
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Pig Pig

Map
ReduceStreams

HDFS

Intro Streams

Hadoop
Ctd.

Design
Patterns

SparkGraphs Giraph SparkZoo
Keeper

3

• Implement the four introduced design patterns
and choose the correct one according to the
usage scenario

• Express common database operations as
MapReduce jobs and argue about the pros &
cons of the implementations
• Relational joins
• Union, Selection, Projection, Intersection

Learning objectives

MapReduce design
patterns

4

local aggregation

pairs & stripes

order inversion

secondary sorting

Design patterns

• Programmer’s tasks (Hadoop does the rest):
• Prepare data
• Write mapper code
• Write reducer code
• Write combiner code
• Write partitioner code

5

“Arrangement of components and specific techniques designed  
to handle frequently encountered situations across a variety of
problem domains.”

But: every task needs to be
converted into the Mapper/
Reducer schema

Design patterns
• In parallel/distributed systems, synchronisation of

intermediate results is difficult

• MapReduce paradigm offers one opportunity for
cluster-wide synchronisation: shuffle & sort phase

• Programmers have little control over:
• Where a Mapper/Reducer runs
• When a Mapper/Reducer starts & ends
• Which key/value pairs are processed by which

Mapper or Reducer

6

Controlling the data flow
• Complex data structures as keys and values  

(e.g. PairOfIntString)

• Execution of user-specific initialisation & termination
code at each Mapper/Reducer

• State preservation in Mapper/Reducer across multiple
input or intermediate keys (Java objects)

• User-controlled partitioning of the key space and thus
the set of keys that a particular Reducer encounters

7

Controlling the data flow
• Complex data structures as keys and values  

(e.g. PairOfIntString)

• Execution of user-specific initialisation & termination
code at each Mapper/Reducer

• State preservation in Mapper/Reducer across multiple
input or intermediate keys (Java objects)

• User-controlled partitioning of the key space and thus
the set of keys that a particular Reducer encounters

8

Design pattern I:
Local aggregation

9

Local aggregation
• Moving data from Mappers to Reducers

• Data transfer over the network
• Local disk writes

• Local aggregation: reduces amount of
intermediate data & increases algorithm efficiency

• Exploited concepts:
• Combiners
• State preservation

10Most popular: in-mapper combining

Our WordCount example
(once more)

11

map(docid a, doc d):
foreach term t in doc:

EmitIntermediate(t, count 1);

reduce(term t, counts[c1, c2, …])
sum = 0;
foreach count c in counts:

sum += c;
Emit(term t, count sum)

Local aggregation on two
levels

12

map(docid a, doc d):
H = associative_array;
foreach term t in doc:

H{t}=H{t}+1;
foreach term t in H:

EmitIntermediate(t,count H{t});

Local aggregation on two
levels

13

setup():
H = associative_array;

map(docid a, doc d):
foreach term t in doc:

H{t}=H{t}+1;

cleanup():
foreach term t in H:

EmitIntermediate(t,count H{t});

14

Correctness of local
aggregation: the mean
map(string t, int r):

EmitIntermediate(string t, int r)

combine(string t, ints [r1, r2, ..])
sum = 0; count = 0;
foreach int r in ints:

sum += r;
count += 1;

EmitIntermediate(string t, pair(sum,count))

reduce(string t, pairs [(s1,c1), (s2,c2),..])
sum = 0; count = 0;
foreach pair (s,c) in pairs:

sum += s;
count += c;

avg=sum/count;
Emit(string t, int avg);

mapper output
grouped by key

Reducer

Combiner

Mapper

incorrect

15

Correctness of local
aggregation: the mean
map(string t, int r):

EmitIntermediate(string t, pair (r,1))

combine(string t, pairs [(s1,c1), (s2,c2),..])
sum = 0; count = 0;
foreach (s,c) in pairs:

sum += s;
count += c;

EmitIntermediate(string t, pair(sum,count))

reduce(string t, pairs [(s1,c1), (s2,c2),..])
sum = 0; count = 0;
foreach pair (s,c) in pairs:

sum += s;
count += c;

avg=sum/count;
Emit(string t, int avg);

correct

Reducer

Combiner

Mapper

Pros and cons: local
aggregation vs. Combiners
• Advantages:

• Controllable when & how aggregation occurs
• More efficient (no disk spills, no object creation &

destruction overhead)

• Disadvantages:
• Breaks functional programming paradigm  

(state preservation between map() calls)
• Algorithmic behaviour might depend on the order of
map() input key/values (hard to debug)

• Scalability bottleneck (programming effort to avoid it)

16

Local aggregation: always
useful?

• Efficiency improvements dependent on
• Size of intermediate key space
• Distribution of keys
• Number of key/value pairs emitted by individual

map tasks

• WordCount
• Scalability limited by vocabulary size

17

Design pattern II:
Pairs & Stripes

18

To motivate the next design
pattern .. co-occurrence matrices

19

Corpus: 3 documents
Delft is a city.
Amsterdam is a city.
Hamlet is a dog.

Co-occurrence matrix
(on the document level)

Applications:
clustering, retrieval,
stemming, text mining,
…

stripe

d
e
l
f
t

i
s

a c
i
t
y

t
h
e

d
o
g

a
m
s
t
e
r
d
a
m

h
a
m
l
e
t

delft X 1 1 1 0 0 0 0
is X 3 2 0 1 1 1
a X 2 0 1 1 1
city X 1 1 2 0
the X 1 1 0
dog X 0 1
amsterdam X 0
hamlet X

3

pair

- Square matrix of size (n: vocabulary size)
- Unit can be document, sentence, paragraph, …

n⇥ n

To motivate the next design
pattern .. co-occurrence matrices

20

Corpus: 3 documents
Delft is a city.
Amsterdam is a city.
Hamlet is a dog.

Co-occurrence matrix
(on the document level)

Applications:
clustering, retrieval,
stemming, text mining,
…

stripe

d
e
l
f
t

i
s

a c
i
t
y

t
h
e

d
o
g

a
m
s
t
e
r
d
a
m

h
a
m
l
e
t

delft X 1 1 1 0 0 0 0
is X 3 2 0 1 1 1
a X 2 0 1 1 1
city X 1 1 2 0
the X 1 1 0
dog X 0 1
amsterdam X 0
hamlet X

3

pair

- Square matrix of size (n: vocabulary size)
- Unit can be document, sentence, paragraph, …

n⇥ nMore general: estimating distributions of discrete joint events from a large
number of observations.
Not just NLP/IR: think sales analyses (people who buy X also buy Y)

Pairs

21

map(docid a, doc d):
foreach term w in d:

foreach term u in d:
EmitIntermediate(pair(w,u),1)

reduce(pair p, counts [c1, c2, …]
s = 0;
foreach c in counts:

s += c;
Emit(pair p, count s);

emit co-occurrence count

a single cell in the co-
occurrence matrix

each pair is a cell in the matrix
(complex key)

Stripes

22

map(docid a, doc d):
foreach term w in d:

H = associative_array;
foreach term u in d:

H{u}=H{u}+1;
EmitIntermediate(term w, Stripe H);

reduce(term w, stripes [H1,H2,..])
F = associative_array;
foreach H in stripes:

sum(F,H);
Emit(term w, stripe F)

emit terms co-occurring
with term w

one row in the  
co-occurrence matrix

each stripe is a row in the matrix
(complex value)

Pairs & Stripes

23

2.3M documents
Co-occurrence window: 2
19 nodes in the cluster

1 hour
2.6 billion intermediate
key/value pairs;
after combiner run: 1.1B
final key/value pairs: 142M

11 minutes
653M intermediate
key/value pairs;
after combiner run: 29M
final: 1.69M rows

Source: Jimmy Lin’s MapReduce Design Patterns book

Stripes

24

2.3M documents
Co-occurrence window: 2
Scaling up (on EC2)

Source: Jimmy Lin’s MapReduce Design Patterns book

Pairs & Stripes: two ends of
a spectrum

25

Pairs Stripes
each co-occurring
event is recorded

all co-occurring events
wrt. the conditioning
event are recorded

Middle ground: divide key space into buckets and treat each
as a “sub-stripe”.
If one bucket in total: stripes, if #buckets==vocabulary: pairs.

Design pattern III:
Order inversion

26

From absolute counts to
relative frequencies

27

28

From absolute counts to
relative frequencies: Stripes

Marginal can be computed easily in one job.
Second Hadoop job to compute the relative
frequencies.

From absolute counts to
relative frequencies: Pairs

29

2 options to make Pairs work:
- build in-memory associative array; but

advantage of pairs approach (no memory
bottleneck) is removed

- properly sequence the data: (1) compute
marginal, (2) for each joint count, compute
relative frequency

From absolute counts to
relative frequencies: Pairs

30

From absolute counts to
relative frequencies: Pairs

31

Properly sequence the data:

- Custom partitioner: partition based
on left part of pair

- Custom key sorting: * before
anything else

- Combiner usage (or in-memory
mapper) required for (w,*)

- Preserving state of marginal

Design pattern: order inversion

From absolute counts to
relative frequencies: Pairs

32

Example data flow for pairs approach:

Order inversion
• Goal: compute the result of a computation (marginal) in

the reducer before the data that requires it is processed
(relative frequencies)

• Key insight: convert sequencing of computation into a
sorting problem

• Ordering of key/value pairs and key partitioning
controlled by the programmer
• Create a notion of “before” and “after”

• Major benefit: reduced memory footprint

33

Design pattern IV:
Secondary sorting

34

Secondary sorting
• Order inversion pattern: sorting by key

• What about sorting by value (a “secondary” sort)?
• Hadoop does not allow it

35

Secondary sorting
• Solution: move part of the value into the

intermediate key and let Hadoop do the sorting

• Also called “value-to-key” conversion

36

(m1, t1) ! [(r80521)]

(m1, t2) ! [(r21823)]

(m1, t3) ! [(r146925]

m1 ! (t1, r1234)
(m1, t1) ! r1234

Secondary sorting
• Solution: move part of the value into the

intermediate key and let Hadoop do the sorting

• Also called “value-to-key” conversion

37

(m1, t1) ! [(r80521)]

(m1, t2) ! [(r21823)]

(m1, t3) ! [(r146925]

Requires:
- Custom key sorting: first

by left element (sensor id),
and then by right element
(timestamp)

- Custom partitioner:
partition based on sensor id
only

- State across reduce()
calls tracked (complex key)

m1 ! (t1, r1234)
(m1, t1) ! r1234

Database operations

38

Databases….
• Scenario

• Database tables can be written out to file, one tuple per line
• MapReduce jobs can perform standard database operations
• Useful for operations that pass over most (all) tuples

• Example
• Find all paths of length 2 in the table Hyperlinks
• Result should be tuples (u,v,w) where a link exists

between (u,v) and between (v,w)

39

“link table” with
billions of entries

Databases….
• Scenario

• Database tables can be written out to file, one tuple per line
• MapReduce jobs can perform standard database operations
• Useful for operations that pass over most (all) tuples

• Example
• Find all paths of length 2 in the table Hyperlinks
• Result should be tuples (u,v,w) where a link exists

between (u,v) and between (v,w)

40

FROM1 TO1

url1 url2

url2 url3

url3 url5

FROM2 TO2

url1 url2

url2 url3

url3 url5

(url1,url2,url3)
(url2,url3,url5)join Hyperlinks

with itself

“link table” with
billions of entries

Database operations:
relational joins

41

reduce side joins
one-to-one

one-to-many

many-to-many

map side joins

Relational joins
• Popular application: data-warehousing

• Often data is relational (sales transactions,
product inventories,..)

• Different strategies to perform relational joins on
two datasets (tables in a DB) S and T depending
on data set size, skewness and join type

42

(k1, s1,S1) key to join on (k1, t1,T1)

(k2, s2,S2) tuple id (k3, t2,T2)

(k3, s3,S3) tuple attributes (k8, t3,T3)

S may be user profiles,
T logs of online activity k’s are the foreign keys

Relational joins: reduce side
• Idea: map over both datasets and emit the join key

as intermediate key and the tuple as value

• One-to-one join: at most one tuple from S and T
share the same join key

43

database tables exported to file

Four possibilities for the values in
reduce():
- a tuple from S
- a tuple from T
- (1) a tuple from S, (2) a tuple from T
- (1) a tuple from T, (2) a tuple from S

reducer emits key/value if the value list contains 2 elements

Relational joins: reduce side
• Idea: map over both datasets and emit the join key

as intermediate key and the tuple as value

• One-to-many join: the primary key in S can join to
many keys in T

44

Relational joins: reduce side
• Idea: map over both datasets and emit the join key

as intermediate key and the tuple as value

• Many-to-many join: many tuples in S can join to
many tuples in T

45

Possible solution: employ the
one-to-many approach.

Works well if S has only a few
tuples per join (requires data
knowledge).

Relational joins: map side
• Problem of reduce-side joins: both datasets are

shuffled across the network

• In map side joins we assume that both datasets
are sorted by join key; they can be joined by
“scanning” both datasets simultaneously

46 no shuffling across the network!

Partition & sort
both datasets

MAPPER

MAPPER

MAPPER

k, i < 5

k, 5 i < 10

k, i � 10

Mapper:
(1) Read smaller dataset

piecewise into
memory

(2) Map over the other
dataset

(3) No reducer
necessary

Relational joins: comparison
• Problem of reduce-side joins: both datasets are shuffled across

the network

• Map-side join: no data is shuffled through the network, very
efficient

• Preprocessing steps take up more time in map-side join
(partitioning files, sorting by join key)

• Usage scenarios:
• Reduce-side: adhoc queries
• Map-side: queries as part of a longer workflow; preprocessing

steps are part of the workflow (can also be Hadoop jobs)

47

Database operations:
the rest

48

Selections

49

Projections

50

Union

51

Intersection

52

Summary
• Design patterns for MapReduce

• Common database operations

53

Recommended reading
• Mining of Massive Datasets by Rajaraman &

Ullman. Available online. Chapter 2.
• The last part of this lecture (database operations)

has been drawn from this chapter.

• Data-Intensive Text Processing with MapReduce
by Lin et al. Available online. Chapter 3.
• The lecture is mostly based on the content of this

chapter.

54

THE END

