7

il

1127360-B
mY Big Data Processing

”""’M Claudia Hauff
QL et

mailto:ti2736b-ewi@tudelft.nl

|_earning objectives

the four introduced design patterns

and the correct one according to the
usage scenario

commaon dS

MapReduce jobs and argue about the pros &
cons of the implementations

Relational joins

Jnion, Selection, Projection, Intersection

MapReduce design
patterns

pairs & stripes secondary sorting

Design patterns

"Arrangement of components and specific techniques designed

to handle frequently encountered situations across a variety of
problem domains.”

* Programmer’s tasks (Hadoop does the rest):
* Prepare data
* Write mapper code

* Write reducer code But: every task needs to be

e \Write combiner code converted into the Mapper/
Reducer schema

* Write partitioner code

Design patterns

* |n parallel/distributed systems, synchronisation of
intermediate results is difficult

« MapReduce paradigm offers for
cluster-wide synchronisation: shuffle & sort phase

 Programmers have little control over:

. a Mapper/Reducer runs
. a Mapper/Reducer starts & ends
. key/value pairs are processed by which

Mapper or Reducer

Controlling the data tlow

as keys and values
(6.9. PairOfIntString)

Execution of user-specific
code at each Mapper/Reducer

in Mapper/Reducer across multiple
input or intermediate keys (Java objects)

User-controlled and thus
the set of keys that a particular Reducer encounters

public class PairOfIntString implements WritableComparable<PairOfIntString> {
private int leftElement;
private String rightElement;

/%%

* Creates a pair.

*/

public PairOfIntString() {
}

/%X

* Creates a pair.

X

* @param left the left element

* @param right the right element

*/

public PairOfIntString(int left, String right) {
set(left, right);

}

Design pattern |
| ocal aggregation

| ocal aggregation

 Moving data from Mappers to Reducers
e Data transfer over the network
e Local disk writes

* Local aggregation: reduces amount of
intermediate data & increases algorithm efficiency

* Exploited concepts:
 Combiners
e State preservation

Most popular: in-mapper combining

Our WordCount example
(once more)

map (docid a, doc d):
foreach term t in doc:
EmitIntermediate(t, count 1);

reduce(term t, counts|[cl, c2, ..])
sum = 0;
foreach count ¢ 1n counts:
sum += C;
Emit(term t, count sum)

11

| ocal aggregation on two
levels

map(docid a, doc d):
H = assoclative array;
foreach term t in doc:
H{t}=H{t}+1;
foreach term t in H:
EmitIntermediate(t,count H{t});

12

| ocal aggregation on two
levels

setup():
H = assoclative array;

map (docid a, doc d):
foreach term t in doc:
H{t}=H{t}+1;

cleanup():

foreach term t in H:
EmitIntermediate(t,count H{t});

13

Correctness of local
aggregation: the mean

map(string t, int r):
EmitIntermediate(string t, int r)

combine(string t, ints [rl, r2, ..])
sum = 0; count = 0;
foreach int r in ints:
sum += r;
count += 1;
EmitIntermediate(string t, pair(sum,count))

Combiner

mapper output

grouped by key

reduce(string t, pairs [(sl,cl), (s2,c2),..]) Reducer
sum = 0; count = 0;
foreach pair (s,c) in pairs: -
RSN incorrect
count += c;
avg=sum/count;
Emit(string t, int avg);

14

Correctness of local
aggregation: the mean

map(string t, int r):
EmitIntermediate(string t, pair (r,1))

combine(string t, pairs [(sl,cl), (s2,c2),..])
sum = 0; count = 0;
foreach (s,c) in pairs:
sum += s;
count += c;
EmitIntermediate(string t, pair(sum,count))

reduce(string t, pairs [(sl,cl), (s2,c2),..])

sum = 0; count = 0;
foreach pair (s,c) in pairs:

sum += s;

count += c;
avg=sum/count;
Emit(string t, int avg);

15

Combiner

Reducer

correct

Pros and cons: local
aggregation vs. Combiners

. when & how aggregation occurs

. (no disk spills, no object creation &
destruction overhead)

(state preservation between map () calls)

o Algorithmic behaviour might depend on the of
map () Input key/values (hard to debug)

. (programming effort to avoid it)

16

L ocal aggregation: always
useful?

e Efficiency improvements on
. of keys
 Number of key/value pairs emitted by individual
map tasks

* WordCount
* Scalability limited by vocabulary size

17

Design pattern |l
Pairs & Stripes

To motivate the next design
pattern .. co-occurrence matrices

Corpus: 3 documents
iIsa

Amsterdam is a city.

Hamlet is a dog.

Co-occurrence matrix
(on the document level)

Applications:
clustering, retrieval,
stemming, text mining,

stripe

kMielft

is

a

city

the

dog
amsterdam
hamlet

e

(]

O
8P
0 o
P D
Do own e
n HcedeR

X ._ ‘*2 0 palr

X0
X

- Square matrix of size n X n (n: vocabulary size)
- Unit can be document, sentence, paragraph, ...

19

To motivate the next design
pattern .. co-occurrence matrices

Corpus: 3 documents
Delft is a city.
Amsterdam is a city.
Hamlet is a dog.

Co-occurrence matrix
(on the document level)

Applications:
clustering, retrieval,
stemming, text mining,

stripe

KMielft

is

a

city

the

dog
amsterdam
hamlet

g
©
§o)
oo
(O
> 89
Do ouwn E
n Ha%2E
H 6 0P T g .o
xBEN2 011 1
AL 20 pair
X 0
X

More general: estimating distributions of discrete joint events from a large

number of observations.

Not just NLP/IR: think sales analyses (people who buy X also buy Y)

each pair is a in the

()

Pailrs

map(docid a, doc d):

|liﬁ!iﬁ%ﬂﬂiﬁiiﬁil
foreach term w 1in d:

foreach term u in d:
EmitIntermediate(pair(w,u),1)

reduce(palir p, counts [cl, c2, ..]

s = 0;
foreach ¢ i1n counts:
s += C;

a single cell in the co-

Emit(pair p, count s); occurrence matrix

21

each stripe is a In the

()

Stripes

map (docid a, doc d): emit terms co-occurring
foreach term w in d: with term w
H = assoclative array;
foreach term u in d:
H{u}=H{u}+1;
EmitIntermediate(term w, Stripe H);

reduce(term w, stripes [H1l,H2,..])
F = assoclative array;
foreach H 1in stripes: one row in the
~sum(F,H); | co-occurrence matrix
Emit(term w, stripe F)

22

Running time (seconds)

Pairs & Stripes

4000

3500

3000

2500

2000

1500

1000

500

0

2.3M documents
Co-occurrence window: 2
19 nodes in the cluster

| |
"stripes" approach =

' ' 1 hour

"vairs" approach e 2.6 billion intermediate

key/value pairs;
after combiner run: 1.1B
final key/value pairs: 142M

4 11 minutes
653M intermediate

4 key/value pairs;
gy —B—— % after combiner run: 29M
' ' ' ! final: 1.69M rows
20 40 60 80 100

Percentage of the APW corpus
Source: Jimmy Lin’s MapReduce Design Patterns book

Stripes

Running time (seconds)

5000

4000

3000

2000

1000

2.3M documents
Co-occurrence window: 2

10

20

30

40

50 60 70 80 90

Size of EC2 cluster (number of slave instances)

Sedrce: Jimmy Lin's MapReduce Design Patterns book

Pairs & Stripes: two ends of
a spectrum

each co-occurring all co-occurring events
event is recorded wrt. the conditioning

event are recorded

Middle ground: divide key space Iinto buckets and treat each

as a “sub-stripe’.
It one bucket In total: stripes, If #ouckets==vocabulary: pairs.

25

Design pattern Il
Order inversion

~rom apsolute counts to
relative frequencies

Co-occurrence matrix

number of times Corpus: 3 documents (o the document level)

a co-occurring Delft is a city.
word pair is observed

 — _— Amsterdam is a city. z
‘ N(w,,w,) Hamletis a dog. T
Jw;Iw,)= & > by
2N i@ Seges
The marginal TH® 0O+ T @<
. delft X11{1.1 0 0 0.0
f(alis) = (:E:) 1 is x(é)z 0111
alls)= e r—— X20111
' 3+2+4x1)3 :ity v 1 1o
. 2 2 the X110
f(city | amsterdam) = dog < o 1
2+3x1 S amsterdam X 0
f(Cily | iS) — 2 2 hamlet X

342+4x%x1 9

From apbsolute counts to
relative frequencies: Stripes

(w,,w.) Marginal can be computed easily in one job.
L J Second Hadoop job to compute the relative

ZN(W,.,W') frequencies.
>

f«ykerﬁ)__

map (docid a, doc d):
foreach term w in d:
H = assocliative array;
foreach term u in d:
H{u}=H{u}+1;
EmitIntermediate (term w, Stripe H);

reduce (term w, stripes [H1,H2,..])

' = assoclative array;
foreach H 1in stripes:
sum(F,H) ;

Emit (term w, stripe F)

From apbsolute counts to
relative frequencies: Pairs

2 options to make Pairs work:
- build In-memory associative array; but
advantage of pairs approach (no memory

bottleneck) is removed

- properly the data: (1) compute
marginal, (2) for each joint count, compute
relative frequency

map (docid a, doc d):
foreach term w in d:
foreach term u in d:
EmitIntermediate (pair(w,u), 1)

reduce (pair p, '‘counts
s = 0;
foreach ¢ in counts:
s += C;
Emi (pair p, count s);

29

~rom apsolute counts to
relative frequencies: Pairs

N(w;,w;)

jx&vjl‘vﬁ)_-:E:PV(wg,uf)

w'

map (docid a, doc d):
foreach term w in d:
foreach term u in d:
EmitIntermediate (pair(w,u),1)
EmitIntermediate (pair(w,*),1)

extra key/value

reduce (pair p, counts [cl, cZ2, ..]) pair for marginal

s = 0;
foreach ¢ in counts:

s += C;
assumes a specific £ (D . right==%
key ordering 1t (p.right ,) .
(* before the rest) marginal=s;//keep marginal across reduce calls

else

Emit (pair p, s/marginal);

From apbsolute counts to
relative frequencies: Pairs

(w W) Properly sequence the data:
Jw;lw,)= —
EN(wl.,w') - Custom partitioner: partition based
" on left part of pair
- Custom key sorting: * before
map (docid a, doc d): anything else
foreach term w 1in d: - Combiner usage (or in-memory

foreach term u in d: rnappenrequwedforONf)

DUASIRREIE, - Preserving state of marginal
EmitIntermed

extra key/value

reduce (pair p, counts [cl, c2, ..]) pair for marginal
s = 0;
foreach ¢ in counts:
s += cC;
assumes a specific - - %
key ordering 1t(p.righ _) '
(* before the rest) marginal=s;//keep majs

else Design pattern: order inversion
Emit (pair p, s/margi

From apbsolute counts to
relative frequencies: Pairs

N(w;,w;)

Jow;Iw) = ZN(wl.,w')

Example data flow for pairs approach: |

key values

(dog, *) 6327, 8514, ...| compute marginal:) , N(dog,w’) = 42908
(dog, aardvark) [2,1] f(aardvark|dog) = 3/42908

(dog, aardwolf) | f(aardwolf|dog) = 1/42908

(dog, zebra) f(zebra|dog) = 5/42908
(doge, *) e compute marginal: Y , N(doge,w') = 1267

Order inversion

. . compute the result of a computation (marginal) in
the reducer the data that requires it is processed
(relative frequencies)

. . convert of computation into a
problem

e Ordering of key/value pairs and key partitioning
controlled by the programmer

e Create a notion of * and

. . reduced memory footprint

33

Design pattern |V
Secondary sorting

Secondary sorting

 What about (a “secondary” sort)?
 Hadoop does not allow it

(t,,m,rg5,,) time, sensor, reading

(71511 314009)

(1,m3.160) Goal: activity of each sensor over time
Idea: sensor id as intermediate key,
(13511,13153) the rest as value m, — (,.r.,.,)
(75,15, 6505) ‘

(12215 Fo37) \Wanted: secondary sort by timestamp

35

Secondary sorting

. - move part of the value into the
iINntermediate key and

my — (t1,71234)
(m1,t1) = 71234

e Also called " conversion

(m1,t1) = [(rs0521)
(m1,t2) = [(r21823)

(m1,t3) = [(r146925

36

Secondary sorting

o Solution: move part of the value into the
iIntermediate key and let Hadoop do the sorting

mi — (tl, T1234)
b (my,t1) = 71234 Requires:

- Custom key sorting: first
by left element (sensor id),

* Also called "value-to-key” co

(m1,t1) — [(r80521) and then by right element

_ _ (timestamp)
GONPIER(SITEY) I Custom partitioner:
(m1,t3) — [(r146925 partition based on sensor id

only

(complex key)

37

Database operations

attributes B {1 . (¢

Relati urll url2
€lation tuples url2 url3

D at a b aS e S o Hyperlinks — —

“link table” with
billions of entries

e Database tables can be written out to file, one tuple per line
« MapReduce jobs can perform standard database operations
e Useful for operations that pass over most (all) tuples

* Find all paths of length 2 in the table Hyperlinks

* Result should be tuples (u,v,w) where a link exists
petween (u,v) and between (v,w)

39

attributes B {1 . (¢

Relati urll url2
€lation tuples | uri2 url3

D at a b aS e S o Hyperlinks — —

“link table” with
billions of entries

e Database tables can be written out to file, one tuple per line
« MapReduce jobs can perform standard database operations
e Useful for operations that pass over most (all) tuples

* Find all paths of length 2 in the table Hyperlinks

* Result should be tuples (u,v,w) where a link exists
petween (u,v) and between (v,w)

urll url2 urll url2

—L (url1,url2,url3)

join Hyperlinks url2 url3 1 uri2 url3 (url2,url3,url5)
with itself url3 url5 url3 url5

40

Database operations:
relational joins

reduce side joins map side joins

one-{o-one

one-to-many

many-to-many

Relational joins

* Popular application: data-warehousing

e Often data is relational (sales transactions,
oroduct inventories,..)

. to pertorm relational joins on
two datasets (tables ina DB) S and T depending
on and

key to join on (kqi,t1,Tq)
tuple id (k3,t2, T2)
tuple/attributes (kg, t3, T3)

S may be user profiles,

T logs of online activity 42 K's are the foreign keys

Relational joins: reduce side

database tables exported to file

e [dea: map over both datasets and emit the join key
as intermediate key and the tuple as value

 One-to-one join: at mostone tuple fromSand T
share the same join key

k73 — [(Sé4 ’Sé4), (t84 ’T84)] Four possibilities for the values in

reduce():

k37 —> [(S68 ’568)] - atuple from S

- atuple from T
k59 —> [(t97 ,T97)’(881 ’SSI)] - (1) atuple from S, (2) a tuple from T
- (1) atuple from T, (2) a tuple from S

reducer emits key/value if the value list contains 2 elements
43

Relational joins: reduce side

. map over both and emit the join key
as intermediate key and the tuple as value

. - the primary key in S can join to
many keysin T

kl.% — [(t‘ﬁ ”TSS)’(t-l-l ’T-l-l)’(S()-l ’S()-l)’([84 ’T84)]

ki = [(s65.56s)] Better (less memory intensive): value-to-key
conversion to create a composite key (join

key, tuple id) Requires:

(kg2 58105) = [(Sy05)] (1) Sort order by keys
(Kgast95) = 1(Tog)]l - (2) Custom partitioner

44

Relational joins: reduce side

e [dea: map over both datasets and emit the join key
as intermediate key and the tuple as value

o Many-to-many join: many tuples in S can join to

many tuplesin T

Possible solution: employ the
one-to-many approach.

Works well it S has only a few
tuples per join (requires data

knowledge).

45

(kg +8105) = [(S)05)]
(kg »8145) = [(S145)]

(kg tog) = [(Ty)
(k82 ’tl()l) — [(7‘101)]
(k82 ’tl37) — [(7-137)]

Relational joins: map side

 Problem of reduce-side joins: both datasets are
shuffled across the network

* |In map side joins we assume that both datasets
are sorted by join key; they can be joined by
“scanning” both datasets simultaneously

k,i <5
(kissisSy) (Kt T3) el : | Mapper:
(k».5,.8,) kg1, T,) Partition & sort (o8 S) (bt (1) Read smaller dataset
(ky.55.8,) (kyot.1,) DOth datasets s — piecewise into
(kss85.85) (Kgut Ty) (2::33 (s,))OSt < »10 memory
(ko-56.Ss) (kgotgsTy) (kpesy.S;) (ksutyeTy) ‘ (2) Map over the other
(k7,s7,S7) (kll’tll’Tll) - : dataset
(k9a59’59) (kia st Ths) I (3) No reducer
(kll’sll’Sll) (kl3”|3’1‘l3) | necessary

Relational joins: comparison

 Problem of . both datasets are shuffled across
the network

. . NoO data is shuftled through the network, very
efficient

. steps take up more time in map-side join
(partitioning files, sorting by join key)

* Reduce-side: adhoc queries

 Map-side: queries as part of a longer workflow; preprocessing
steps are part of the workflow (can also be Hadoop jobs)

47

Database operations:
the rest

Selections

Web_pages
Last_crawl_ Page_length
date

news.yahoo.de News 03-12-2013 765443 GER
07:08:45

nu.nl news 03-12-2013 64435 NL
11:45:00

chess.com game 23-10-2013 1264 EN
19:34:01

www.bbc.com/ sports 03-12-2013 6324 EN

sport/0/football/ 14:13:22

SELECT * FROM Web_pages WHERE Ur| LIKE 'nu.nl’
SELECT * FROM Web_pages WHERE Lng LIKE 'GER’

49

Projections

Web_pages

Url Category Last_crawl_ Page_length Lng
date

news.yahoo.de News 03-12-2013 765443 GER
07:08:45

nu.n| NEews 03-12-2013 64435 NL
11:45:00

chess.com game 23-10-2013 1264 EN
19:34:01

www.bbc.com/ sports 03-12-2013 6324 EN

sport/0/football/ 14:13:22

SELECT category FROM Web_pages

50

Union

Web_pages_crawlerl

Page_length Lng

NEWS.Yyanoo de news 765443 GER Web pages Crawlerz
chess.com game 1264 news.yahoo.de news 765443
VWW. -Jb\’i [m| 4 sports 6324 volkskrant.nl news 234445 NL
SPOIT)dl
chessbase.com game 1264 EN
www.bbc.com/ sports 6324 EN

sport/0/football/

51

INtersection

Web_pages_crawlerl

Category Page_length Lng

765443

Web_pages_crawler2

chess.com game 1264 news.yahoo.de news 765443
(* ";)[': sports 6324 volkskrant.nl news 234445 NL
‘ chessbase.com game 1264 EN
www.bbc.com/ sports 6324 EN

sport/0/football/

52

summary

* Design patterns for MapReduce

« Common database operations

53

Recommended reading

* Mining of Massive Datasets by Rajaraman &
Ullman. Available online. Chapter 2.

* The last part of this lecture (database operations)
has been drawn from this chapter.

* Data-Intensive Text Processing with MapReduce
by Lin et al. Available online. Chapter 3.

* The lecture is mostly based on the content of this
chapter.

o4

TRE END

