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• Explain the drawbacks of MapReduce-base 
implementations of graph algorithms  
(focus in the last lecture) 

• Explain and apply the idea behind BSP 

• Discuss the architecture of Pregel & Giraph 

• Implement basic graph problems within the 
Giraph framework

Learning objectives



A little reminder



PageRank
• Idea: if page px links to page py, then the creator of 
px implicitly transfers some importance to page py 
• yahoo.com is an important page, many pages 

point to it 
• Pages linked to from yahoo.com are also likely 

to be important 

• Pages distributes “importance” through outlinks 

• Simple PageRank (iteratively):
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Page et al., 1998

PageRanki+1(v) =
X

u!v

PageRanki(u)

Nu
all nodes linking to v

out-degree of node u



PageRank in MapReduce

6

Pseudocode: simplified PageRank

Source: Data-Intensive Text Processing with MapReduce



Efficient large-scale graph 
processing is challenging
• Poor locality of memory access 

• Little work per node (vertex) 

• Changing degree of parallelism over the course of execution 

• Distribution over many commodity machines due to poor 
locality is error-prone (failure likely) 

• Needed: “scalable general-purpose system for 
implementing arbitrary graph algorithms [in batch mode] 
over arbitrary graph representations in a large-scale 
distributed environment”
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Enter Pregel (2010)

• “We built a scalable and fault-tolerant  platform with 
an API that is sufficiently flexible to express 
arbitrary graph algorithms” 

• Pregel river runs through Königsberg                           
(Euler’s seven bridges problem)
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Graph processing in 
Hadoop
• Disadvantage: iterative algorithms are slow 

• Lots of reading/writing to and from disk 

• Advantage: no additional libraries needed 

• Enter Giraph: an open-source implementation of 
yet another Google framework (Pregel) 
• Specifically created for iterative graph 

computations
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A bit of theory:  
Bulk Synchronous Parallel 

or BSP



Bulk Synchronous Parallel
• General model for the design of 

parallel algorithms 

• Developed by Leslie Valiant in 
the 1980s/90s 

• BSP computer: processors with 
fast local memory are 
connected by a communication 
network 

• BSP computation is a series of 
“supersteps”
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• No message passing in MR 
• Avoids MR’s costly disk and 

network operations

local 
computation

communication

barrier 
synchronisation

processors

one superstep



Bulk Synchronous Parallel
Supersteps consist of three phases
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Local computation: every processor performs computations using 
data stored in local memory - independent of what happens at other 
processors; a processor can contain several processes (threads)

Communication: exchange of data between processes (put and 
get); one-sided communication

Barrier synchronisation: all processes wait until everyone has 
finished the communication step

Local computation and communication phases are 
not strictly ordered in time



Bulk Synchronous Parallel
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BSP & graphs: “Think like a vertex!” 

In BSP, algorithms are implemented from the 
viewpoint of a single vertex in the input graph 
performing a single iteration of the computation.



Think like a vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertexvertex

Each vertex has an id, a value, a list of adjacent  
neighbour ids and corresponding edge values.



Pregel



A high-level view
• Pregel computations consist of a sequence of iterations 

(supersteps) 

• In a superstep, the framework invokes a user-defined 
function for each vertex (conceptually in parallel) 

• Function specifies behaviour at a single vertex V and a 
single superstep S 
• it can read messages sent to V in superstep (S-1) 
• it can send messages to other vertices that will be read 

in superstep (S+1) 
• it can modify the state of V and its outgoing edges
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Vertex-centric approach
• Reminiscent of MapReduce 

• User (i.e. algorithm developer) focus  
on a local action 

• Each vertex is processed independently 

• By design: well suited for a distributed 
implementation 
• All communication is from superstep S to (S+1) 
• No defined execution order within a superstep 
• Free of deadlocks and data races

17“We have not found any graph algorithms for which message passing is not sufficient”



Pregel input
• Directed graph 

• Each vertex is associated with a modifiable, user-
defined value 

• The directed edges are associated with their 
source vertices

• Each directed edge consists of a modifiable, user-
defined value and a target vertex identifier
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Edges are not first-class citizens in this model.



• In MapReduce: external driver program decides when to stop 
an iterative algorithm 

• BSP-inspired Pregel: 
• Superstep 0: all vertices are active 
• All active vertices participate in the computation at each 

superstep 
• A vertex deactivates itself by voting to halt 
• No execution in subsequent supersteps 
• Vertex can be reactivated by receiving a message 

• Termination criterion: all vertices  
have voted to halt & no more  
messages are in transit

Algorithm termination
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Active Inactive

vote to halt

message received



Pregel’s output
• A set of values output by the vertices 

• Often: a directed graph isomorphic to the input 
(i.e. no change) 

• Other outputs are possible as vertices/edges can 
be added/removed during supersteps 
• Clustering: generate a small set of disconnected 

vertices selected from a large graph 
• Graph mining algorithm might output aggregated 

statistics mined from the graph
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Example: maximum value
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message
vote to halt

graph with four 
nodes and four 
directed edges

messages are 
usually send to 
vertices directly 
connected



Example II: 
maximum value
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Pregel API
• All vertices have an associated value of a particular specified 

type (similarly for edge and message types) 

• User provides the content of a compute() method which is 
executed by every active vertex in every superstep 
• compute() can access information about the current vertex 

(its value), its edges, received messages sent in the 
previous superstep 

• compute() can change the vertex value, the edge value(s) 
and send new messages to be read in next superstep 

• Values associated with the vertex and its edges are the only 
per-vertex state that persists across supersteps
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Limiting the graph state to a single value per 
vertex/edge simplifies the main computation 

cycle, graph distribution, failure recovery.



Message passing
• Vertices communicate via messages 

• Message consists of a message value and the name of 
the destination vertex  

• Every vertex can send any number of messages in a 
superstep to any other vertex with known id 

• All messages sent to vertex V in superstep S are 
available to V  in superstep S+1 
• Messages can be PageRank scores to be distributed 
• Message to non-existing vertex can create it
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Master implementation
• Master is responsible for coordinating the worker 

activities 

• Each worker has a unique id 

• Master maintains list of workers currently alive 
• Worker id, addressing information, portion of the 

graph assigned 
• Size of this data structure proportional to the 

number of partitions, not the number of vertices/
edges (thus, large graphs can be stored)
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Worker implementation
• Each worker maintains the state of its portion of the graph in 

memory
• Map from vertexID to the state of each vertex: current value, 

list of outgoing edges, a queue of incoming messages, flag 
[active/inactive] 

• In a superstep, a worker loops through all its vertices 

• Messages: 
• Destination vertex on a different worker: messages are 

buffered for delivery; sent as single network message 
• Destination vertex on the same worker: message is placed 

directly into the incoming message queue
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Combiners
• Message sending incurs overhead 

• Especially to a vertex on a different machine 

• Messages for a single vertex may be combined 
• Example: messages contain integer values & 

overall goal is the sum of all integers aimed at 
the target vertex
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Aggregators
• Mechanism for global communication, 

monitoring and data 

• Each vertex can provide a value to an aggregator 
in superstep S 
• The system combines those values using a 

reduction operator (e.g. min, max, sum) 
• The resulting value is made available to all 

vertices in superstep S+1
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Aggregators 
Usage scenario: global coordination
• One branch of compute() can be executed in 

each superstep until an and aggregator determines 
that all vertices fulfil a particular condition, then 
another branch is executed  

• Aggregators should be commutative and 
associative (ordering of input does not play a role) 

• Sticky aggregator: uses input values from all 
supersteps
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Topology mutations
• Some graph algorithms change a graph’s topology 

• Example: minimum spanning tree algorithm 
might remove all but the tree edges 

• Requests to add/remove vertices and edges are 
issued within compute()

• Multiple vertices may issue conflicting requests in 
the same superstep  
• Resolved through simple ordering rules
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Graph partitioning
• MapReduce framework: entire graph is read/written 

in each iteration 

• In Pregel: 
• Graph is divided into partitions, each consisting 

of a set of vertices and all those vertices 
outgoing edges 

• Assignment of a vertex to a partition depends on 
the vertex ID
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Fault tolerance
• Achieved through checkpointing 

• At the beginning of some supersteps the master instructs 
the workers to save the state of their partitions to 
persistent storage 

• Worker failure detected through ping messages the 
master issues to workers 

• If a worker is corrupt, the master reassigns graph 
partitions to the workers being alive; they reload their 
partition state from the most recently available checkpoint
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Pregel Examples



PageRank
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superstep 0: 
initialisation 
with PR=1/|G|

vertex type: double 
message type: double 
edge value: void



Single-source shortest paths 
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superstep 0: 
initialisation 
with INF



Bipartite matching
• Input: two distinct sets of vertices with only edges 

between them 

• Output: subset of edges with no common endpoints 

• Maximal matching: no more edges can be added 
without violating the no-common-endpoints condition 

• Vertex values: tuple of Left/Right  
flag (is the vertex a “left” or  
“right” one) and name of matched  
vertex once known
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Bipartite matching  
Randomized maximal matching
1. Each left vertex not yet matched sends a message to 

each neighbour to request a match; vote to halt              

2. Each right vertex not yet matched randomly chooses 
one of the messages it receives, grants the request and 
informs all requesters about decision; vote to halt 

3. Each left vertex not yet matched randomly chooses one 
of the grants it received and sends acceptance back 

4. Unmatched right vertex receives at most one 
acceptance message; votes to halt

37a 3-way handshake

cycles of 
4 phases



Bipartite matching  
Randomized maximal matching
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(blue, red)



Bipartite matching  
Randomized maximal matching
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(blue, red)

1. Each left vertex not yet matched sends a message to each 
neighbour to request a match; vote to halt             



Bipartite matching  
Randomized maximal matching
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(blue, red)

2. Each right vertex not yet matched randomly chooses one 
of the messages it receives, grants the request and 
informs all requesters about decision; vote to halt



Bipartite matching  
Randomized maximal matching
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(blue, red)

3. Each left vertex not yet matched chooses one of the 
grants it received and sends acceptance back



Bipartite matching  
Randomized maximal matching
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(blue, red)

4. Unmatched right vertex receives at most one acceptance 
message; votes to halt

halt!



Bipartite matching  
Randomized maximal matching
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(blue, red)

another cycle begins …



Soft clustering
• Cluster in social graphs: a group of people that 

interact frequently with each other and less 
frequently with others 
• A person may can belong to more than one 

cluster 

• Input: weighted, undirected graph  

• Output: Cmax clusters each with at most Vmax 
vertices 

• Also called “semi-clustering”
44



Soft clustering 
Cluster score

sum of weights of boundary edges

user-specified  
param in [0,1]

sum of weights of internal edges

#vertices in semi-cluster



Soft clustering
• Each vertex V maintains a list of at most Cmax semi-clusters, sorted by 

score 

• Superstep 0: V enters itself in the list as semi-cluster of size 1 and 
score 1; V publishes itself to all direct neighbours 

• Supersteps S=1 … [until no more changes]: 
• V iterates over the semi-clusters c1..ck sent to it at S-1 
• If a semi-cluster c does not already contain V and its size is below 

the maximum, add V to form d 
• Semi-clusters c1..ck, d1..dk are sorted by their cluster scores and the 

best ones are sent to V ’s neighbours 
• V updates its semi-cluster list with those from c1..ck, d1..dk that 

contain V 
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Some experimental results 
of Pregel
• Single-source shortest path on a binary tree with 

one billion vertices
• 50 worker tasks: 174 seconds 
• 800 worker tasks: 17 seconds 

• Single-source shortest path on a random graph 
with mean out degree 127, 800 worker tasks 
• 1 billion vertices (127 billion edges): ~10 minutes
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300 multi-core 
commodity PCs



Giraph



Pregel is not open source 
 source but Giraph is
• Giraph: a loose open-source implementation of Pregel 

• Employs Hadoop’s MAP phase to run computations 

• Employs Zookeeper (service that provides distributed 
synchronisation) to enforce barrier waits 

• Active contributions from Twitter, Facebook, LinkedIn 
and HortonWorks 

• Differences to Pregel: edge-oriented input,                
out-of-core computations, master computation…
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Giraph
• Hadoop Mappers are used to host Giraph Master and Worker 

tasks 
• No Reducers (no shuffle/sort phase) 

• Input graph is loaded just once, data locality is exploited 
when possible 
• Graph partitioning by default according to hash(vertexID)

• The computations on data are performed in memory, with very 
few disk spills 

• Only messages are passed through the network (not the 
entire graph structure)
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  1 package org.apache.giraph.examples;
  2 
  3 public class MaxComputation extends BasicComputation<IntWritable, IntWritable,
  4 NullWritable, IntWritable> {
  5 
  6  @Override
  7  public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,
  8                      Iterable<IntWritable> messages) throws IOException {
  9 
 10    boolean changed = false;
 11    for (IntWritable message : messages) {
 12      if (vertex.getValue().get() < message.get()) {
 13        vertex.setValue(message);
 14        changed = true;
 15      }
 16    }
 17    if (getSuperstep() == 0 || changed) {
 18      sendMessageToAllEdges(vertex, vertex.getValue());
 19    }
 20    vertex.voteToHalt();
 21  }
 22 }

vertex id, vertex data 
edge data, message type

reactivation only 
after incoming message

at start or after change, 
message connected vertices

Giraph in action: maximum 
value in a graph
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Remember: Think like a vertex!

process messages 
from previous superstep

maximum changes



  1 public class SimpleInDegreeCountComputation extends
  2 BasicComputation<LongWritable, LongWritable, DoubleWritable, DoubleWritable> {
  3   @Override
  4   public void compute(Vertex<LongWritable, LongWritable, DoubleWritable> 
  5                       vertex,
  6                       Iterable<DoubleWritable> messages) throws IOException {
  7     if (getSuperstep() == 0) {
  8       Iterable<Edge<LongWritable, DoubleWritable>> edges = vertex.getEdges();
  9       for (Edge<LongWritable, DoubleWritable> edge : edges) {
 10         sendMessage(edge.getTargetVertexId(), new DoubleWritable(1.0));
 11       }
 12     } else {
 13       long sum = 0;
 14       for (DoubleWritable message : messages) {
 15         sum++;
 16       }
 17       LongWritable vertexValue = vertex.getValue();
 18       vertexValue.set(sum);
 19       vertex.setValue(vertexValue);
 20       vertex.voteToHalt();
 21     }
 22   }
 23 }

send out the 
inlink messages

count them up

stop

Giraph in action: 
indegree count
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Summary
• Reminder of MapReduce-based graph algorithm 

implementations 

• Pregel 

• BSP 

• Giraph 

• Examples of implemented graph algorithms
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http://giraph.apache.org/
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THE END


