
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Pig
Ctd. Pig

Map
ReduceStreams

HDFS

Intro Streams

Hadoop
Ctd.

Design
Patterns

Spark
Ctd.

Graphs Giraph SparkZoo
Keeper

3

• Explain the drawbacks of MapReduce-base
implementations of graph algorithms  
(focus in the last lecture)

• Explain and apply the idea behind BSP

• Discuss the architecture of Pregel & Giraph

• Implement basic graph problems within the
Giraph framework

Learning objectives

A little reminder

PageRank
• Idea: if page px links to page py, then the creator of
px implicitly transfers some importance to page py
• yahoo.com is an important page, many pages

point to it
• Pages linked to from yahoo.com are also likely

to be important

• Pages distributes “importance” through outlinks

• Simple PageRank (iteratively):

5

Page et al., 1998

PageRanki+1(v) =
X

u!v

PageRanki(u)

Nu
all nodes linking to v

out-degree of node u

PageRank in MapReduce

6

Pseudocode: simplified PageRank

Source: Data-Intensive Text Processing with MapReduce

Efficient large-scale graph
processing is challenging
• Poor locality of memory access

• Little work per node (vertex)

• Changing degree of parallelism over the course of execution

• Distribution over many commodity machines due to poor
locality is error-prone (failure likely)

• Needed: “scalable general-purpose system for
implementing arbitrary graph algorithms [in batch mode]
over arbitrary graph representations in a large-scale
distributed environment”

7

Enter Pregel (2010)

• “We built a scalable and fault-tolerant platform with
an API that is sufficiently flexible to express
arbitrary graph algorithms”

• Pregel river runs through Königsberg
(Euler’s seven bridges problem)

8

Graph processing in
Hadoop
• Disadvantage: iterative algorithms are slow

• Lots of reading/writing to and from disk

• Advantage: no additional libraries needed

• Enter Giraph: an open-source implementation of
yet another Google framework (Pregel)
• Specifically created for iterative graph

computations

9

A bit of theory:
Bulk Synchronous Parallel

or BSP

Bulk Synchronous Parallel
• General model for the design of

parallel algorithms

• Developed by Leslie Valiant in
the 1980s/90s

• BSP computer: processors with
fast local memory are
connected by a communication
network

• BSP computation is a series of
“supersteps”

11

• No message passing in MR
• Avoids MR’s costly disk and

network operations

local
computation

communication

barrier
synchronisation

processors

one superstep

Bulk Synchronous Parallel
Supersteps consist of three phases

12

Local computation: every processor performs computations using
data stored in local memory - independent of what happens at other
processors; a processor can contain several processes (threads)

Communication: exchange of data between processes (put and
get); one-sided communication

Barrier synchronisation: all processes wait until everyone has
finished the communication step

Local computation and communication phases are
not strictly ordered in time

Bulk Synchronous Parallel

13

BSP & graphs: “Think like a vertex!”

In BSP, algorithms are implemented from the
viewpoint of a single vertex in the input graph
performing a single iteration of the computation.

Think like a vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertexvertex

Each vertex has an id, a value, a list of adjacent  
neighbour ids and corresponding edge values.

Pregel

A high-level view
• Pregel computations consist of a sequence of iterations

(supersteps)

• In a superstep, the framework invokes a user-defined
function for each vertex (conceptually in parallel)

• Function specifies behaviour at a single vertex V and a
single superstep S
• it can read messages sent to V in superstep (S-1)
• it can send messages to other vertices that will be read

in superstep (S+1)
• it can modify the state of V and its outgoing edges

16

Vertex-centric approach
• Reminiscent of MapReduce

• User (i.e. algorithm developer) focus  
on a local action

• Each vertex is processed independently

• By design: well suited for a distributed
implementation
• All communication is from superstep S to (S+1)
• No defined execution order within a superstep
• Free of deadlocks and data races

17“We have not found any graph algorithms for which message passing is not sufficient”

Pregel input
• Directed graph

• Each vertex is associated with a modifiable, user-
defined value

• The directed edges are associated with their
source vertices

• Each directed edge consists of a modifiable, user-
defined value and a target vertex identifier

18

Edges are not first-class citizens in this model.

• In MapReduce: external driver program decides when to stop
an iterative algorithm

• BSP-inspired Pregel:
• Superstep 0: all vertices are active
• All active vertices participate in the computation at each

superstep
• A vertex deactivates itself by voting to halt
• No execution in subsequent supersteps
• Vertex can be reactivated by receiving a message

• Termination criterion: all vertices  
have voted to halt & no more  
messages are in transit

Algorithm termination

19

Active Inactive

vote to halt

message received

Pregel’s output
• A set of values output by the vertices

• Often: a directed graph isomorphic to the input
(i.e. no change)

• Other outputs are possible as vertices/edges can
be added/removed during supersteps
• Clustering: generate a small set of disconnected

vertices selected from a large graph
• Graph mining algorithm might output aggregated

statistics mined from the graph

20

Example: maximum value

21

message
vote to halt

graph with four
nodes and four
directed edges

messages are
usually send to
vertices directly
connected

Example II:
maximum value

22

Pregel API
• All vertices have an associated value of a particular specified

type (similarly for edge and message types)

• User provides the content of a compute() method which is
executed by every active vertex in every superstep
• compute() can access information about the current vertex

(its value), its edges, received messages sent in the
previous superstep

• compute() can change the vertex value, the edge value(s)
and send new messages to be read in next superstep

• Values associated with the vertex and its edges are the only
per-vertex state that persists across supersteps

23

Limiting the graph state to a single value per
vertex/edge simplifies the main computation

cycle, graph distribution, failure recovery.

Message passing
• Vertices communicate via messages

• Message consists of a message value and the name of
the destination vertex

• Every vertex can send any number of messages in a
superstep to any other vertex with known id

• All messages sent to vertex V in superstep S are
available to V in superstep S+1
• Messages can be PageRank scores to be distributed
• Message to non-existing vertex can create it

24

Master implementation
• Master is responsible for coordinating the worker

activities

• Each worker has a unique id

• Master maintains list of workers currently alive
• Worker id, addressing information, portion of the

graph assigned
• Size of this data structure proportional to the

number of partitions, not the number of vertices/
edges (thus, large graphs can be stored)

25

Worker implementation
• Each worker maintains the state of its portion of the graph in

memory
• Map from vertexID to the state of each vertex: current value,

list of outgoing edges, a queue of incoming messages, flag
[active/inactive]

• In a superstep, a worker loops through all its vertices

• Messages:
• Destination vertex on a different worker: messages are

buffered for delivery; sent as single network message
• Destination vertex on the same worker: message is placed

directly into the incoming message queue

26

Combiners
• Message sending incurs overhead

• Especially to a vertex on a different machine

• Messages for a single vertex may be combined
• Example: messages contain integer values &

overall goal is the sum of all integers aimed at
the target vertex

27

Aggregators
• Mechanism for global communication,

monitoring and data

• Each vertex can provide a value to an aggregator
in superstep S
• The system combines those values using a

reduction operator (e.g. min, max, sum)
• The resulting value is made available to all

vertices in superstep S+1

28

Aggregators
Usage scenario: global coordination
• One branch of compute() can be executed in

each superstep until an and aggregator determines
that all vertices fulfil a particular condition, then
another branch is executed

• Aggregators should be commutative and
associative (ordering of input does not play a role)

• Sticky aggregator: uses input values from all
supersteps

29

Topology mutations
• Some graph algorithms change a graph’s topology

• Example: minimum spanning tree algorithm
might remove all but the tree edges

• Requests to add/remove vertices and edges are
issued within compute()

• Multiple vertices may issue conflicting requests in
the same superstep
• Resolved through simple ordering rules

30

Graph partitioning
• MapReduce framework: entire graph is read/written

in each iteration

• In Pregel:
• Graph is divided into partitions, each consisting

of a set of vertices and all those vertices
outgoing edges

• Assignment of a vertex to a partition depends on
the vertex ID

31

Fault tolerance
• Achieved through checkpointing

• At the beginning of some supersteps the master instructs
the workers to save the state of their partitions to
persistent storage

• Worker failure detected through ping messages the
master issues to workers

• If a worker is corrupt, the master reassigns graph
partitions to the workers being alive; they reload their
partition state from the most recently available checkpoint

32

Pregel Examples

PageRank

34

superstep 0:
initialisation
with PR=1/|G|

vertex type: double
message type: double
edge value: void

Single-source shortest paths

35

superstep 0:
initialisation
with INF

Bipartite matching
• Input: two distinct sets of vertices with only edges

between them

• Output: subset of edges with no common endpoints

• Maximal matching: no more edges can be added
without violating the no-common-endpoints condition

• Vertex values: tuple of Left/Right  
flag (is the vertex a “left” or  
“right” one) and name of matched  
vertex once known

36

Bipartite matching  
Randomized maximal matching
1. Each left vertex not yet matched sends a message to

each neighbour to request a match; vote to halt

2. Each right vertex not yet matched randomly chooses
one of the messages it receives, grants the request and
informs all requesters about decision; vote to halt

3. Each left vertex not yet matched randomly chooses one
of the grants it received and sends acceptance back

4. Unmatched right vertex receives at most one
acceptance message; votes to halt

37a 3-way handshake

cycles of
4 phases

Bipartite matching  
Randomized maximal matching

38

(blue, red)

Bipartite matching  
Randomized maximal matching

39

(blue, red)

1. Each left vertex not yet matched sends a message to each
neighbour to request a match; vote to halt

Bipartite matching  
Randomized maximal matching

40

(blue, red)

2. Each right vertex not yet matched randomly chooses one
of the messages it receives, grants the request and
informs all requesters about decision; vote to halt

Bipartite matching  
Randomized maximal matching

41

(blue, red)

3. Each left vertex not yet matched chooses one of the
grants it received and sends acceptance back

Bipartite matching  
Randomized maximal matching

42

(blue, red)

4. Unmatched right vertex receives at most one acceptance
message; votes to halt

halt!

Bipartite matching  
Randomized maximal matching

43

(blue, red)

another cycle begins …

Soft clustering
• Cluster in social graphs: a group of people that

interact frequently with each other and less
frequently with others
• A person may can belong to more than one

cluster

• Input: weighted, undirected graph

• Output: Cmax clusters each with at most Vmax
vertices

• Also called “semi-clustering”
44

Soft clustering
Cluster score

sum of weights of boundary edges

user-specified
param in [0,1]

sum of weights of internal edges

#vertices in semi-cluster

Soft clustering
• Each vertex V maintains a list of at most Cmax semi-clusters, sorted by

score

• Superstep 0: V enters itself in the list as semi-cluster of size 1 and
score 1; V publishes itself to all direct neighbours

• Supersteps S=1 … [until no more changes]:
• V iterates over the semi-clusters c1..ck sent to it at S-1
• If a semi-cluster c does not already contain V and its size is below

the maximum, add V to form d
• Semi-clusters c1..ck, d1..dk are sorted by their cluster scores and the

best ones are sent to V ’s neighbours
• V updates its semi-cluster list with those from c1..ck, d1..dk that

contain V

46

Some experimental results
of Pregel
• Single-source shortest path on a binary tree with

one billion vertices
• 50 worker tasks: 174 seconds
• 800 worker tasks: 17 seconds

• Single-source shortest path on a random graph
with mean out degree 127, 800 worker tasks
• 1 billion vertices (127 billion edges): ~10 minutes

47

300 multi-core
commodity PCs

Giraph

Pregel is not open source
 source but Giraph is
• Giraph: a loose open-source implementation of Pregel

• Employs Hadoop’s MAP phase to run computations

• Employs Zookeeper (service that provides distributed
synchronisation) to enforce barrier waits

• Active contributions from Twitter, Facebook, LinkedIn
and HortonWorks

• Differences to Pregel: edge-oriented input,
out-of-core computations, master computation…

49

Giraph
• Hadoop Mappers are used to host Giraph Master and Worker

tasks
• No Reducers (no shuffle/sort phase)

• Input graph is loaded just once, data locality is exploited
when possible
• Graph partitioning by default according to hash(vertexID)

• The computations on data are performed in memory, with very
few disk spills

• Only messages are passed through the network (not the
entire graph structure)

50

 1 package org.apache.giraph.examples;
 2
 3 public class MaxComputation extends BasicComputation<IntWritable, IntWritable,
 4 NullWritable, IntWritable> {
 5
 6 @Override
 7 public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,
 8 Iterable<IntWritable> messages) throws IOException {
 9
 10 boolean changed = false;
 11 for (IntWritable message : messages) {
 12 if (vertex.getValue().get() < message.get()) {
 13 vertex.setValue(message);
 14 changed = true;
 15 }
 16 }
 17 if (getSuperstep() == 0 || changed) {
 18 sendMessageToAllEdges(vertex, vertex.getValue());
 19 }
 20 vertex.voteToHalt();
 21 }
 22 }

vertex id, vertex data
edge data, message type

reactivation only
after incoming message

at start or after change,
message connected vertices

Giraph in action: maximum
value in a graph

51

Remember: Think like a vertex!

process messages
from previous superstep

maximum changes

 1 public class SimpleInDegreeCountComputation extends
 2 BasicComputation<LongWritable, LongWritable, DoubleWritable, DoubleWritable> {
 3 @Override
 4 public void compute(Vertex<LongWritable, LongWritable, DoubleWritable>
 5 vertex,
 6 Iterable<DoubleWritable> messages) throws IOException {
 7 if (getSuperstep() == 0) {
 8 Iterable<Edge<LongWritable, DoubleWritable>> edges = vertex.getEdges();
 9 for (Edge<LongWritable, DoubleWritable> edge : edges) {
 10 sendMessage(edge.getTargetVertexId(), new DoubleWritable(1.0));
 11 }
 12 } else {
 13 long sum = 0;
 14 for (DoubleWritable message : messages) {
 15 sum++;
 16 }
 17 LongWritable vertexValue = vertex.getValue();
 18 vertexValue.set(sum);
 19 vertex.setValue(vertexValue);
 20 vertex.voteToHalt();
 21 }
 22 }
 23 }

send out the
inlink messages

count them up

stop

Giraph in action:
indegree count

52

Summary
• Reminder of MapReduce-based graph algorithm

implementations

• Pregel

• BSP

• Giraph

• Examples of implemented graph algorithms

53

References

• Malewicz, Grzegorz, et al. "Pregel: a system for
large-scale graph processing." Proceedings of
the 2010 ACM SIGMOD International Conference
on Management of data. ACM, 2010.

• Apache Giraph: http://giraph.apache.org/

• Giraph example code: http://bit.ly/1bSohxy

54

http://giraph.apache.org/
http://bit.ly/1bSohxy

THE END

