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• Exploit Hadoop’s Counters and setup/cleanup 
efficiently 

• Explain how Hadoop addresses the problem of 
job scheduling 

• Explain Hadoop’s shuffle & sort phase and use 
that knowledge to improve your Hadoop code 

• Implement strategies for efficient data input

Learning objectives



Hadoop Programming 
Revisited: setup and 

cleanup
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Setup & cleanup
• One MAPPER object for each map task 

• Associated with a sequence of key/value pairs (the “input split”) 
• map() is called for each key/value pair by the execution 

framework 

• One REDUCER object for each reduce task 
• reduce() is called once per intermediate key 

• MAPPER/REDUCER are Java objects -> allows side effects
• Preserving state across multiple inputs 
• Initialise additional resources 
• Emit (intermediate) key/value pairs in one go

5

Programmer “hints” 
the number of mappers 

to use

Programmer can  
set the number of 

reducers



Setup
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  1 public class MyMapper extends
  2   Mapper<Text, IntWritable, Text, IntWritable> {
  3 
  4 private Set<String> dictionary;//all valid words
  5 
  6 public void setup(Context context) throws IOException {
  7    dictionary = Sets.newHashSet();
  8 loadDictionary();//defined elsewhere, reads file from HDFS
  9  }
 10 
 11  public void map(Text key, IntWritable val, Context context) 
 12                      throws IOException, InterruptedException {
 13       if(!dictionary.contains(key.toString())
 14 return;
 15       context.write(key, new IntWritable(1));
 16  }
 17 }

Setup useful for one-off operations:
• opening an SQL connection 
• loading a dictionary 
• etc.

WordCount* - count only valid dictionary terms



Setup
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  1 public class MyMapper extends
  2   Mapper<Text, IntWritable, Text, IntWritable> {
  3 
  4 private Set<String> dictionary;//all valid words
  5 
  6 public void setup(Context context) throws IOException {
  7    dictionary = Sets.newHashSet();
  8 loadDictionary();//defined elsewhere, reads file from HDFS
  9  }
 10 
 11  public void map(Text key, IntWritable val, Context context) 
 12                      throws IOException, InterruptedException {
 13       if(!dictionary.contains(key.toString())
 14 return;
 15       context.write(key, new IntWritable(1));
 16  }
 17 }

Called once in the life cycle 
of a Mapper object: before 
any calls to map()

Called once for each key/
value pair that appears in 
the input split

Setup useful for one-off operations:
• opening an SQL connection 
• loading a dictionary 
• etc.

WordCount* - count only valid dictionary terms



Cleanup
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  1 public class MyReducer extends
  2   Reducer<PairOfIntString, FloatWritable, NullWritable, Text> {
  3 private Map<Character, Integer> cache;
  4 
  5 public void setup(Context context) throws IOException {
  6   cache = Maps.newHashMap();
  7 }
  8 public void reduce(PairOfIntString key, Iterable<IntWritable> 
  9                     values, Context context) throws 
 10                     IOException, InterruptedException {
 11   char c = key.toString().charAt(0);
 12 for(IntWritable iw : values){
 13 //add iw to the current value of key c in cache
 14 }
 15 }
 17 public void cleanup(Context context) throws IOException,
 18                     InterruptedException {
 19   for (Character c : cache.keySet()) {
 20       context.write(new Text(c), new IntWritable(cache.get(c));
 21     }
 22 }
 23 }

WordCount** - how many words  
start with the same letter?

single reducer setting



Cleanup
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  1 public class MyReducer extends
  2   Reducer<PairOfIntString, FloatWritable, NullWritable, Text> {
  3 private Map<Character, Integer> cache;
  4 
  5 public void setup(Context context) throws IOException {
  6   cache = Maps.newHashMap();
  7 }
  8 public void reduce(PairOfIntString key, Iterable<IntWritable> 
  9                     values, Context context) throws 
 10                     IOException, InterruptedException {
 11   char c = key.toString().charAt(0);
 12 for(IntWritable iw : values){
 13 //add iw to the current value of key c in cache
 14 }
 15 }
 17 public void cleanup(Context context) throws IOException,
 18                     InterruptedException {
 19   for (Character c : cache.keySet()) {
 20       context.write(new Text(c), new IntWritable(cache.get(c));
 21     }
 22 }
 23 }

Called once in the life cycle of a 
Reducer object: before any 
calls to reduce()

Called once in the life cycle of a 
Reducer object: after all calls to  
reduce()

Called once for each key that 
was assigned to the reducer

WordCount** - how many words  
start with the same letter?

single reducer setting



Hadoop Programming 
Revisited: Counters
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Counter basics
• Gathering data about the data we are analysing, e.g. 

• Number of key/value pairs processed in map 
• Number of empty lines/invalid lines 

• Wanted: 
• Easy to collect 
• Estimates are viewable during job execution (e.g. to stop a 

Hadoop job early at too many invalid key/value pairs) 

• Why not use log messages instead? 
• Write to the error log when an invalid line occurs 
• Hadoop’s logs are huge, you need to know where to look 
• Aggregating stats from the logs requires another pass over it
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Counter basics
• Gathering data about the data we are analysing, e.g. 

• Number of key/value pairs processed in map 
• Number of empty lines/invalid lines 

• Wanted: 
• Easy to collect 
• Viewable during job execution (stop Hadoop job early at too 

many invalid key/value pairs) 

• What about log messages? 
• Write to the error log when an invalid line occurs 
• Hadoop’s logs are huge, you need to know where to look 
• Aggregating stats from the logs requires another pass over it
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Counter basics
• Counters: Hadoop’s way of aggregating statistics 

• Counters count (increment) 

• Built-in counters maintain metrics of the job 
• MapReduce counters (e.g. #skipped records by all 

maps) 
• File system counters (e.g. #bytes read from HDFS) 
• Job counters (e.g. #launched map tasks) 

• You have already seen them
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Counter basics
• Counters: Hadoop’s way of aggregating statistics 

• Counters count (increment) 

• Built-in counters maintain metrics of the job 
• MapReduce counters (e.g. #skipped records by all 

maps) 
• File system counters (e.g. #bytes read from HDFS) 
• Job counters (e.g. #launched map tasks) 

• You have already seen them
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Map-Reduce Framework
Map input records=5903
Map output records=47102
Combine input records=47102
Combine output records=8380
Reduce output records=5934

File System Counters
FILE: Number of bytes read=118124
FILE: Number of bytes written=1075029
HDFS: Number of bytes read=996209
HDFS: Number of bytes written=59194



Built-in vs. user-defined
• Built-in counters: exist for each Hadoop job 

• User-defined Counters are maintained by the 
application they are associated with 
• Periodically sent to the Tasktracker and then the 

Jobtracker for global aggregation 
• Aggregated per job by the ResourceManager
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Counter values are only definite once the job has completed! 
Counters may go down if a task fails!

(pre-YARN setup)

(YARN)



Code example
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  1 enum Records {
  2     WORDS, CHARS;
  3 };
  4 public class WordCount {
  5   public static class MyMapper extends
  6   Mapper<LongWritable, Text, Text, IntWritable> {
  7 
  8     public void map(LongWritable key, Text value,
  9                     Context context) throws IOException {
 10         String[] tokens = value.toString().split(" ");
 11 
 12         for (String s : tokens) {
 13           context.write(new Text(s), new IntWritable(1));
 14           context.getCounter(Records.WORDS).increment(1);
 15           context.getCounter(Records.CHARS).increment(s.length());
 16         }
 17     }
 18 }

several enum’s possible: 
used to group counters

WordCount* - count words and chars

user-defined counters appear 
automatically in the final status output



Code example
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  1 enum Records {
  2     WORDS, CHARS;
  3 };
  4 public class WordCount {
  5   public static class MyMapper extends
  6   Mapper<LongWritable, Text, Text, IntWritable> {
  7 
  8     public void map(LongWritable key, Text value,
  9                     Context context) throws IOException {
 10         String[] tokens = value.toString().split(" ");
 11 
 12         for (String s : tokens) {
 13           context.write(new Text(s), new IntWritable(1));
 14           context.getCounter(Records.WORDS).increment(1);
 15           context.getCounter(Records.CHARS).increment(s.length());
 16         }
 17     }
 18 }

several enum’s possible: 
used to group counters

WordCount* - count words and chars

user-defined counters appear 
automatically in the final status output

Map-Reduce Framework
Map input records=5903
Map output records=47102
Combine input records=47102
Combine output records=8380
Reduce output records=5934

…
Records

CHARS=220986
WORDS=47102



Code example II
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  1 enum Records { MAP_WORDS, REDUCE_WORDS; };
  2 
  3 public class WordCount {
  4   --> MAPPER
  5   public void map(LongWritable key, Text value, 
  6                   Context context) 
  7                   throws IOException {
  8 
  9     String[] tokens = value.toString().split(" ");
 10     for (String s : tokens) {
 11       context.write(new Text(s), new IntWritable(1));
 12       context.getCounter(Records.MAP_WORDS).increment(1);
 13     }
 14   }
 15    --> REDUCER (Combiner is a copy of the Reducer)
 16   public void reduce(Text key, Iterator<IntWritable> values, 
 17                      Context context) throws IOException {
 18     int sum = 0;
 19     while (values.hasNext())
 20       sum += values.next().get();
 21     context.getCounter(Records.REDUCE_WORDS).increment(sum);
 22   }
 23 }

…
Records

MAP_WORDS=47102
REDUCE_WORDS=47102



Job Scheduling
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Last time … GFS/HDFS

21
Image source: http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

distributed file system: file systems that  
manage the storage across a network of 
machines.

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf


What about the jobs?
• Hadoop job: unit of work to be performed 

• Input data 
• MapReduce program 
• Configuration information 

• Hadoop divides input data into fixed size input splits
• One map task per split 
• One map function call for each record in the split 
• Splits are processed in parallel (if enough 

DataNodes exist)

22



23
Image source: http://lintool.github.io/MapReduceAlgorithms/

“MapReduce 1”

JobTracker and TaskTracker 

http://lintool.github.io/MapReduceAlgorithms/


Hadoop in practice: Yahoo! 
(2010)
• 40 nodes/rack sharing one IP switch 
• 16GB RAM per cluster node, 1-gigabit Ethernet 
• 70% of disk space allocated to HDFS 

• Remainder: operating system, data emitted by 
Mappers (not in HDFS) 

• NameNode: up to 64GB RAM
• Total storage: 9.8PB -> 3.3PB net storage (replication: 3) 
• 60 million files, 63 million blocks 
• 54,000 blocks hosted per DataNode 
• 1-2 nodes lost per day
• Time for cluster to re-replicate  

lost blocks: 2 minutes 24
HDFS cluster with 3,500 nodes

“MapReduce 1”



• JobTracker/TaskTrackers setup becomes a bottleneck 
in clusters with thousands of nodes 

• As answer YARN has been developed (Yet Another 
Resource Negotiator) 

• YARN splits the JobTracker’s tasks (job scheduling and 
task progress monitoring) into two daemons: 
• Resource manager (RM) 
• Application master (negotiates with RM for cluster 

resources; each Hadoop job has a dedicated master)

25

YARN (MapReduce 2)



Job scheduling
• Thousands of tasks may make up one job

• Number of tasks can exceed number of tasks that can 
run concurrently 
• Scheduler maintains task queue and tracks progress 

of running tasks 
• Waiting tasks are assigned nodes as they become 

available 

• “Move code to data” 
• Scheduler starts tasks on node that holds a particular 

block of data needed by the task if possible

26



Job scheduling
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FIFO scheduler

Fair scheduler

Capacity scheduler

Priority scheduler



Basic schedulers
• Early on: FIFO scheduler

• Job occupies the whole cluster while the rest 
waits 

• Not feasible in larger clusters

• Improvement: different job priorities VERY_HIGH, 
HIGH, NORMAL, LOW, or VERY_LOW 

• Next job is the one with the highest priority 
• No pre-emption: if a low priority job is occupying 

the cluster, the high priority job still has to wait

28



Fair Scheduler I
• Goal: every user receives a fair share of the cluster 

capacity over time 

• If a single job runs, it uses the entire cluster 
• As more jobs are submitted, free task slots are given 

away such that each user receives a “fair share” 
• Short jobs complete in reasonable time, long jobs 

keep progressing 

• A user who submits more jobs than a second user will 
not get more cluster resources on average

29



Fair Scheduler II
• Jobs are placed in pools, default: one pool per 

user 

• Pre-emption: if a pool has not received its fair 
share for a period of time, the scheduler will kill 
tasks in pools running over capacity to give more 
slots to the pool running under capacity 
• Task kill != Job kill
• Scheduler needs to keep track of all users, 

resources used

30



Capacity Scheduler
• Cluster is made up of a number of queues (similar 

to the Fair Scheduler pools) 

• Each queue has an allocated capacity 

• Within each queue, jobs are scheduled using FIFO 
with priorities 

• Idea: users (defined using queues) simulate a 
separate MapReduce cluster with FIFO 
scheduling for each user

31



Speculative execution
• Map phase is only as fast as slowest MAPPER

• Reduce phase is only as fast as slowest REDUCER

• Hadoop job is sensitive to stragglers (tasks that take unusually 
long to complete) 

• Idea: identical copy of task executed on a second node; the 
output of whichever node finishes first is used (improvements 
up to 40%) 

• Can be done for both MAPPER/REDUCER 

• Strategy does not help if straggler due to skewed data 
distribution

32



Shuffle & Sort

33



Shuffle & sort phase
• Hadoop guarantee: the input to every reducer is 

sorted by key 

• Shuffle: sorting of intermediate key/value pairs and 
transferring them to the reducers (as input) 

• “Shuffle is the heart of MapReduce” 

• Understanding shuffle & sort is vital to recognise job 
bottlenecks 

• Disclaimer: constantly evolving (again)

34



A high-level view
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map()

input
split

in-memory
buffer

merge (disk)

partition,
sort, and

spill to disk

reduce()
map tasks

reduce tasks

sort phase

MAP TASK

REDUCE TASK

copy across
the network



Map side
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map()

input
split

in-memory
buffer

merge (disk)

partition,
sort, and

spill to disk

sort phase

MAP TASK

• Map task writes output to memory buffer  
• Once the buffer is full, a background thread spills the content to disk (spill file) 

• Data is partitioned corresponding to reducers they will be send to 
• Within partition, in-memory sort by key [combiner runs on the output of sort] 

• After last map() call, the spill files are merged [combiner may run again]



Reduce side
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reduce()
map tasks

sort phaseREDUCE TASK

copy across
the network

• Reducer requires the map output for its partition from all map tasks of the cluster 
• Reducer starts copying data as soon as a map task completes (“copy phase”) 
• Direct copy to reducer’s memory if the output is small, otherwise copy to disk 
• In-memory buffer is merged and spilled to disk once it grows too large 
• Combiner may run again 
• Once all intermediate keys are copied the “sort phase” begins: merge of map 

outputs, maintaining their sort ordering

REDUCER output written 
to HDFS (first block 
replica to local disk)



A few more details
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map()

input
split

in-memory
buffer

merge (disk)

partition,
sort, and

spill to disk

reduce()
map tasks

reduce tasks

sort phase

MAP TASK

REDUCE TASK

copy across
the network

What happens to the data written to 
local disk by the Mapper? 
Deleted after successful completion of the 
job. 

General rule for memory usage: 
map/reduce/shuffle 

Shuffle should get as much memory as possible; 
write map/reduce with low memory usage (single 
spill would be best)

How does the Reducer know where to get 
the data from? 
- Successful map task informs task tracker which 
informs the job tracker (via heartbeat) 
- Reducer periodically queries the job tracker for 
map output hosts until it has retrieved all of data 



Sort phase recap
• Involves all nodes that executed map tasks and will 

execute reduce tasks
• Job with m mappers and r reducers involves up to 

m*r distinct copy operations 

• Reducers can only start calling reduce() after all 
mappers are finished 
• Key/value guarantee: one key has all values 

“attached” 

• Copying can start earlier for intermediate keys

39



Data input
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Input splits and logical 
bounds
• One MAPPER object for each map task 

• Associated with a sequence of key/value pairs 
(the “input split”) 

• map() is called for each key/value pair by the 
execution framework

41

Input split record

(part of) a text file line of text

(range of) database table rows a single row

(part of) an XML file XML element

(part of) a video stream keyframe



Input split
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  1 public abstract class InputSplit {
  2 
  3   public abstract long getLength() throws 
  4                        IOException, InterruptedException;
  5   
  6   public abstract String[] getLocations() throws 
  7                        IOException, InterruptedException;
  8 }

• Split object does not contain the input data, just a 
reference to the data 

• Storage locations are used by the execution 
framework to place map tasks close to the data

Scenario: There are less free map slots than input splits.

Questions: Given the input splits and their sizes,  
what are possible strategies of how to pick the next input split 
to process by a map task? 
Given 3 free map slots and 7 input splits of sizes  
{10, 20, 30, 100, 200, 300, 400}, which strategy works best? 



Input splits and logical 
bounds

43

3 free map slots and 7 input splits of sizes {10, 20, 30, 100, 200, 300, 400}

greedy approximation of
optimal approach; strategy 

used by Hadoop

Random selection: worst case 
scenario 

100 
10 
20 
400

=530

200 300
200 300 Shortest input split first 

10 
100 
400 

20 
200 

30 
300 

=510

Longest input split first 

400 300 
20 
10 

200 
100 
30 

=400



Input splits vs. HDFS blocks
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1 2 3 4 5 6 7 8 9 10 11 12file lines

block boundary block boundary block boundary block  
boundary

split split split

TextInputFormat

the data between two block  
boundaries has a fixed size &  
resides on a single DataNode

an input split ends at a logical 
record; it can cross the block  
boundary; requires additional  
remote read of the missing data



Input splits vs. HDFS blocks
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1 2 3 4 5 6 7 8 9 10 11 12file lines

block boundary block boundary block boundary block  
boundary

split split split

TextInputFormat

the data between two block  
boundaries has a fixed size &  
resides on a single DataNode

an input split ends at a logical 
record; it can cross the block  
boundary; requires additional  
remote read of the missing data

What about: 

<wikipedia>
<page></page>

. . . .
10GB later
. . . .

<page></page>
</wikipedia>



HDFS: Compression 
and Small Files
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Splittable compression

47 Source: Tom White’s Hadoop: The Definite Guide

space/time tradeoff: faster (de)compression means less space savings



Splittable compression

48 Source: Tom White’s Hadoop: The Definite Guide

space/time tradeoff: faster (de)compression means less space savings

better compression

middle ground

optimized
for speed, less 

effective 
compression



Splittable is an important 
attribute
• 1GB uncompressed file 

• Stored within 16 blocks on HDFS (block size 64MB) 
• Hadoop job creates 16 input splits, each 

processed by one map task

• 1GB gzip-compressed file 
• Stored within 16 blocks on HDFS 
• Hadoop job cannot create 16 input splits (reading 

at an arbitrary point does not work) 
• A single map task will process the 16 HDFS blocks

49



Hadoop Archives
• Storing a large number of small files is inefficient 

• But: not all files can be easily converted to blocks 
(e.g. millions of images) 

• Files and blocks occupy namespace which is limited by 
the physical memory in the NameNode 
• Small files take up large portion of namespace but not 

the disk space 
• Rule of thumb: 150 bytes per file/directory/block  

(1 million files of one block each: 300MB of memory) 

• Hadoop Archive (*.har) is a solution

50

small=substantially less 
than the block size 

(64MB/128MB)



A Web special: WARC

• Web ARCHive format: aggregates digital 
resources in an archive and keeps track of related 
information 
• Per resource: text header and arbitrary data 

• Extension of the Internet Archive’s ARC format 

• Commonly used to store Web crawls

51



A Web special: WARC
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WARC/0.17
WARC-Type: response
WARC-Target-URI: http://www.archive.org/robots.txt
WARC-Date: 2008-04-30T20:48:25Z
WARC-Payload-Digest: sha1:SUCGMUVXDKVB5CS2NL4R4JABNX7K466U
WARC-IP-Address: 207.241.229.39
WARC-Record-ID: <urn:uuid:e7c9eff8-f5bc-4aeb-b3d2-9d3df99afb30>
Content-Type: application/http; msgtype=response
Content-Length: 782

HTTP/1.1 200 OK
Date: Wed, 30 Apr 2008 20:48:24 GMT
Server: Apache/2.0.54 (Ubuntu) PHP/5.0.5-2ubuntu1.4 mod_ssl/2.0.54 OpenSSL/
0.9.7g
Last-Modified: Sat, 02 Feb 2008 19:40:44 GMT
ETag: "47c3-1d3-11134700"
Accept-Ranges: bytes
Content-Length: 467
Connection: close
Content-Type: text/plain; charset=UTF-8

##############################################
# Welcome to the Archive!



Hadoop’s SequenceFile 
format
• Main usage: intermediate output of Mappers written in this format 

• Flat file, consisting of binary key-value pairs

• Defines a Reader, Writer and Sorter 

• Three types: 
• Uncompressed key-value pairs 
• Compressed values (“record compressed”) 
• Keys and values compressed (“block compressed”) 

• From small files to SequenceFile:  
(some_key,file_content)

53



Hadoop’s SequenceFile 
format

54

Header Record Record Sync Record Record Sync Record

Overall 
length

Key 
length Key Value

Overall 
length

Key 
length Key Compressed

value

No compression

Record compression

}compression details, file meta-data, etc.

used to synchronise to a record boundary



Hadoop’s SequenceFile 
format

55

Header Block Sync Block Sync Record

Number 
of records

Compressed 
key lengths

Block compression (allows most compression)

Sync

Compressed 
keys

Compressed 
value lengths

Compressed 
values



HDFS: the rest



HDFS is just one possible 
implementation ….

57 Source: Tom White’s Hadoop: The Definite Guide

we can also use the local filesystem



Summary
• Hadoop Counters, setup/cleanup 

• Job scheduling 

• Shuffle & sort 

• Data input
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THE END


