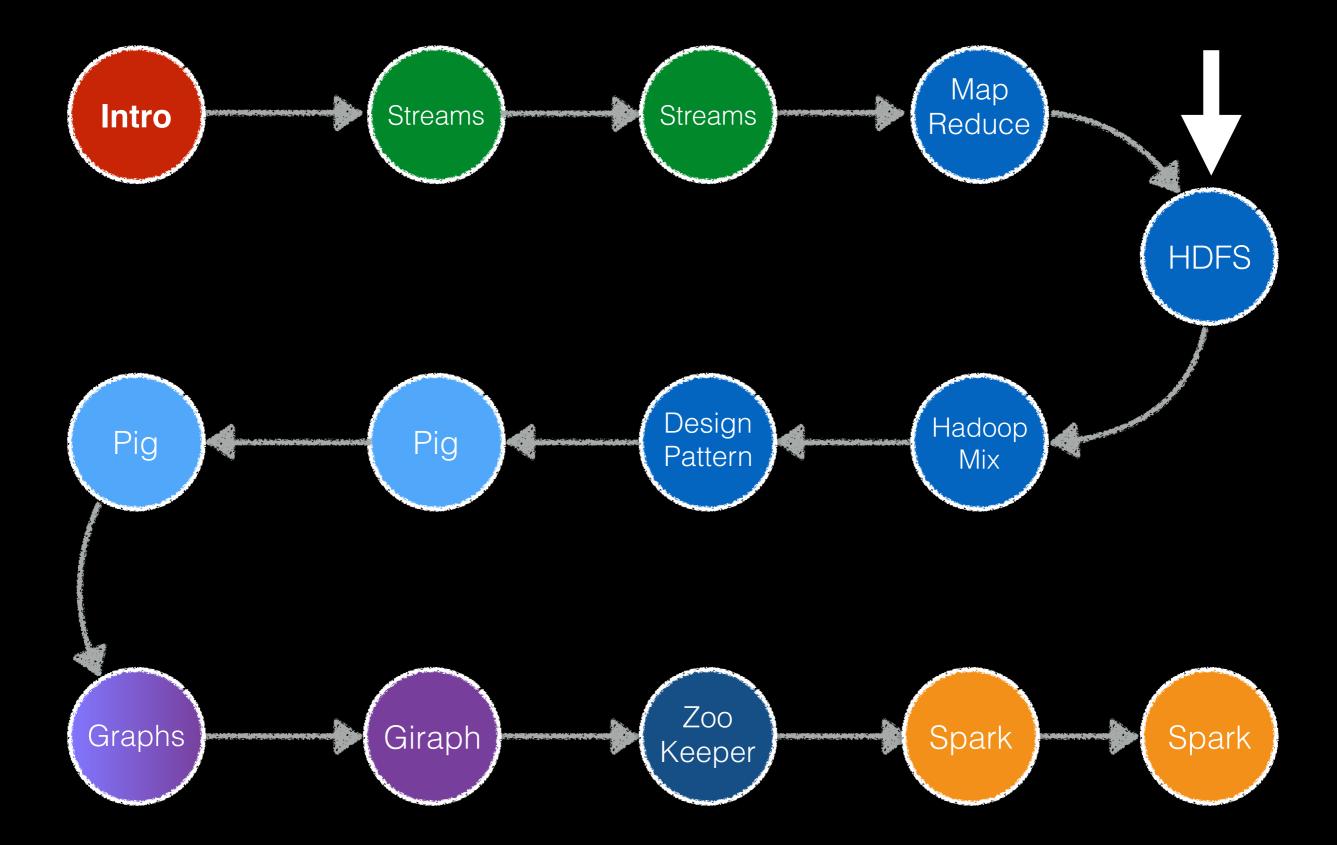
TI2736-B Big Data Processing Claudia Hauff ti2736b-ewi@tudelft.nl



But first ... Partitioner & Combiner

Reminder: map & reduce

Key/value pairs form the basic data structure.

 Apply a map operation to each record in the input to compute a set of intermediate key/value pairs

map:
$$(k_i, v_i) \to [(k_j, v_j)]$$

map: $(k_i, v_i) \to [(k_j, v_x), (k_m, v_y), (k_j, v_n), ...]$

There are **no limits** on the number of key/value pairs.

Combiner overview

- Combiner: local aggregation of key/value pairs after map() and before the shuffle & sort phase (occurs on the same machine as map())
- Also called "mini-reducer"

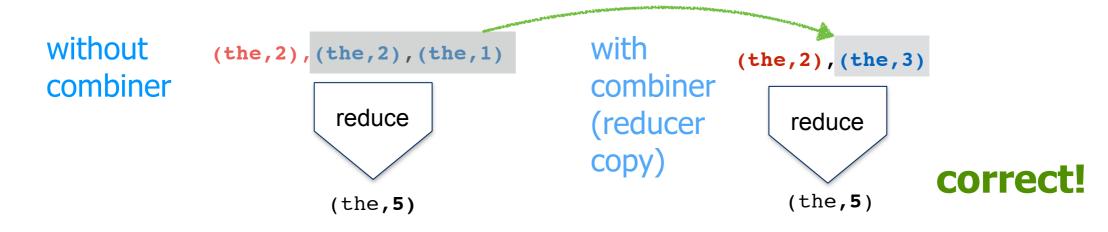
Sometimes the reducer code can be used.

- Instead of emitting 100 times (the,1), the combiner emits (the,100)
- Can lead to great **speed-ups**
- Needs to be employed with care

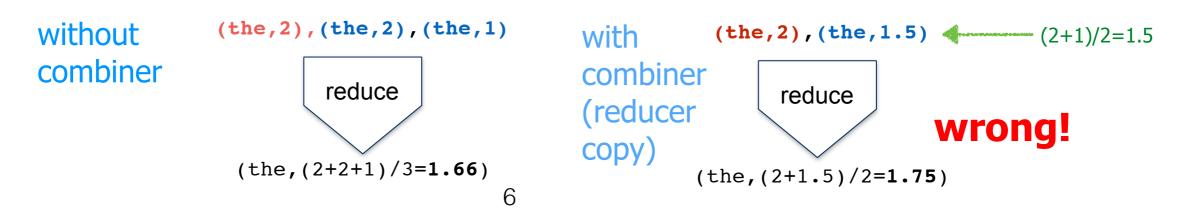
There is more: the combiner

Setup: a mapper which outputs (term,termFreqInDoc) and a combiner which is simply a copy of the reducer.

Task 1: total term frequency of a term in the corpus



Task 2: average frequency of a term in the documents



There is more: the combiner

- Each combiner operates in isolation, has no access to other mapper's key/value pairs
- A combiner cannot be assumed to process all values associated with the same key (may not run at all! Hadoop's decision)
- Emitted key/value pairs must be the same as those emitted by the mapper
- Most often, combiner code != reducer code
 - Exception: associative & commutative reduce operations

Specified by the user:

- Mapper
- Reducer
- Combiner (optional)
- Partitioner (optional)
- Driver/job configuration

90% of the code comes from given templates

Mapper: counting inlinks

```
import org.apache.hadoop.io.*;
                                          input key/value: (sourceUrl, content)
import org.apache.hadoop.mapred.*;
                                          output key/value: (targetUrl, 1)
public class InlinkCount extends Mapper<Object,Text,Text,IntWritable>
{
      IntWritable one = new IntWritable(1);
      Pattern linkPattern = Pattern.compile("\\[\\[.+?\\]\\]");
      public void map(Object key, Text value, Context con) throws Exception
      {
            String page = value.toString();
            Matcher m = linkPattern.matcher(page);
            while(m.find())
             {
                   String match = m.group();
                   con.write(new Text(match), one);
             }
      }
}
```

template differs slightly in diff. Hadoop versions

Reducer: counting inlinks

```
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
```

}

input key/value:(targetUrl, 1)
output key/value:(targetUrl, count)

```
public class SumReducer extends Reducer<Text,IntWritable,Text,IntWritable>
{
    public void reduce(Text key,Iterable<IntWritable> values,Context con)
    throws Exception
```

```
{
    int sum = 0;
    for(IntWritable iw : values)
        sum += iw.get();
    con.write(key, new IntWritable(sum));
}
```

template differs slightly in diff. Hadoop versions

}

Driver: counting inlinks

```
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
public class InlinkCountDriver
{
      public static void main(String[] args) throws Exception
      {
            Configuration conf = new Configuration();
            String[] otherArgs = new GenericOptionsParser
                                      (conf,args).getRemainingArgs();
            Job job = new Job(conf, "InlinkAccumulator");
             job.setMapperClass(InlinkCountMapper.class);
             job.setCombinerClass(SumUpReducer.class);
             job.setReducerClass(SumUpReducer.class);
             job.setOutputKeyClass(Text.class);
             job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job,new Path("/user/in/"));
            FileOutputFormat.setOutputPath(job,new Path("/user/out/"));
             job.waitForCompletion(true);
      }
```

}

Partitioner: two URLs that are the same apart from their #fragment should be sent to the same reducer.

```
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
public class CustomPartitioner extends Partitioner
{
     public int getPartition(Object key, Object value,
                                         int numPartitions)
     {
          String s = ((Text)key).toString();
          String newKey = s.substring(0,s.lastIndexOf('#'));
          return newKey.hashCode() % numPartitions;
     }
```

GFS / HDFS

Learning objectives

- Explain the design considerations behind GFS/HDFS
- Explain the basic procedures for data replication, recovery from failure, reading and writing
- Design alternative strategies to handle the issues GFS/HDFS was created for
- Decide whether GFS/HDFS is a good fit given a usage scenario
- Implement strategies for handling small files

GFS introduction

Hadoop is *heavily* inspired by it.

One way (not *the only* way) to design a distributed file system.

History of MapReduce & GFS

- Developed by engineers at Google around 2003
 - Built on principles in parallel and distributed processing
- Seminal Google papers:

The Google file system by Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (2003)

MapReduce: Simplified Data Processing on Large Clusters. by Jeffrey Dean and Sanjay Ghemawat (2004)

• Yahoo! paper:

The Hadoop distributed file system by Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler (2010)

What is a file system?

- File systems determine how data is stored and retrieved
- **Distributed file systems** manage the storage across a network of machines
 - Added complexity due to the network
- **GFS** (Google) and **HDFS** (Hadoop) are distributed file systems
- HDFS inspired by GFS

GFS Assumptions

based on Google's main **use cases** (at the time)

- Hardware failures are common (commodity hardware)
- Files are large (GB/TB) and their number is limited (millions, not billions)
- Two main types of reads: large streaming reads and small random reads
- Workloads with sequential writes that append data to files
- Once written, files are seldom modified (!=append) again; random modification in files possible, but not efficient in GFS
- High sustained bandwidth trumps low latency

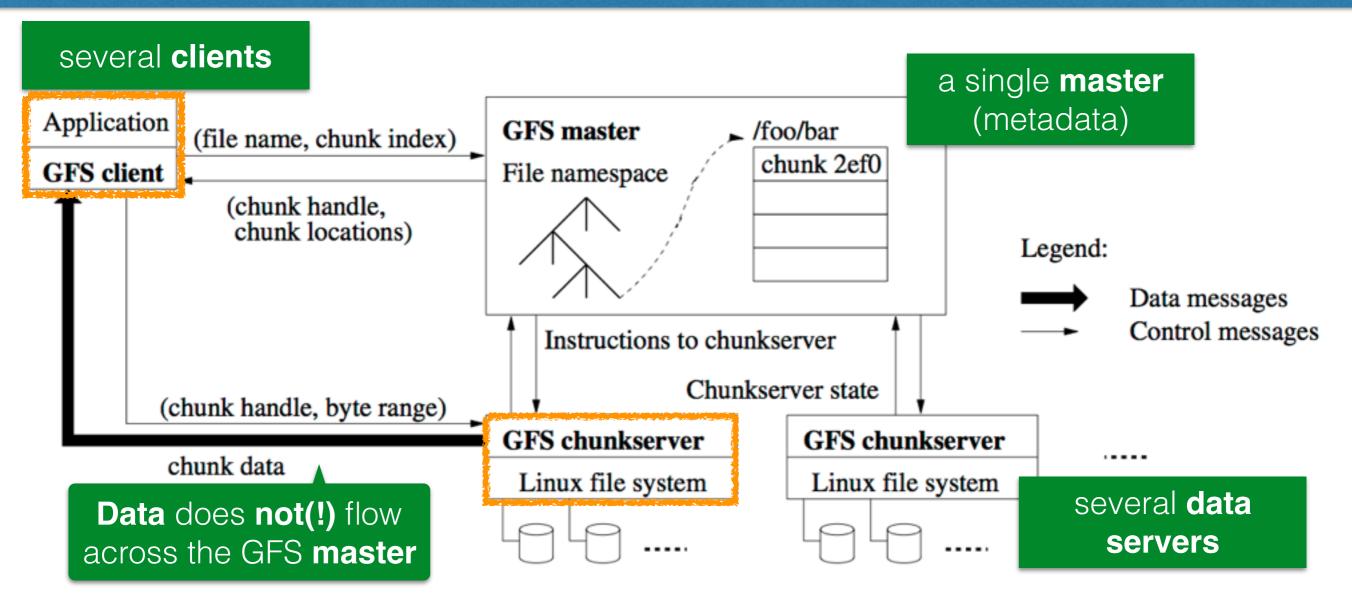
Disclaimer

- GFS/HDFS are **not** a good fit for:
 - Low latency data access (in the ms range)
 - Solutions: HBase, Hive, ...
 - Many small files
 - Solution: stuffing of binary files
 - Constantly changing data
- Not all details of GFS are public knowledge (HDFS developers "filled in" the details)

user level processes: they can run on the same physical machine

GFS architecture

Remember: one way, not the only way.



GFS: files

Files on GFS

- A single file can contain many objects (e.g. Web documents)
- Files are divided into fixed size chunks (64MB) with unique 64 bit identifiers
 - IDs assigned by GFS master at chunk creation time
- chunkservers store chunks on local disk as "normal" Linux files
 - Reading & writing of data specified by the tuple (chunk_handle, byte_range)

File information at Master level

- Files are replicated (by default 3 times) across all chunk servers
- Master maintains all file system metadata
 - Namespace, access control information, mapping from file to chunks, chunk locations, garbage collection of orphaned chunks, chunk migration, ...

distributed systems are complex!

- Heartbeat messages between master and chunk servers
 - Is the chunk server still alive? What chunks are stored at the chunkserver?
- To read/write data: client communicates with master (metadata operations) and chunk servers (data)

Files on GFS

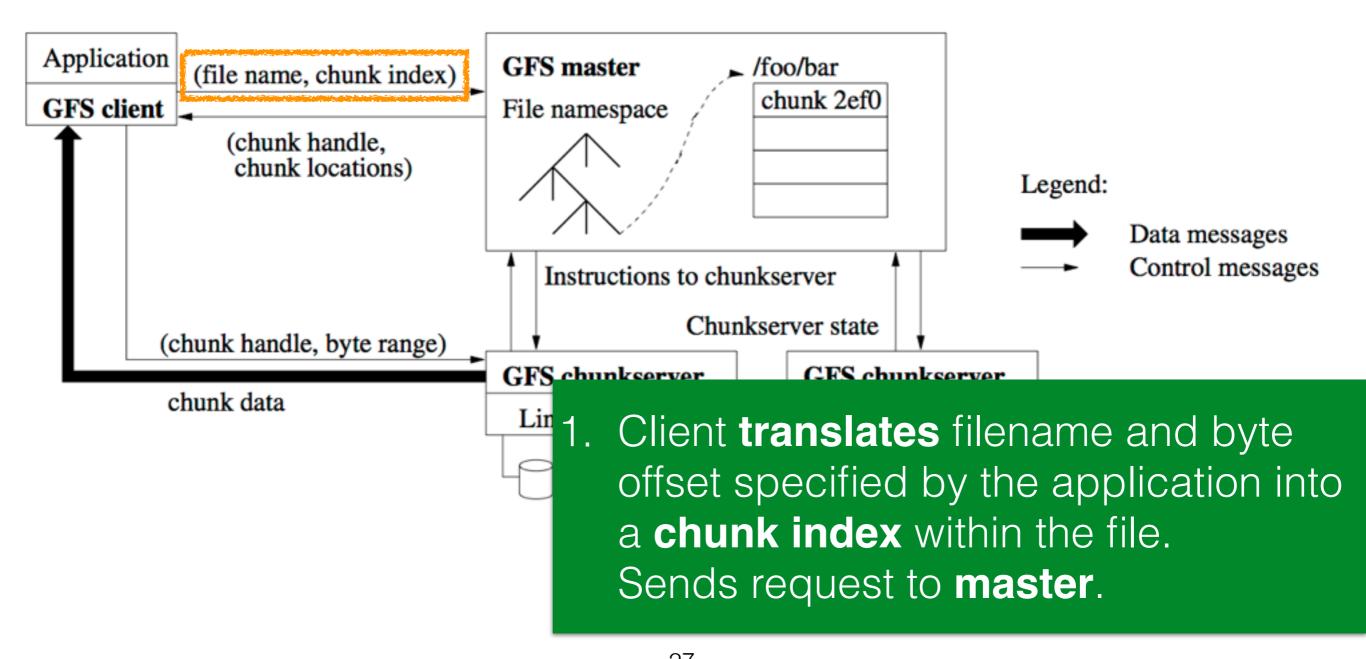
- Clients cache metadata
- Clients do not cache file data
- Chunkservers do not cache file data (responsibility of the underlying file system: Linux's buffer cache)
- Advantages of (large) fixed-size chunks:
 - Disk seek time small compared to transfer time
 - A single file can be larger than a node's disk space
 - Fixed size makes allocation computations easy

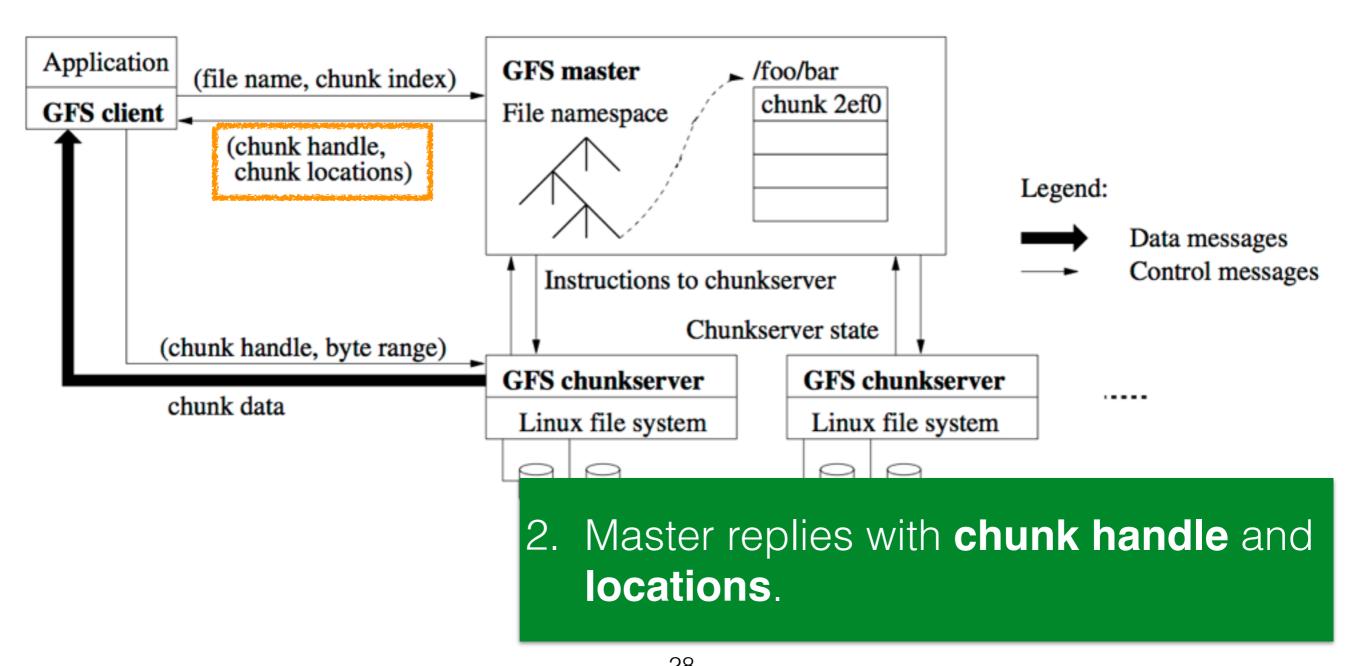
- Seek time: 10ms (0.01s)
- Transfer rate: 100MB/s
- What is the chunk size to make the seek time 1% of the transfer rate?

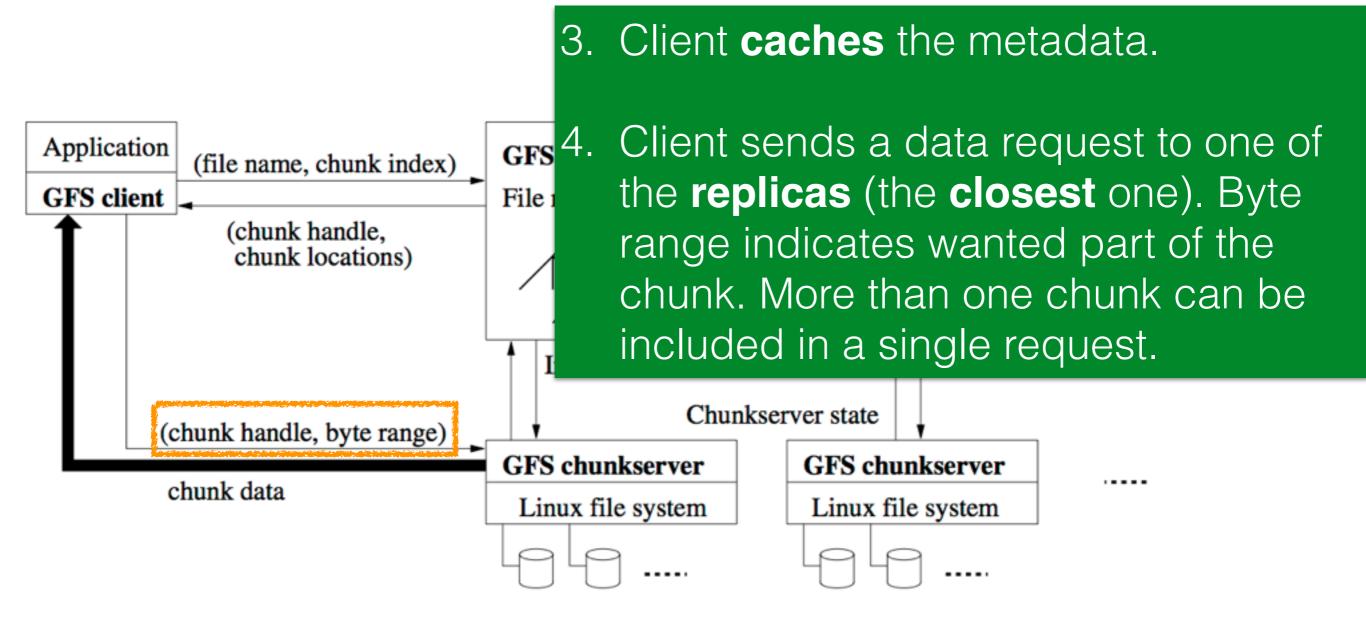
GFS: Master

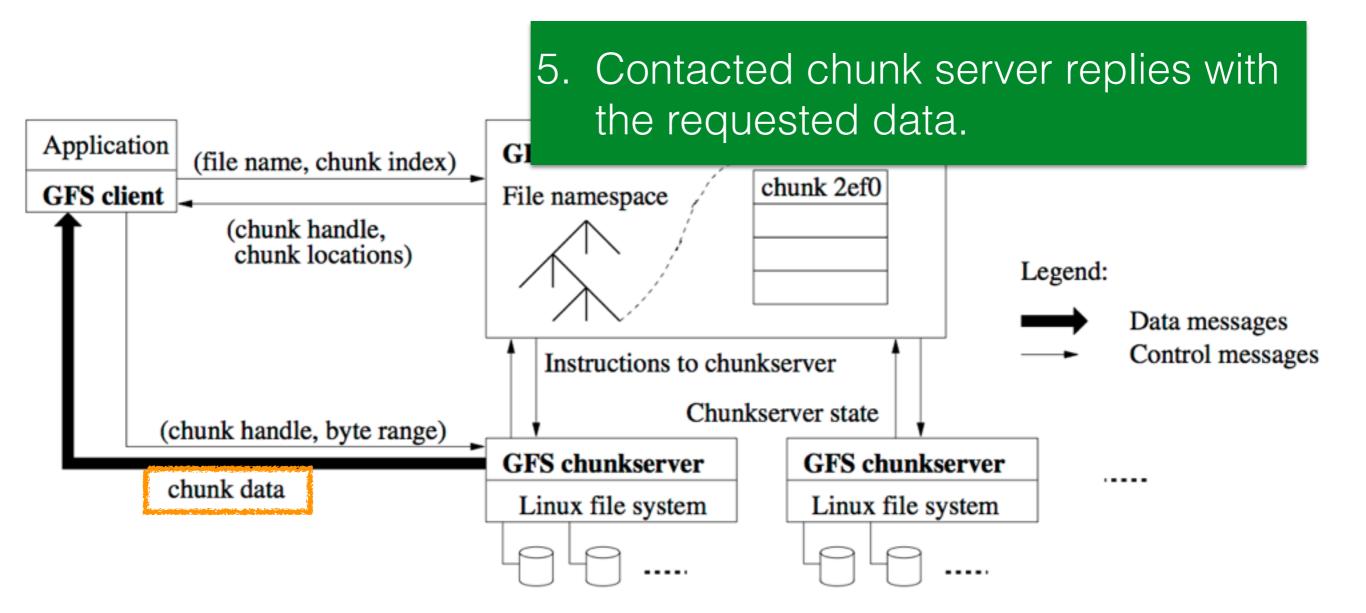
One master

- Single master **simplifies the design** tremendously
 - Chunk placement and replication with global knowledge
- Single master in a large cluster can become a bottleneck
 - Goal: minimize the number of reads and writes (thus metadata vs. data)









Metadata on the master

• 3 types of metadata

- Files and chunk namespaces
- Mapping from files to chunks
- Locations of each chunk's replicas
- All metadata is kept in master's **memory** (fast random access)
 - Sets limits on the entire system's capacity
- Operation log is kept on master's local disk: in case of the master's crash, master state can be recovered
 - Namespaces and mappings are logged
 - Chunk locations are **not** logged

GFS: Chunks

Chunks

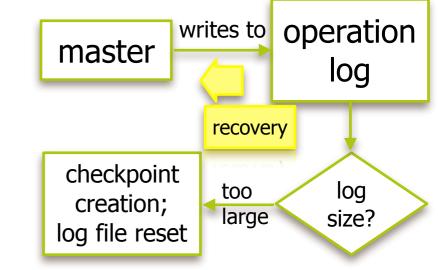
- 1 chunk = 64MB or 128MB (can be changed); chunk stored as a plain Linux file on a chunk server
- Advantages of large (but not too large) chunk size
 - Reduced need for client/master interaction
 - 1 request per chunk suits the target workloads
 - Client can cache all the chunk locations for a multi-TB working set
 - Reduced size of metadata on the master (kept in memory)
- Disadvantage: chunkserver can become hotspot for popular file(s)

Question: how could the hotspot issue be solved?

Chunk locations

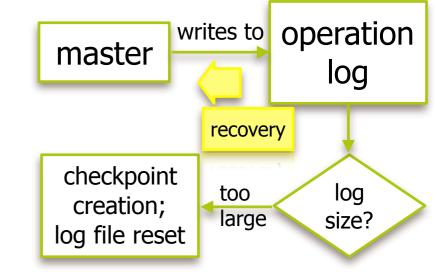
- Master does not keep a persistent record of chunk replica locations
- Master polls chunkservers about their chunks at startup
- Master keeps up to date through periodic HeartBeat messages
 - Master/chunkservers easily kept in sync when chunk servers leave/join/fail/restart [regular event]
 - Chunkserver has the final word over what chunks it has

Operation log

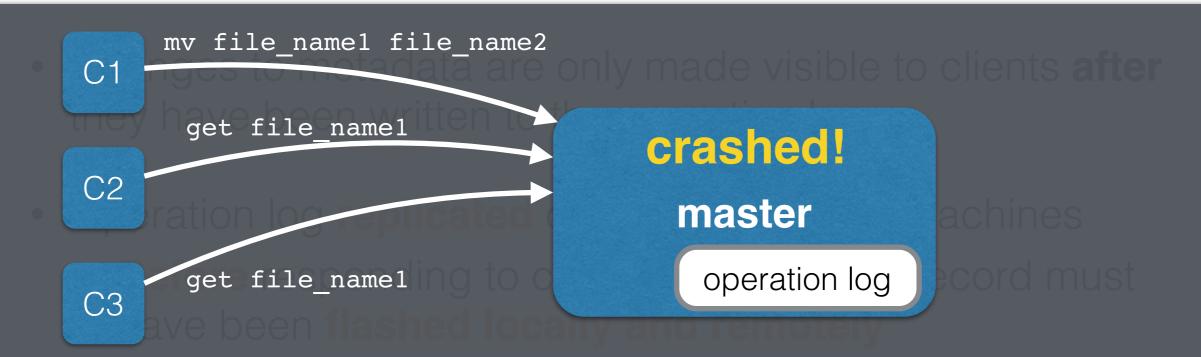


- Persistent record of critical metadata changes
- Critical to the recovery of the system
- Changes to metadata are only made visible to clients after they have been written to the operation log crashed!
- Operation log replicated on multiple remote machines
 - Before responding to client operation, log record must have been flashed locally and remotely
- Master recovers its file system from checkpoint + operation

Operation log



- Persistent record of critical metadata changes
- Critical to the recovery of the system



Question: when does the master relay the new information to the clients? Before or after having written it to the op. log?

Chunk replica placement

- Creation of (initially empty) chunks
 - Use under-utilised chunk servers; spread across racks
 - Limit number of recent creations on each chunk server
- Re-replication
 - Started once the available replicas fall below setting
 - Master instructs chunkserver to copy chunk data directly from existing valid replica
 - Number of active clone operations/bandwidth is limited

Re-balancing

 Changes in replica distribution for better load balancing; gradual filling of new chunk servers

GFS: Data integrity

Garbage collection

Question: how can a file be deleted from the cluster?

- **Deletion logged** by master
- File renamed to a hidden file, deletion timestamp kept
- Periodic scan of the master's file system namespace
 - Hidden files older than 3 days are deleted from master's memory (no further connection between file and its chunk)
- Periodic scan of the master's chunk namespace
 - Orphaned chunks (not reachable from any file) are identified, their metadata deleted
- HeartBeat messages used to synchronise deletion between master/chunkserver

Stale replica detection

Scenario: a chunkserver misses a change ("mutation") applied to a chunk, e.g. a chunk was appended

- Master maintains a chunk version number to distinguish up-to-date and stale replicas
- Before an operation on a chunk, master ensures that version number is advanced
- Stale replicas are removed in the regular garbage collection cycle

Data corruption

• Data corruption or loss can occur at the read and write stage

Question: how can chunk servers detect whether or not their stored data is corrupt?

- Alternative: compare replicas across chunk servers
- Chunk is broken into 64KB blocks, each has a 32 bit checksum
 - Kept in **memory** and stored persistently
- Read requests: chunkserver verifies checksum of data blocks that overlap read range (i.e. corruptions not send to clients)

HDFS: Hadoop Distributed File System

GFS vs. HDFS

GFS	HDFS
Master	NameNode
chunkserver	DataNode
operation log	journal, edit log
chunk	block
random file writes possible	only append is possible
multiple writer, multiple reader model	single writer, multiple reader model
chunk: 64KB data and 32bit checksum pieces	per HDFS block, two files created on a DataNode: data file & metadata file (checksums, timestamp)
default block size: 64MB	default block size: 128MB

Hadoop's architecture O.X and 1.X

NameNode

 Master of HDFS, directs the slave DataNode daemons to perform low-level I/O tasks

"MapReduce 1"

- Keeps track of file splitting into blocks, replication, block location, etc.
- Secondary NameNode: takes snapshots of the NameNode
- DataNode: each slave machine hosts a DataNode daemon

JobTracker and TaskTracker

- JobTracker (job scheduling + task progress monitoring)
 - One JobTracker per Hadoop cluster
 - Middleman between your application and Hadoop (single point of contact)
 - Determines the execution plan for the application (files to process, assignment of nodes to tasks, task monitoring)
 - Takes care of (supposed) task failures
- TaskTracker
 - One TaskTracker per DataNode
 - Manages individual tasks
 - Keeps in touch with the JobTracker (via HeartBeats) sends progress report & signals empty task slots

JobTracker and TaskTracker

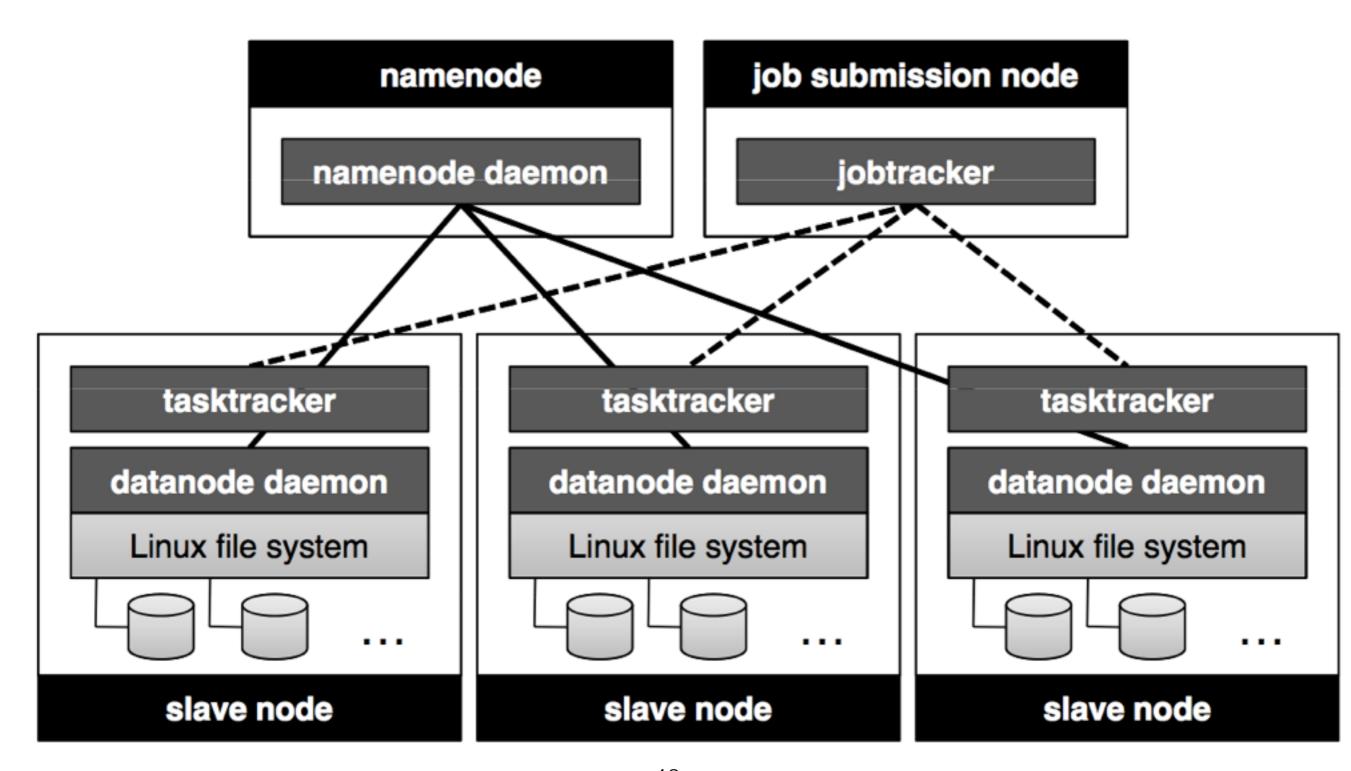


Image source: <u>http://lintool.github.io/MapReduceAlgorithms/</u>

What about the jobs?

- "Hadoop job": unit of work to be performed (by a client)
 - Input data
 - MapReduce program
 - Configuration information
- Hadoop divides job into tasks (two types: map, reduce)
- Hadoop divides input data into fixed size input splits
 - One map task per split
 - One map function call for each record in the split
 - Splits are processed in **parallel** (if enough DataNodes exist)
 - Job execution controlled by JobTracker and TaskTrackers

Hadoop in practice: Yahoo! (2010)

- 40 nodes/rack sharing one IP switch
- 16GB RAM per cluster node, 1-gigabit Ethernet
- 70% of disk space allocated to HDFS
 - Remainder: operating system, data emitted by Mappers (not in HDFS)
- NameNode: up to 64GB RAM
- Total storage: 9.8PB -> 3.3PB net storage (replication: 3)
- 60 million files, 63 million blocks
- 54,000 blocks hosted per DataNode
- 1-2 nodes lost per day
- Time for cluster to re-replicate lost blocks: 2 minutes 48

HDFS cluster with 3,500 nodes

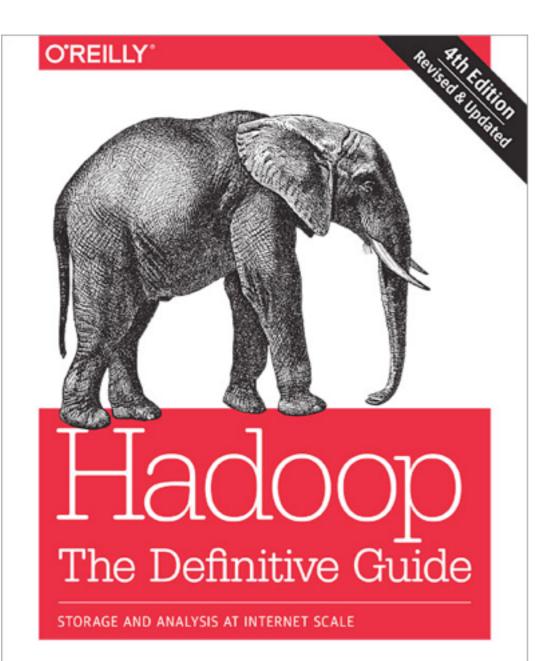
YARN (MapReduce 2)

- JobTracker/TaskTrackers setup becomes a bottleneck in clusters with thousands of nodes
- As answer YARN has been developed (Yet Another Resource Negotiator)
- YARN splits the JobTracker's tasks (job scheduling and task progress monitoring) into two daemons:
 - Resource manager (RM)
 - Application master (negotiates with RM for cluster resources; each Hadoop job has a dedicated master)

YARN Advantages

- Scalability: larger clusters are supported
- Availability: high availability (high uptime) supported
- Utilization: more fine-grained use of resources
- Multitenancy: MapRedue is just one application among many

Recommended reading



Tom White

Chapter 3

THE END