7

il

1127360-B
mY Big Data Processing

”""’M Claudia Hauff
QL et

mailto:ti2736b-ewi@tudelft.nl

|_earning objectives

. Hadoop’s Counters and setup/cleanup
efficiently
. how Hadoop addresses the problem of

job scheduling

. Hadoop’s shuffle & sort phase and
that knowledge to improve your Hadoop code

. strategies for efficient data input

Hadoop Programming
Revisited: setup and
cleanup

Setup & cleanup

Programmer “hints”

the number of mappers

e One for each map task to use

e Associated with a sequence of key/value pairs (the “input split”)

* map() IS called by the execution

framework
Programmer can

* One for each reduce task B T T

 reduce() is called once per intermediate key reducers
e MAPPER/REDUCER are ->

* Preserving state across multiple inputs
* |nitialise additional resources
 Emit (intermediate) key/value pairs in one go

0O o6 O s LW IDN B

e e
N O U WN R OV

Setup useful for one-off operations:
e opening an SQL connection

* |loading a dictionary

Setup e

WordCount* - count only valid dictionary terms

public class MyMapper extends
Mapper<Text, IntWritable, Text, IntWritable> {

private Set<String> dictionary;//all valid words

public void setup(Context context) throws IOException {
dictionary = Sets.newHashSet();
loadDictionary();//defined elsewhere, reads file from HDFS

}

public void map(Text key, IntWritable wval, Context context)
throws IOException, InterruptedException {
if(!dictionary.contains(key.toString())
return;
context.write(key, new IntWritable(l));

0O o6 O s LW IDN B

e e
N O U WN R OV

Setup useful for one-off operations:
e opening an SQL connection

* |loading a dictionary

Setup e

WordCount* - count only valid dictionary terms

public class MyMapper extends
Mapper<Text, IntWritable, Text, IntWritable> {

private Set<String> dictionary;//all valid words

public void setup(Context context) throws
dictionary = Sets.newHashSet();
loadDictionary();//defined elsewhere

Called once in the life cycle
of a Mapper object: before

} any calls to map ()

public void map(Text key, IntWritable va
throws IOException,
if(!dictionary.contains(key.toStrinc
return;
context.write(key, new IntWritable(l));

Called once for each key/
value pair that appears in
the input split

single reducer setting

WordCount** - how many words

C ‘ ean u p start with the same letter?

1 public class MyReducer extends

2 Reducer<PairOfIntString, FloatWritable, NullWritable, Text> {
3 private Map<Character, Integer> cache;

4

5 public void setup(Context context) throws IOException {

6 cache = Maps.newHashMap();

7}

8 public void reduce(PairOfIntString key, Iterable<IntWritable>
9 values, Context context) throws

10 IOException, InterruptedException {

11 char ¢ = key.toString().charAt(0);

12 for(IntWritable 1w : values){

13 //add iw to the current value of key c¢ in cache

14 }

15 }

17 public void cleanup(Context context) throws IOException,

18 InterruptedException {

19 for (Character c¢ : cache.keySet()) {
20 context.write(new Text(c), new IntWritable(cache.get(c));
21 }
22}

N
w
-
00]

single reducer setting

WordCount** - how many words

C ‘ ean U p start with the same letter?

1 public class MyReducer extends
2 Reducer<PairOfIntString, FloatWritable, NullWritable, Text> {
3 private Map<Character, Integer> cache
4 Called once in the life cycle of a
5 public void setup(Context context) thals{:Ys[V[e-Tg 1o el 1= (o)1= X:11)"
6 cache = Maps.newHashMap(); calls to reduce ()
7}
8 public void reduce(PairOfIntString key, Iterable<IntWritable>
9 values, Context con
10 IOException, Interr
11 char ¢ = key.toString().charAt(0 Called o_nce for each key that
12 for(IntWritable 1w : values){ was assigned to the reducer
13 //add iw to the current value
14 }
15 }
17 public void cleanup(Context context) throws IOException
Lo InterruptedExcept o R R T
19 for (Character c¢ : cache.keySet(:
20 SEmtETE e (T TaRE (@), e Reducer object: after all calls to
21 } reduce ()
22}

N
w

Hadoop Programming
Revisited: Counters

Counter basics

. we are analysing, e.g.
 Number of key/value pairs processed in map
 Number of empty lines/invalid lines

e« \Wanted:
. to collect

. (e.g. to stop a
Hadoop job early at too many invalid key/value pairs)

* Why not use log messages instead?
* Write to the error log when an invalid line occurs
 Hadoop’s logs are huge, you need to know where to look
* Aggregating stats from the logs requires another pass over it

11

Counter basics

. we are analysing, e.g.
 Number of key/value pairs processed in map
 Number of empty lines/invalid lines

e Wanted:
e Easy to collect

* Viewable during job execution (stop Hadoop job early at too
many invalid key/value pairs)

 \What about log messages?
* Write to the error log when an invalid line occurs
 Hadoop’s logs are huge, you need to know where to look
* Aggregating stats from the logs requires another pass over it

12

Counter basics

e Counters: Hadoop’s way of statistics
e Counters (increment)
. maintain of the job
 MapReduce counters (e.g. #skipped records by all
maps)

e File system counters (e.g. #bytes read from HDFS)
e Job counters (e.g. #launched map tasks)

* You have already seen them

13

Counter basics

e Counters: Hadoop’s way of statistics
* Counters count (increment)

* Built-in counters maintain metrics of the job

 MapReduce counters (e.g. #skipped records by all
maps)

e File system counters (e.g. #bytes read from HDFS)
e Job counters (e.g. #launched map tasks)

* You have already seen them

14

Counter basics

e Counters: Hadoop’s way of

¢ Map-Reduce Framework

Map input records=5903

statistics

o Map output records=47102
Combine input records=47102
Combine output records=8380
Reduce output records=5934

File System Counters

FILE:
FILE:
HDFS:
HDFS:

Number
Number
Number
Number

of bytes
of bytes
of bytes
of bytes

15

read=118124
written=1075029
read=996209
written=59194

Bullt-in vs. user-defined

. . exist for each Hadoop job

. are maintained by the
application they are associated with

* Periodically sent to the Tasktracker and then the
Jobtracker for global aggregation (pre-YARN setup)

 Aggregated per job by the ResourceManager (YARN)

Counter values are only definite once the job has completed!

Counters may go down if a task fails!

16

Code example

WordCount* - count words and chars

1 enum Records {

2 WORDS, CHARS; several enum’s possible:
3 }; used to group counters
4 public class WordCount ({

5 public static class MyMapper extends

6 Mapper<LongWritable, Text, Text, IntWritable> {

7

8 public void map(LongWritable key, Text value,

9 Context context) throws IOException {
10 String[] tokens = value.toString().split(" ");
11
12 for (String s : tokens) {
13 context.write(new Text(s), new IntWritable(l));
14 context.getCounter (Records.WORDS).increment(1l);
15 context.getCounter (Records.CHARS).increment(s.length());
16 }
17 }
18 }

user-defined counters appear

automatically In the final status output

17

Code example

WordCount* - count words and chars

1 enum Records {
2 WORDS, CHARS;
3 }; Map-Reduce Framework
4 public class WordC Map i1nput records=5903
2 public static cl Map output records=47102
M . .
- 2PPe Combine 1nput records=47102
8 public void me Combine output records=8380
9 Reduce output records=5934
10 String[] t
11
12 for (Strir Records
13 context. CHARS=220986
L context. WORDS=47102
15 context.
16 }
17 }
18 }

user-defined counters appear

automatically In the final status output

18

Code example ||

0O Jo O dx WD K

N NMNNNRRRRRPRRRFRRRRF
WNRFREFOWOWOWNOU D WNREOW

enum Records { MAP_WORDS, REDUCE_WORDS; };

public class WordCount {

--> MAPPER

public void map(LongWritable key, Text value,
Context context)
throws IOException {

String[] tokens = value.toString() Records
for (String s : tokens) { MAP WORDS=47102

context.write(new Text(s), new I

context.getCounter (Records.MAP ¥ REDUCE WORDS=47102
\ —

}
—--> REDUCER (Combiner is a copy of the Reducer)

public void reduce(Text key, Iterator<IntWritable> values,
Context context) throws IOException {
int sum = 0;
while (values.hasNext())
sum += values.next().get();
context.getCounter (Records.REDUCE_WORDS) .increment (sum);

}
19

Job Scheduling

| ast time ... GFS/HDFS

Application (file name, chunk index) -
GFS client L

(chunk handle,

chunk locations)

(chunk handle, byte range) _

chunk data

GFS master

File namespace ,

L
’

'~ /foo/bar

chunk 2ef0

Y

Instructions to chunkserver

Chunkserver state

L

GFS chunkserver

Legend:
s Data messages

.

GFS chunkserver

Linux file system

Linux file system

el .

ol ...

Control messages

distributed file system: file systems that

manage the storage across a network of
machines.

2
Image source: http://static.googleusercontent.Com/mec]ia/research.googIe.com/en//archive/gfs—sospZOOS.pdf

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

What about the jobs”

. . unit of work to be performed
* |nput data
 MapReduce program
e Configuration information

 Hadoop divides input data into

 One map function call for each In the split

» Splits are processed in parallel (if enough
DataNodes exist)

22

JobTracker and TaskIracker

jobtracker
-7

= S

namenode daemon

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system

Sy || By .. || gy ..

Image source: http://lintool. 2|t?1ub.io MapReduceAlgorithms

http://lintool.github.io/MapReduceAlgorithms/

(2010)

. sharing one IP switch
. per cluster node, 1-gigabit Ethernet
e /0% of disk space allocated to HDFS

 Remainder: operating system, data emitted by
Mappers (not in HDFS)

. - up 1o
. : 9.8PB -> net storage (replication: 3)
. , 63 million blocks

e 54 000 blocks hosted per DataNode
 1-2 nodes lost per day

 Time for cluster_to re-replicate HDFS cluster with 3,500 nodes
lost blocks: 2 minutes

YARN (MapReduce 2)

e JobTracker/TaskTrackers setup becomes a
In clusters with thousands of nodes

* As answer YARN has been developed (

)

* YARN splits the JobTracker’s tasks (job scheduling and
task progress monitoring) into two daemons:

y (RM)

. (negotiates with RM for cluster
resources; each Hadoop job has a dedicated master)

25

Job scheduling

. may make up

e Number of tasks can exceed number of tasks that can
run concurrently

. maintains and tracks progress
of running tasks

o Waiting tasks are assigned nodes as they become
available

e Scheduler starts tasks on node that holds a particular
block of data needed by the task if possible

20

Job scheduling

FIFO scheduler
Priority scheduler

Fair scheduler

Capacity scheduler

27

Basic schedulers

e Early on:
* Job occupies the whole cluster while the rest
walits
* Improvement: different VERY_HIGH,

HIGH, NORMAL, LOW, or VERY_LOW

* Next job Is the one with the highest priority

. - If a low priority job IS occupying
the cluster, the high priority job still has to walit

28

Fair Scheduler |

e (Goal: every user receives a of the cluster
capacity over time

e |fa runs, it uses the entire cluster
* As are submitted, free task slots are given
away such that each user receives a “tair share”
. complete in reasonable time, long jobs

keep progressing

* A user who submits more jobs than a second user will
not get more cluster resources on average

29

Fair Scheduler ||

* Jobs are placed in . default: one pool per
user

. - It a pool has not received its fair
share for a period of time, the scheduler will
IN pools running over capacity to give more
slots to the pool running under capacity

 Scheduler needs to keep track of all users,
resources used

30

Capacity Scheduler

e Cluster is made up of a (similar
to the Fair Scheduler pools)

 Each queue has an allocated

* Within each queue, jobs are scheduled using FIFO
with priorities

* |dea: users (defined using queues) a
with FIFO

scheduling for each user

31

Speculative execution

* Hadoop job Is sensitive to (tasks that take unusually
long to complete)

* |dea: of task executed on a second node; the
output of whichever node finishes first is used (improvements
up to 40%)

e Can be done for both MAPPER/REDUCER

o Strategy does not help if straggler due to

32

Shuffle & Sort

Shuffle & sort phase

. . the Iinput to every reducer Is
sorted by key

. . sorting of and
transferring them to the reducers (as input)

* Understanding shuffle & sort is vital to recognise job
bottlenecks

* Disclaimer: constantly evolving (again)

34

reduce tasks

A

A nigh-level view

in-memory merge (disk) Y
buffer

partition,
sort, and
spill to disk
COpYy across
the network

-~
~§
S

reduce () \t "
map tasks

.
4
-‘ﬁ"’
-"'

sort phase

Map side

in-memory merge (disk)
buffer

partition,
sort, and
spill to disk

e Map task writes output to memory buffer e o

e Once the buffer is full, a background thread spills the content to disk (spill file)
e Data is partitioned corresponding to reducers they will be send to
e Within partition, in-memory sort by key [combiner runs on the output of sort]

o After last map () call, the spill files are merged [combiner may run again]
36

Reduce side

e Reducer requires the map output for its partition from all map tasks of the cluster
e Reducer starts copying data as soon as a map task completes (“copy phase”)

e Direct copy to reducer’s memory if the output is small, otherwise copy to disk

e In-memory buffer is merged and spilled to disk once it grows too large

e Combiner may run again

e Once all intermediate keys are copied the “sort phase” begins: merge of map
outputs, maintaining their sort ordering

REDUCER output written
to HDFS (first block COpPYy acCross

replica to local disk) the network

reduce ()

sort phase -

A few more detalls

What happens to the data written to
local disk by the Mapper?

Deleted after successful completion of the
job.

General rule for memory usage:
map/reduce/shuffle

Shuffle should get as much memory as possible;
write map/reduce with low memory usage (single
spill would be best)

How does the Reducer know where to get
the data from?

- Successful map task informs task tracker which
informs the job tracker (via heartbeat)

- Reducer periodically queries the job tracker for
map output hosts until it has retrieved all of data

Sort phase recap

e [nvolves that and

* Job with m mappers and r reducers involves up to
m *r distinct copy operations

 Reducers can only start calling reduce () after all
mappers are finished

. . one key has all values
"attached”

e Copying can start earlier for intermediate keys

39

Data Input

Input splits and logical
bounds

 One MAPPER object for each map task

* Associated with a sequence of key/value pairs
(the “input split”)

 map () is called for each key/value pair by the
execution framework

Input split record

N

part of) a text file line of text

..
..

part of) a video stream keyframe

4 |

N

INnput split

public abstract class InputSplit {

public abstract long getLength() throws
IOException, InterruptedException;

public abstract String[] getLocations() throws
IOException, InterruptedException;

00 O O s W IDN B

-

Scenario: There are less free map slots than input splits.

Questions: Given the input splits and their sizes,

what are possible strategies of how to pick the next input split
to process by a map task?

Given 3 free map slots and 7 input splits of sizes

{10, 20, 30, 100, 200, 300, 400}, which strategy works best?

Input splits and logical
bounds

3 free map slots and 7 input splits of sizes {10, 20, 30, 100, 200, 300, 400}

Random selection: worst case

_c3g Scenario
100 Shortest input split first
20 =510
400 10 20 ‘ ‘ 30 ‘
100 NN 2NN

400

Longest input split first

=400
400 300 200
: : 20 100
greedy approximation of 10 30
optimal approach; strategy

used by Hadoop

43

Input splits vs. HDFS blocks

an input split ends at a logical
record; it can cross the block
boundary; requires additional
remote read of the missing data

split split split l
v v v
file lines 1 2 3| 4 5 6 7 8 9 10 | 11 12
! the data between two block
boundaries has a fixed size &
resides on a single DataNode
block boundary block boundary block boundary block
boundary

TextInputFormat

44

Input splits vs. HDFS blocks

an input split ends at a logical
record; it can cross the block
boundary; requires additional
remote read of the missing data

. What about:
split
v \4
o <wikipedia>
file lines 1 2 314 0 6 y <page></page>

10GB later

boundaries has a fixed size &

* the data between two block I

resides on a single DataNode

<page></page>
block boundary block boundary </wikipedia>

TextInputFormat

45

HDFS: Compression
and small Files

Splittable compression

Compression Tool | Algorithm | Filename Splittable?
format extension

DEFLATE!?! N/A | DEFLATE |.deflate No

gzIp gzip | DEFLATE |.gz No

bzip2 bzip2 | bzip2 .bz2 Yes

LZO Izop |LZO Izo Nol]

LZ4 N/A |LZA Az4 No

Snappy N/A | Snappy .snappy No

space/time tradeoff: faster (de)compression means less space savings

4 Source: Tom White's Hadoop: The Definite Guide

Splittable compression

space/time tradeoff: faster (de)compression means less space savings

48

Compression Tool | Algorithm | Filename Splittable?

format extension

DEFLATE!?] N/A | DEFLATE |.deflate No

gzip 2zIp middle ground No

bzip2 bzip2 Yes

LZO Izop optimized Nol"!

(74 N/A for speeo_l, less No
effective

Snappy N/A compression No

Source: Tom White's Hadoop: The Definite Guide

Splittable is an important
attribute

 1GB uncompressed file
e Stored within 16 blocks on HDFS (block size 64MB)
 Hadoop job creates 16 input splits,

 1GB gzip-compressed file
o Stored within 16 blocks on HDFS

 Hadoop job cannot create 16 input splits (reading
at an arbitrary point does not work)

e A will process the 16 HDFS blocks

49

Hadoop Archives

Storing a large number of small files is inefficient

. : not all files can be converted to blocks
(e.g. millions of images)

Files and blocks which is [imited by
the physical memory in the NameNode

o Small files take up large portion of namespace but not
the disk space

* Rule of thumb: 150 bytes per file/directory/block
(1 million files of one block each: 300MB of memory)

» Hadoop Archive (*.har) is a solution [SHEASEISEIEUIENVAEES

than the block size
50 (64MB/128MB)

A Web special: WARC

. . aggregates digital
resources in an archive and keeps track of related
information

* Per resource: text header and arbitrary data

e Extension of the

e Commonly used to store

51

A Web special: WARC

WARC/0.17

WARC-Type: response

WARC-Target-URI: http://www.archive.org/robots.txt

WARC-Date: 2008-04-30T20:48:257%

WARC-Payload-Digest: shal:SUCGMUVXDKVB5CS2NL4R4JABNX7K466U
WARC-IP-Address: 207.241.229.39

WARC-Record-ID: <urn:uuid:e7c9eff8-f5bc-4aeb-b3d2-9d3df99%9afb30>
Content-Type: application/http; msgtype=response
Content-Length: 782

HTTP/1.1 200 OK

Date: Wed, 30 Apr 2008 20:48:24 GMT

Server: Apache/2.0.54 (Ubuntu) PHP/5.0.5-2ubuntul.4 mod ssl/2.0.54 OpenSSL/
0.9.7g

Last-Modified: Sat, 02 Feb 2008 19:40:44 GMT

ETag: "47c3-1d3-11134700"

Accept-Ranges: bytes

Content-Length: 467

Connection: close

Content-Type: text/plain; charset=UTF-8

o o o A o A o i
Welcome to the Archive!

Hadoop’'s Sequencerile
format

* Main usage: output of Mappers written in this format
* Flat file, consisting of

e Defines a Reader, Writer and Sorter

* Uncompressed key-value pairs
* Compressed values (“record compressed”)
* Keys and values compressed (“block compressed”)

* From small files to SequencekFile:
(some key,file content)

53

Hadoop’s Sequencefile
format

compression details, file meta-data, etc.

used to synchronise to a record boundary

Overall Key .
Overall Key Compressed)
54

Hadoop’s Sequencefile
format

Number § Compressed | Compressed § Compressed | Compressed
of recordsf key lengths keys value lengths values

Block compression (allows most compression)

55

HDFS: the rest

HDFS Is just one possible
implementation

Filesystem URI Java implementation (all Description
scheme under org.apache.hadoop)

Local file fs.LocalFileSystem A filesystem for a locally connected disk with client-side

e RawLocalFileSysten for a local filesystem
ns. See LocalFileSystem.

we can also use the local filesystem

HDEFS naoopsamaouted filesystem. HDFS is designed to
work eﬁimently in conjunction with MapReduce.

FTP ftp fs.ftp.FTPFileSystem A filesystem backed by an FTP server.

S3 (native) s3n fs.s3native.NativeS3FileSystem A filesystem backed by Amazon S3. See
http://wiki.apache.org/hadoop/AmazonS3.

S3 (block- s3 fs.s3.S3FileSystem A filesystem backed by Amazon S3, which stores files in

based) blocks (much like HDES) to overcome S3’s 5 GB file size
limit.

HAR har fs.HarFileSystem A filesystem layered on another filesystem for archiving

files. Hadoop Archives are typically used for archiving
files in HDES to reduce the namenode’s memory usage.
See Hadoop Archives.

o/ Source: Tom White's Hadoop: The Definite Guide

summary

« Hadoop Counters, setup/cleanup
* Job scheduling

e Shuffle & sort

e Data input

58

TRE END

