
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Pig Pig

Map
ReduceStreams

HDFS

Intro Streams

Hadoop
Mix

Design
Pattern

SparkGraphs Giraph SparkZoo
Keeper

But first …
Partitioner & Combiner

Reminder: map & reduce

4

• Apply a map operation to each record in the input
to compute a set of intermediate key/value pairs

• Apply a reduce operation to all values that share
the same key

Key/value pairs form the basic data structure.

map: (ki, vi) ! [(kj , vj)]
map: (k

i

, v
i

) ! [(k
j

, v
x

), (k
m

, v
y

), (k
j

, v
n

), ...]

reduce: (k
j

, [v
x

, v
n

]) ! [(k
h

, v
a

), (k
h

, v
b

), (k
l

, v
a

)]

There are no limits on the number of key/value pairs.

Combiner overview

5

• Combiner: local aggregation of key/value pairs after
map() and before the shuffle & sort phase  
(occurs on the same machine as map())

• Also called “mini-reducer”

• Instead of emitting 100 times (the,1), the combiner
emits (the,100)

• Can lead to great speed-ups

• Needs to be employed with care

Sometimes the reducer
code can be used.

There is more: the combiner

6

Setup: a mapper which outputs (term,termFreqInDoc) and a combiner
which is simply a copy of the reducer.

(the,2),(the,2),(the,1)

reduce

(the,5)

without
combiner

(the,2),(the,3)

reduce

(the,5)

with
combiner
(reducer
copy) correct!

Task 1: total term frequency of a term in the corpus

Task 2: average frequency of a term in the documents
(the,2),(the,2),(the,1)

reduce

(the,(2+2+1)/3=1.66)

without
combiner

(the,2),(the,1.5)

reduce

(the,(2+1.5)/2=1.75)

wrong!

(2+1)/2=1.5with
combiner
(reducer
copy)

There is more: the combiner

7

• Each combiner operates in isolation, has no access to
other mapper’s key/value pairs

• A combiner cannot be assumed to process all values
associated with the same key (may not run at all! Hadoop’s
decision)

• Emitted key/value pairs must be the same as those
emitted by the mapper

• Most often, combiner code != reducer code
• Exception: associative & commutative reduce operations

Hadoop in practice

Specified by the user:
• Mapper
• Reducer
• Combiner (optional)
• Partitioner (optional)
• Driver/job configuration

8

90% of the code comes from given templates

Hadoop in practice

9

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

public class InlinkCount extends Mapper<Object,Text,Text,IntWritable>
{

IntWritable one = new IntWritable(1);
Pattern linkPattern = Pattern.compile("\\[\\[.+?\\]\\]");

public void map(Object key, Text value, Context con) throws Exception
{

String page = value.toString();
Matcher m = linkPattern.matcher(page);
while(m.find())
{

String match = m.group();
con.write(new Text(match),one);

}
}

}

input key/value: (sourceUrl, content)
output key/value: (targetUrl, 1)

template differs slightly in diff. Hadoop versions

Mapper: counting inlinks

Hadoop in practice

10

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

public class SumReducer extends Reducer<Text,IntWritable,Text,IntWritable>
{

public void reduce(Text key,Iterable<IntWritable> values,Context con)
throws Exception

{
int sum = 0;
for(IntWritable iw : values)

sum += iw.get();

con.write(key, new IntWritable(sum));
}

}

Reducer: counting inlinks

input key/value:(targetUrl, 1)
output key/value:(targetUrl, count)

template differs slightly in diff. Hadoop versions

Hadoop in practice

11

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
…
public class InlinkCountDriver
{

public static void main(String[] args) throws Exception
{

Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser

(conf,args).getRemainingArgs();
Job job = new Job(conf, “InlinkAccumulator");
job.setMapperClass(InlinkCountMapper.class);
job.setCombinerClass(SumUpReducer.class);
job.setReducerClass(SumUpReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job,new Path("/user/in/"));
FileOutputFormat.setOutputPath(job,new Path("/user/out/"));
job.waitForCompletion(true);

}
}

Driver: counting inlinks

Hadoop in practice

12

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
…
public class CustomPartitioner extends Partitioner
{

public int getPartition(Object key, Object value,
int numPartitions)

{
String s = ((Text)key).toString();
String newKey = s.substring(0,s.lastIndexOf('#'));

return newKey.hashCode() % numPartitions;
}

}

Partitioner: two URLs that are the same apart from their
#fragment should be sent to the same reducer.

GFS / HDFS

14

• Explain the design considerations behind GFS/HDFS

• Explain the basic procedures for data replication,
recovery from failure, reading and writing

• Design alternative strategies to handle the issues
GFS/HDFS was created for

• Decide whether GFS/HDFS is a good fit given a
usage scenario

• Implement strategies for handling small files

Learning objectives

GFS introduction

15

Hadoop is heavily inspired by it.

One way (not the only way) to design a  
distributed file system.

16

• Developed by engineers at Google around 2003
• Built on principles in parallel and distributed

processing
• Seminal Google papers:

The Google file system by Sanjay Ghemawat, Howard Gobioff,
and Shun-Tak Leung (2003)
MapReduce: Simplified Data Processing on Large Clusters. by
Jeffrey Dean and Sanjay Ghemawat (2004)

• Yahoo! paper:
The Hadoop distributed file system by Konstantin Shvachko,
Hairong Kuang, Sanjay Radia, and Robert Chansler (2010)

History of MapReduce &
GFS

17

• File systems determine how data is stored and
retrieved

• Distributed file systems manage the storage
across a network of machines
• Added complexity due to the network

• GFS (Google) and HDFS (Hadoop) are distributed
file systems

• HDFS inspired by GFS

What is a file system?

18

• Hardware failures are common (commodity hardware)

• Files are large (GB/TB) and their number is limited (millions,
not billions)

• Two main types of reads: large streaming reads and small
random reads

• Workloads with sequential writes that append data to files

• Once written, files are seldom modified (!=append) again;
random modification in files possible, but not efficient in GFS

• High sustained bandwidth trumps low latency

GFS Assumptions
based on Google’s main use cases (at the time)

19

• GFS/HDFS are not a good fit for:
• Low latency data access (in the ms range)

• Solutions: HBase, Hive, …
• Many small files

• Solution: stuffing of binary files
• Constantly changing data

• Not all details of GFS are public knowledge (HDFS
developers “filled in” the details)

Disclaimer

GFS architecture

20

a single master
(metadata)

several clients

several data
servers

user level processes:
they can run on the
same physical machine

Image source: http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

Data does not(!) flow
across the GFS master

Remember: one way, not the only way.

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

GFS: files

21

Files on GFS
• A single file can contain many objects (e.g. Web

documents)

• Files are divided into fixed size chunks (64MB) with
unique 64 bit identifiers
• IDs assigned by GFS master at chunk creation time

• chunkservers store chunks on local disk as “normal”
Linux files
• Reading & writing of data specified by the tuple
(chunk_handle, byte_range)

22

File information at  
Master level
• Files are replicated (by default 3 times) across all chunk servers

• Master maintains all file system metadata
• Namespace, access control information, mapping from file

to chunks, chunk locations, garbage collection of orphaned
chunks, chunk migration, …

• Heartbeat messages between master and chunk servers
• Is the chunk server still alive? What chunks are stored at the

chunkserver?

• To read/write data: client communicates with master (metadata
operations) and chunk servers (data)

23

distributed systems are complex!

Files on GFS
• Clients cache metadata

• Clients do not cache file data

• Chunkservers do not cache file data (responsibility of
the underlying file system: Linux’s buffer cache)

• Advantages of (large) fixed-size chunks:
• Disk seek time small compared to transfer time
• A single file can be larger than a node’s disk space
• Fixed size makes allocation computations easy

24

• Seek time: 10ms (0.01s)
• Transfer rate: 100MB/s
• What is the chunk size to  

make the seek time 1% of  
the transfer rate?

• 100 MB

GFS: Master

25

One master
• Single master simplifies the design tremendously

• Chunk placement and replication with global
knowledge

• Single master in a large cluster can become a
bottleneck
• Goal: minimize the number of reads and writes

(thus metadata vs. data)

26

A read operation (in detail)

27Image source: http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

1. Client translates filename and byte
offset specified by the application into
a chunk index within the file.  
Sends request to master.

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

28

2. Master replies with chunk handle and
locations.

A read operation (in detail)

Image source: http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

29

3. Client caches the metadata.

4. Client sends a data request to one of
the replicas (the closest one). Byte
range indicates wanted part of the
chunk. More than one chunk can be
included in a single request.

A read operation (in detail)

Image source: http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

30

5. Contacted chunk server replies with
the requested data.

A read operation (in detail)

Image source: http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

Metadata on the master
• 3 types of metadata

• Files and chunk namespaces
• Mapping from files to chunks
• Locations of each chunk’s replicas

• All metadata is kept in master’s memory (fast random access)
• Sets limits on the entire system’s capacity

• Operation log is kept on master’s local disk: in case of the
master’s crash, master state can be recovered
• Namespaces and mappings are logged
• Chunk locations are not logged

31

GFS: Chunks

32

Chunks
• 1 chunk = 64MB or 128MB (can be changed); chunk stored

as a plain Linux file on a chunk server

• Advantages of large (but not too large) chunk size
• Reduced need for client/master interaction
• 1 request per chunk suits the target workloads
• Client can cache all the chunk locations for a multi-TB

working set
• Reduced size of metadata on the master (kept in memory)

• Disadvantage: chunkserver can become hotspot for popular
file(s)

33Question: how could the hotspot issue be solved?

Chunk locations
• Master does not keep a persistent record of chunk

replica locations

• Master polls chunkservers about their chunks at startup

• Master keeps up to date through periodic HeartBeat
messages
• Master/chunkservers easily kept in sync when chunk

servers leave/join/fail/restart [regular event]
• Chunkserver has the final word over what chunks it

has

34

Operation log
• Persistent record of critical metadata changes

• Critical to the recovery of the system

• Changes to metadata are only made visible to clients after
they have been written to the operation log

• Operation log replicated on multiple remote machines
• Before responding to client operation, log record must

have been flashed locally and remotely

• Master recovers its file system from checkpoint + operation

35

master operation
log

writes to

log
size?

checkpoint
creation;

log file reset

recovery

too
large

crashed!

Operation log
• Persistent record of critical metadata changes

• Critical to the recovery of the system

• Changes to metadata are only made visible to clients after
they have been written to the operation log

• Operation log replicated on multiple remote machines
• Before responding to client operation, log record must

have been flashed locally and remotely

• Master recovers its file system from checkpoint + operation

36

master operation
log

writes to

log
size?

checkpoint
creation;

log file reset

recovery

too
large

C1

C2

C3

master
operation log

mv file_name1 file_name2

get file_name1

get file_name1

Question: when does the master relay the new information to
the clients? Before or after having written it to the op. log?

crashed!

Chunk replica placement
• Creation of (initially empty) chunks

• Use under-utilised chunk servers; spread across racks
• Limit number of recent creations on each chunk server

• Re-replication
• Started once the available replicas fall below setting
• Master instructs chunkserver to copy chunk data

directly from existing valid replica
• Number of active clone operations/bandwidth is limited

• Re-balancing
• Changes in replica distribution for better load balancing;

gradual filling of new chunk servers

37

GFS: Data integrity

38

Garbage collection

• Deletion logged by master
• File renamed to a hidden file, deletion timestamp kept
• Periodic scan of the master’s file system namespace

• Hidden files older than 3 days are deleted from master’s
memory (no further connection between file and its chunk)

• Periodic scan of the master’s chunk namespace
• Orphaned chunks (not reachable from any file) are

identified, their metadata deleted
• HeartBeat messages used to synchronise deletion between

master/chunkserver

39

Question: how can a file be deleted from the cluster?

Stale replica detection

40

• Master maintains a chunk version number to
distinguish up-to-date and stale replicas

• Before an operation on a chunk, master ensures
that version number is advanced

• Stale replicas are removed in the regular garbage
collection cycle

Scenario: a chunkserver misses a change (“mutation”)  
applied to a chunk, e.g. a chunk was appended

Data corruption
• Data corruption or loss can occur at the read and write stage

• Chunkservers use checksums to detect corruption of stored
data
• Alternative: compare replicas across chunk servers

• Chunk is broken into 64KB blocks, each has a 32 bit
checksum
• Kept in memory and stored persistently

• Read requests: chunkserver verifies checksum of data
blocks that overlap read range (i.e. corruptions not send to
clients)

41

Question: how can chunk servers detect whether or not
their stored data is corrupt?

HDFS: Hadoop
Distributed File System

42

GFS vs. HDFS

43

GFS HDFS

Master NameNode

chunkserver DataNode

operation log journal, edit log

chunk block

random file writes possible only append is possible

multiple writer, multiple reader
model single writer, multiple reader model

chunk: 64KB data and 32bit
checksum pieces

per HDFS block, two files created on
a DataNode: data file & metadata file
(checksums, timestamp)

default block size: 64MB default block size: 128MB

Hadoop’s architecture  
O.X and 1.X
• NameNode

• Master of HDFS, directs the slave DataNode
daemons to perform low-level I/O tasks

• Keeps track of file splitting into blocks,
replication, block location, etc.

• Secondary NameNode: takes snapshots of the
NameNode

• DataNode: each slave machine hosts a DataNode
daemon

44

“MapReduce 1”

• JobTracker (job scheduling + task progress monitoring)
• One JobTracker per Hadoop cluster
• Middleman between your application and Hadoop (single point

of contact)
• Determines the execution plan for the application (files to

process, assignment of nodes to tasks, task monitoring)
• Takes care of (supposed) task failures

• TaskTracker
• One TaskTracker per DataNode
• Manages individual tasks
• Keeps in touch with the JobTracker (via HeartBeats) - sends

progress report & signals empty task slots

45

JobTracker and TaskTracker
“MapReduce 1”

JobTracker and TaskTracker

46
Image source: http://lintool.github.io/MapReduceAlgorithms/

“MapReduce 1”

http://lintool.github.io/MapReduceAlgorithms/

What about the jobs?
• “Hadoop job”: unit of work to be performed (by a client)

• Input data
• MapReduce program
• Configuration information

• Hadoop divides job into tasks (two types: map, reduce)

• Hadoop divides input data into fixed size input splits
• One map task per split
• One map function call for each record in the split
• Splits are processed in parallel (if enough DataNodes exist)
• Job execution controlled by JobTracker and TaskTrackers

47

“MapReduce 1”

Hadoop in practice: Yahoo!
(2010)
• 40 nodes/rack sharing one IP switch
• 16GB RAM per cluster node, 1-gigabit Ethernet
• 70% of disk space allocated to HDFS

• Remainder: operating system, data emitted by
Mappers (not in HDFS)

• NameNode: up to 64GB RAM
• Total storage: 9.8PB -> 3.3PB net storage (replication: 3)
• 60 million files, 63 million blocks
• 54,000 blocks hosted per DataNode
• 1-2 nodes lost per day
• Time for cluster to re-replicate  

lost blocks: 2 minutes 48
HDFS cluster with 3,500 nodes

• JobTracker/TaskTrackers setup becomes a bottleneck
in clusters with thousands of nodes

• As answer YARN has been developed (Yet Another
Resource Negotiator)

• YARN splits the JobTracker’s tasks (job scheduling and
task progress monitoring) into two daemons:
• Resource manager (RM)
• Application master (negotiates with RM for cluster

resources; each Hadoop job has a dedicated master)

49

YARN (MapReduce 2)

• Scalability: larger clusters are supported

• Availability: high availability (high uptime)
supported

• Utilization: more fine-grained use of resources

• Multitenancy: MapRedue is just one application
among many

50

YARN Advantages

Recommended reading

51

Chapter 3

THE END

