6, 5. Use the FM-

sketch to estimate the number of distinct elements in the stream. Our hash
functions will all be of the form h(x) = ax + b mod 32 for some a and b. You
should treat the result as a 5-bit binary integer. Determine the tail length
for each stream element and the resulting estimate of the number of distinct
elements if the hash function is:

h1(x) = 2x+ 1 mod 32 (1)

1



h2(x) = 3x+ 7 mod 32 (2)

h3(x) = 4x mod 32 (3)

(c) Suppose you have a stream of integers: 3, 1, 4, 1, 5, 9, 2, 6, 5, 9, 9, 3, 1, 9, 2.
Apply the AMS algorithm to the data stream to compute the following:

i. the 3rd order moment for 3 variables with random positions 3, 8, 13
ii. the 3rd order moment for 5 variables with random positions 2, 3, 8, 9, 10

For comparison, also provide the true value of the 3rd moment.

(d) Employ the DGIM algorithm. Shown below is a data stream with N = 22
and the current bucket configuration. New elements enter the window at the
right. Thus, the oldest bit of the window is the left-most bit shown.

1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0

i. What is the largest possible bucket size for N = 22?
ii. What is the estimate of the number of 1’s in the latest k = 15 bits of this

window?
iii. The following bits enter the window, one at a time: 1 0 1 1 1 0 0 1. What

is the bucket configuration in the window after this sequence of bits has
been processed by DGIM?

iv. After having processed the bits from (iii), what is now the estimate of the
number of 1’s in the latest k = 15 bits of the window?

v. In the lecture, we have also covered how to generalize the DGIM algo-
rithm from a bit stream to positive integers. Analogously to the slide
example, work out the bit streams for the following stream of 8 numbers
(oldest first): (125, 2, 77, 5, 13, 9, 99, 56). Compute the result for k = 3.

2. In order to work on the following Hadoop exercises, you need to have a work-
ing version of Hadoop. We assume that you are using Cloudera’s distribution of
Hadoop (CDH 5.8). The virtual machine image can be downloaded at:
http://www.cloudera.com/downloads/quickstart_vms/5-8.html.
The CDH runs Hadoop on a single machine and has all its components already
set up, including those we will use in later lectures1.

The instructions for running it with Virtual Box are as follows: Select at least 2GB
memory (4GB or 8GB are preferred), choose RedHat 64-bit as OS and then load
Cloudera’s image. You are now ready to interact with Hadoop.

1It is of course also possible to install Hadoop and all necessary additional tools on your laptop with-
out the CDH - just realize that we do not offer IT support in this case.

2

http://www.cloudera.com/downloads/quickstart_vms/5-8.html


(a) Familiarize yourself with Hadoop’s command-line interface by working through
the section The Command-Line Interface in Chapter 3 of Tom White’s Hadoop:
The Definite Guide, 4th Edition. The book is available online through the TU
Delft network: http://bit.ly/1HCumS6.
– nothing to submit here –

(b) Cloudera offers a useful set of tutorials (WordCount v1.0, v2.0, v3.0) through
which you will gain familiarity with Hadoop’s boilerplate code for the map-
per/reducer and how to deploy a Hadoop job. Work through the tutorials
carefully - do not only read through the walkthrough of the source code, but
also run the code yourself! You find the tutorials here: http://bit.ly/
2gkShZR. Make sure to understand the input/output data types of the Map-
per and Reducer.
– nothing to submit here –

(c) Download the following six works by Shakespeare from Project Gutenberg:

• http://www.gutenberg.org/cache/epub/1524/pg1524.txt

• http://www.gutenberg.org/cache/epub/1112/pg1112.txt

• http://www.gutenberg.org/cache/epub/2267/pg2267.txt

• http://www.gutenberg.org/cache/epub/2253/pg2253.txt

• http://www.gutenberg.org/cache/epub/1513/pg1513.txt

• http://www.gutenberg.org/cache/epub/1120/pg1120.txt

.
Run Cloudera’s WordCount v2.0 using the Shakespeare texts’ as corpus to
analyze. Among the status information you also find statistics about the
Map/Combine/Reduce input and output records. Based on these statistics,
what can you say about the Combiner? To what extent does it (or does it not)
improve the efficiency of the program?

(d) Copy the output directory from HDFS to your local directory. Have a look at
part-r-000002; it contains the output of the Reducer (i.e. the final result).
How many unique terms does the file contain?

(e) Make three changes to the tokenizer within map() to reduce the number of
unique terms found (e.g. remove non-alphanumeric terms) and run the job
again. Which changes did you make and how do they influence the number
of unique terms found?

(f) Adapt the map()/reduce() functions to produce an inverted index in a
way explained in lecture 4. Generate the inverted index.

2If you have more than one part-r-* file, concatenate them for the final result.

3

http://bit.ly/1HCumS6
http://bit.ly/2gkShZR
http://bit.ly/2gkShZR
http://www.gutenberg.org/cache/epub/1524/pg1524.txt
http://www.gutenberg.org/cache/epub/1112/pg1112.txt
http://www.gutenberg.org/cache/epub/2267/pg2267.txt 
http://www.gutenberg.org/cache/epub/2253/pg2253.txt
http://www.gutenberg.org/cache/epub/1513/pg1513.txt
http://www.gutenberg.org/cache/epub/1120/pg1120.txt

