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• Implement the four introduced design patterns 
and choose the correct one according to the 
usage scenario 

• Express common database operations as 
MapReduce jobs and argue about the pros & 
cons of the implementations 
• Relational joins 
• Union, Selection, Projection, Intersection

Learning objectives



MapReduce design 
patterns
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local aggregation

pairs & stripes

order inversion

secondary sorting



Design patterns

• Programmer’s tasks (Hadoop does the rest): 
• Prepare data 
• Write mapper code 
• Write reducer code 
• Write combiner code 
• Write partitioner code
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“Arrangement of components and specific techniques designed  
to handle frequently encountered situations across a variety of 
problem domains.”

But: every task needs to be 
converted into the Mapper/
Reducer schema



Design patterns
• In parallel/distributed systems, synchronisation of 

intermediate results is difficult 

• MapReduce paradigm offers one opportunity for 
cluster-wide synchronisation: shuffle & sort phase 

• Programmers have little control over: 
• Where a Mapper/Reducer runs 
• When a Mapper/Reducer starts & ends 
• Which key/value pairs are processed by which 

Mapper or Reducer
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Controlling the data flow
• Complex data structures as keys and values  

(e.g. PairOfIntString) 

• Execution of user-specific initialisation & termination 
code at each Mapper/Reducer 

• State preservation in Mapper/Reducer across multiple 
input or intermediate keys (Java objects) 

• User-controlled partitioning of the key space and thus 
the set of keys that a particular Reducer encounters
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Design pattern I: 
Local aggregation

9



Local aggregation
• Moving data from Mappers to Reducers 

• Data transfer over the network 
• Local disk writes 

• Local aggregation: reduces amount of 
intermediate data & increases algorithm efficiency 

• Exploited concepts: 
• Combiners 
• State preservation

10Most popular: in-mapper combining



Our WordCount example 
(once more)
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map(docid a, doc d):
foreach term t in doc:

EmitIntermediate(t, count 1);

reduce(term t, counts[c1, c2, …])
sum = 0;
foreach count c in counts:

sum += c;
Emit(term t, count sum)



Local aggregation on two 
levels
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map(docid a, doc d):
H = associative_array;
foreach term t in doc:

H{t}=H{t}+1;
foreach term t in H:

EmitIntermediate(t,count H{t});



Local aggregation on two 
levels
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setup(): 
H = associative_array;

map(docid a, doc d):
foreach term t in doc:

H{t}=H{t}+1;

cleanup():
foreach term t in H:

EmitIntermediate(t,count H{t});
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Correctness of local 
aggregation: the mean
map(string t, int r):

EmitIntermediate(string t, int r)

combine(string t, ints [r1, r2, ..])
sum = 0; count = 0;
foreach int r in ints:

sum += r;
count += 1;

EmitIntermediate(string t, pair(sum,count))

reduce(string t, pairs [(s1,c1), (s2,c2),..])
sum = 0; count = 0;
foreach pair (s,c) in pairs:

sum += s;
count += c;

avg=sum/count;
Emit(string t, int avg);

mapper output 
grouped by key

Reducer

Combiner

Mapper

incorrect
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Correctness of local 
aggregation: the mean
map(string t, int r):

EmitIntermediate(string t, pair (r,1))

combine(string t, pairs [(s1,c1), (s2,c2),..])
sum = 0; count = 0;
foreach (s,c) in pairs:

sum += s;
count += c;

EmitIntermediate(string t, pair(sum,count))

reduce(string t, pairs [(s1,c1), (s2,c2),..])
sum = 0; count = 0;
foreach pair (s,c) in pairs:

sum += s;
count += c;

avg=sum/count;
Emit(string t, int avg);

correct

Reducer

Combiner

Mapper



Pros and cons: local 
aggregation vs. Combiners
• Advantages: 

• Controllable when & how aggregation occurs  
• More efficient (no disk spills, no object creation & 

destruction overhead) 

• Disadvantages: 
• Breaks functional programming paradigm  

(state preservation between map() calls) 
• Algorithmic behaviour might depend on the order of 
map() input key/values (hard to debug) 

• Scalability bottleneck (programming effort to avoid it)
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Local aggregation: always 
useful?

• Efficiency improvements dependent on 
• Size of intermediate key space 
• Distribution of keys 
• Number of key/value pairs emitted by individual 

map tasks 

• WordCount 
• Scalability limited by vocabulary size
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Design pattern II: 
Pairs & Stripes
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To motivate the next design 
pattern .. co-occurrence matrices
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Corpus: 3 documents 
Delft is a city. 
Amsterdam is a city. 
Hamlet is a dog.

Co-occurrence matrix 
(on the document level)

Applications: 
clustering, retrieval, 
stemming, text mining, 
…
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delft      X 1 1 1 0 0 0 0
is           X 3 2 0 1 1 1
a              X 2 0 1 1 1
city             X 1 1 2 0
the                X 1 1 0
dog           X 0 1
amsterdam              X 0
hamlet                   X

3

pair

- Square matrix of size             (n: vocabulary size) 
- Unit can be document, sentence, paragraph, …

n⇥ n
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city             X 1 1 2 0
the                X 1 1 0
dog           X 0 1
amsterdam              X 0
hamlet                   X

3

pair

- Square matrix of size             (n: vocabulary size) 
- Unit can be document, sentence, paragraph, …

n⇥ nMore general: estimating distributions of discrete joint events from a large 
number of observations. 
Not just NLP/IR: think sales analyses (people who buy X also buy Y)



Pairs
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map(docid a, doc d):
foreach term w in d:

foreach term u in d:
EmitIntermediate(pair(w,u),1)

reduce(pair p, counts [c1, c2, …]
s = 0;
foreach c in counts:

s += c;
Emit(pair p, count s);

emit co-occurrence count

a single cell in the co-
occurrence matrix

each pair is a cell in the matrix 
(complex key)



Stripes
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map(docid a, doc d):
foreach term w in d:

H = associative_array;
foreach term u in d:

H{u}=H{u}+1;
EmitIntermediate(term w, Stripe H);

reduce(term w, stripes [H1,H2,..])
F = associative_array;
foreach H in stripes: 

sum(F,H);
Emit(term w, stripe F)

emit terms co-occurring
with term w

one row in the  
co-occurrence matrix

each stripe is a row in the matrix 
(complex value)



Pairs & Stripes
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2.3M documents 
Co-occurrence window: 2 
19 nodes in the cluster

1 hour 
2.6 billion intermediate 
key/value pairs; 
after combiner run: 1.1B 
final key/value pairs: 142M

11 minutes 
653M intermediate 
key/value pairs; 
after combiner run: 29M 
final: 1.69M rows

Source: Jimmy Lin’s MapReduce Design Patterns book



Stripes
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2.3M documents 
Co-occurrence window: 2 
Scaling up (on EC2)

Source: Jimmy Lin’s MapReduce Design Patterns book



Pairs & Stripes: two ends of 
a spectrum
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Pairs Stripes
each co-occurring 
event is recorded

all co-occurring events 
wrt. the conditioning 
event are recorded

Middle ground: divide key space into buckets and treat each 
as a “sub-stripe”. 
If one bucket in total: stripes, if #buckets==vocabulary: pairs.



Design pattern III: 
Order inversion
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From absolute counts to 
relative frequencies 

27
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From absolute counts to 
relative frequencies: Stripes 

Marginal can be computed easily in one job. 
Second Hadoop job to compute the relative 
frequencies.



From absolute counts to 
relative frequencies: Pairs 
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2 options to make Pairs work:
- build in-memory associative array; but 

advantage of pairs approach (no memory 
bottleneck) is removed 

- properly sequence the data: (1) compute 
marginal, (2) for each joint count, compute 
relative frequency



From absolute counts to 
relative frequencies: Pairs 
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From absolute counts to 
relative frequencies: Pairs 
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Properly sequence the data:

- Custom partitioner: partition based 
on left part of pair 

- Custom key sorting: * before 
anything else 

- Combiner usage (or in-memory 
mapper) required for (w,*) 

- Preserving state of marginal

Design pattern: order inversion



From absolute counts to 
relative frequencies: Pairs 

32

Example data flow for pairs approach:



Order inversion
• Goal: compute the result of a computation (marginal) in 

the reducer before the data that requires it is processed 
(relative frequencies) 

• Key insight: convert sequencing of computation into a 
sorting problem 

• Ordering of key/value pairs and key partitioning 
controlled by the programmer 
• Create a notion of “before” and “after” 

• Major benefit: reduced memory footprint
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Design pattern IV: 
Secondary sorting
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Secondary sorting
• Order inversion pattern: sorting by key 

• What about sorting by value (a “secondary” sort)? 
• Hadoop does not allow it

35



Secondary sorting
• Solution: move part of the value into the 

intermediate key and let Hadoop do the sorting 

• Also called “value-to-key” conversion
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(m1, t1) ! [(r80521)]

(m1, t2) ! [(r21823)]

(m1, t3) ! [(r146925]

m1 ! (t1, r1234)
(m1, t1) ! r1234
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• Also called “value-to-key” conversion
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(m1, t1) ! [(r80521)]

(m1, t2) ! [(r21823)]

(m1, t3) ! [(r146925]

Requires: 
- Custom key sorting: first 

by left element (sensor id), 
and then by right element 
(timestamp) 

- Custom partitioner: 
partition based on sensor id 
only 

- State across reduce() 
calls tracked (complex key)

m1 ! (t1, r1234)
(m1, t1) ! r1234



Database operations
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Databases….
• Scenario 

• Database tables can be written out to file, one tuple per line 
• MapReduce jobs can perform standard database operations 
• Useful for operations that pass over most (all) tuples 

• Example 
• Find all paths of length 2 in the table Hyperlinks 
• Result should be tuples (u,v,w) where a link exists 

between (u,v) and between (v,w)

39

“link table” with  
billions of entries
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FROM1 TO1

url1 url2

url2 url3

url3 url5

FROM2 TO2

url1 url2

url2 url3

url3 url5

(url1,url2,url3) 
(url2,url3,url5)join Hyperlinks 

with itself

“link table” with  
billions of entries



Database operations: 
relational joins
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reduce side joins
one-to-one

one-to-many

many-to-many

map side joins



Relational joins
• Popular application: data-warehousing 

• Often data is relational (sales transactions, 
product inventories,..) 

• Different strategies to perform relational joins on 
two datasets (tables in a DB) S and T depending 
on data set size, skewness and join type

42

(k1, s1,S1) key to join on (k1, t1,T1)

(k2, s2,S2) tuple id (k3, t2,T2)

(k3, s3,S3) tuple attributes (k8, t3,T3)

S may be user profiles,  
T logs of online activity k’s are the foreign keys



Relational joins: reduce side
• Idea: map over both datasets and emit the join key 

as intermediate key and the tuple as value 

• One-to-one join: at most one tuple from S and T 
share the same join key
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database tables exported to file

Four possibilities for the values in 
reduce():
- a tuple from S 
- a tuple from T 
- (1) a tuple from S, (2) a tuple from T 
- (1) a tuple from T, (2) a tuple from S

reducer emits key/value if the value list contains 2 elements



Relational joins: reduce side
• Idea: map over both datasets and emit the join key 

as intermediate key and the tuple as value 

• One-to-many join: the primary key in S can join to 
many keys in T

44



Relational joins: reduce side
• Idea: map over both datasets and emit the join key 

as intermediate key and the tuple as value 

• Many-to-many join: many tuples in S can join to 
many tuples in T

45

Possible solution: employ the
one-to-many approach.  

Works well if S has only a few 
tuples per join (requires data 
knowledge).



Relational joins: map side
• Problem of reduce-side joins: both datasets are 

shuffled across the network 

• In map side joins we assume that both datasets 
are sorted by join key; they can be joined by 
“scanning” both datasets simultaneously

46 no shuffling across the network!

Partition & sort
both datasets

MAPPER

MAPPER

MAPPER

k, i < 5

k, 5  i < 10

k, i � 10

Mapper: 
(1) Read smaller dataset 

piecewise into 
memory 

(2) Map over the other 
dataset 

(3) No reducer 
necessary



Relational joins: comparison
• Problem of reduce-side joins: both datasets are shuffled across 

the network 

• Map-side join: no data is shuffled through the network, very 
efficient 

• Preprocessing steps take up more time in map-side join 
(partitioning files, sorting by join key) 

• Usage scenarios: 
• Reduce-side: adhoc queries 
• Map-side: queries as part of a longer workflow; preprocessing 

steps are part of the workflow (can also be Hadoop jobs)

47



Database operations: 
the rest
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Selections

49



Projections
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Union
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Intersection
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Summary
• Design patterns for MapReduce 

• Common database operations
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Recommended reading
• Mining of Massive Datasets by Rajaraman & 

Ullman. Available online. Chapter 2. 
• The last part of this lecture (database operations) 

has been drawn from this chapter. 

• Data-Intensive Text Processing with MapReduce 
by Lin et al. Available online. Chapter 3. 
• The lecture is mostly based on the content of this 

chapter.
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THE END


