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Software
• Virtual machine-based: Cloudera CDH 5.8, based on CentOS 

• Saves us from a “manual” Hadoop installation (especially 
difficult on Windows) — but if you want to install Hadoop ‘by 
hand’ feel free to do so. 

• Ensures that everyone has the same setup  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“As part of the boot process, the VM automatically launches Cloudera Manager 
and configures HDFS, Hive, Hue, MapReduce, Oozie, ZooKeeper, Flume, 
HBase, Cloudera Impala, Cloudera Search, and YARN.  
Only the ZooKeeper, HDFS, MapReduce, Hive, and Hue services  
are started automatically.”
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Hadoop runs in “pseudo-distributed” mode on a single  
machine (yours). 
Hadoop: write once, run on one machine or a cluster of  
20,000+ machines.
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• Explain the difference between MapReduce and 
Hadoop 

• Explain the difference between the MapReduce 
paradigm and related approaches (RDMBS, HPC) 

• Transform simple problem statements into map/
reduce functions 

• Employ Hadoop’s partitioner functionality

Learning objectives



Introduction
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MapReduce & Hadoop

“MapReduce is a programming model for expressing distributed 
computations on massive amounts of data and an execution 
framework for large-scale data processing on clusters of  
commodity servers.” 
—Jimmy Lin

Hadoop is an open-source implementation of  the MapReduce 
framework. 
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• Batch processing 

• No limits on #passes over the data or time 

• No memory constraints

MapReduce characteristics



8

• Developed by engineers at Google around 2003 
• Built on principles in parallel and distributed processing 

• Seminal papers:  
The Google file system by Sanjay Ghemawat, Howard Gobioff, and 
Shun-Tak Leung (2003) 
MapReduce: Simplified Data Processing on Large Clusters by 
Jeffrey Dean and Sanjay Ghemawat (2004) 

• “MapReduce is used for the generation of data for 
Google’s production web search service, for sorting, for 
data mining, for machine learning and many other 
systems” (2004) 

• Google has produced other technologies since,  
e.g. BigTable, Percolator, Dremel, …

History of MapReduce

MapReduce provides a clear separation between what to compute and 
how to compute it on a cluster.
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• Created by Doug Cutting as solution to Nutch’s scaling  
problems, inspired by Google’s GFS/MapReduce papers 

• 2004: Nutch Distributed Filesystem written (based on GFS) 

• Middle 2005: all important parts of Nutch ported to MapReduce 
and NDFS 

• February 2006: code moved into an independent subproject of 
Lucene called Hadoop 

• In early 2006 Doug Cutting joined Yahoo! which contributed 
resources and manpower 

• January 2008: Hadoop became a top-level project at Apache

History of Hadoop
Apache project Web crawler

Apache project search engine

Apache Software Foundation

at Cloudera 
since 2009



Today, Hadoop is more than “just” MapReduce.

http://hadoop.apache.org/ 

http://hadoop.apache.org/


Hadoop versioning 
[warning]

Apache Hadoop 3.0.0-alpha1 (09/2016) incorporates a number of significant 
enhancements over the previous major release line (hadoop-2.x).



Ideas behind MapReduce
• Scale “out”, not “up”

• Many commodity servers are more cost effective than few high-end 
servers 

• Assume failures are common
• A 10,000-server cluster with a mean-time between failures of 1000 

days experiences on average 10 failures a day. 

• Move programs/processes to the data
• Moving the data around is expensive 
• Data locality awareness 

• Process data sequentially and avoid random access 
• Data sets do not fit in memory, disk-based access (slow) 
• Sequential access is orders of magnitude faster
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Ideas behind MapReduce
• Hide system-level details from the application 

developer 
• Frees the developer to think about the task at hand 

only (no need to worry about deadlocks, …) 
• MapReduce takes care of the system-level details 

• Seamless scalability
• Data scalability (given twice as much data, the ideal 

algorithm runs twice as long) 
• Resource scalability (given a cluster twice the size, 

the ideal algorithm runs in half the time)
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System-level details:
- data partitioning 
- scheduling, load balancing 
- fault tolerance 
- inter-machine communication

“… MapReduce is not the final word, but 
rather the first in a new class of 
programming models that will allow us to 
more effectively organize computations on 
a massive scale.” (Jimmy Lin)



MapReduce vs. RDBMS
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RDBMS MapReduce
Data size Gigabytes (mostly)  Petabytes
Access interactive & batch batch

Updates many reads & writes write once, read a lot (the 
entire data)

Structure static schema data interpreted at 
processing time

Redundancy low (normalized data) high (unnormalized data)
Scaling nonlinear linear



MapReduce vs. RDBMS
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RDBMS MapReduce
Data size Gigabytes (mostly)  Petabytes
Access interactive & batch batch

Updates many reads & writes write once, read a lot (the 
entire data)

Structure static schema data interpreted at 
processing time

Redundancy low (normalized data) high (unnormalized data)
Scaling nonlinear linear

Trend: disk seek times are improving more slowly than the disk transfer rate (i.e. it is faster to 
stream all data than to make seeks to the data)

fcrawler.looksmart.com - - [26/Apr/2000:00:00:12 -0400] "GET /contacts.html HTTP/1.0"  200
fcrawler.looksmart.com - - [26/Apr/2000:00:17:19 -0400] "GET /news/news.html HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/wpaper.gif HTTP/1.0"       200
123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET /asctortf/ HTTP/1.0"             200
123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/5star2000.gif HTTP/1.0"    200
123.123.123.123 - - [26/Apr/2000:00:23:50 -0400] "GET /pics/5star.gif HTTP/1.0"        200

Blurring the lines: MapReduce moves into the direction of RDBMs (Hive, Pig) and 
RDBMs move into the direction of MapReduce (NoSQL).



MapReduce vs. High 
Performance Computing (HPC)
• HPC works well for computationally intensive 

problems with low to medium data volumes 
• Bottleneck: network bandwidth, leading to idle 

compute nodes 
• MapReduce: moves the computation to the data, 

conserving network bandwidth 
• HPC gives a lot of control to the programmer, requires 

handling of low-level aspects (data flow, failures, etc.) 
• MapReduce requires programmer to only provide 

map/reduce code, takes care of low-level details
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MapReduce basics



MapReduce paradigm
• Divide & conquer: partition a large problem into smaller sub-

problems 
• Independent sub-problems can be executed in parallel by 

workers (anything from threads to clusters) 
• Intermediate results from each worker are combined to get 

the final result 
• Issues: 

• How to transform a problem into sub-problems? 
• How to assign workers & synchronise the intermediate 

results? 
• How do the workers get the required data? 
• How to handle failures in the cluster?

19



MapReduce in brief
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1. Define the map() function 
1.1. Define the input to map() as key/value pair 
1.2. Define the output of map() as key/value pair  

2. Define the reduce() function 
2.1. Define the input to reduce() as key/value pair 
2.2. Define the output of reduce() as key/value pair 



Map & fold: two higher order 
functions
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f f f f f f

g g g g g g

map: applies function f  to 
every element in a list; 
f  is argument for map

fold: applies function g  
iteratively to aggregate 
the results; 
g is argument of fold plus 
an initial value

initial value

input

output



Map & fold example: sum of 
squares
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a b c d e f

f f f f f f

? ? ? ? ? ?

g g g g g g

? ? ? ? ? ??

transformation

aggregation

a2 + b2 + c2 + d2 + e2 + f2



Map & fold example: sum of 
squares
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a b c d e f

f f f f f f

g g g g g g

… … … …0

a2 b2 c2 d2 e2 f2

a2 a2+b2

transformation

aggregation

can be done 
in parallel

execution 
framework

data is 
aggregated

0 + a2 + b2 + c2 + d2 + e2 + f2



Map & fold example: sum of 
squares
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a b c d e f

f f f f f f

g g g g g g

… … … …0

a2 b2 c2 d2 e2 f2

a2 a2+b2

transformation

aggregation

can be done 
in parallel

execution 
framework

data is 
aggregated

0 + a2 + b2 + c2 + d2 + e2 + f2

/* JavaScript map */
var numbers = [1, 4, 9];
var roots = numbers.map(Math.sqrt);
// roots is now [1, 2, 3], numbers is still [1, 4, 9]

/* JavaScript reduce */
var total = [0, 1, 2, 3].reduce(function(a, b) {
  return a + b;
}); //total == 6
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a b c d e f

f f f f f f

? ? ? ? ? ?

g g g g g g

? ? ? ? ? ??

transformation

aggregation

Map & fold example: 
maximum



Map & fold example: 
maximum
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transformation

aggregation

a b c d e f

f f f f f f

g g g g g g

… … … …0

a b c d e f

a b>a?

max(a, b, c, d, e, f)



Map & reduce
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• Apply a map operation to each record in the input 
to compute a set of intermediate key/value pairs 

• Apply a reduce operation to all values that share 
the same key

Key/value pairs form the basic data structure.

map: (ki, vi) ! [(kj , vj)]
map: (k

i

, v
i
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j
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x

), (k
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), ...]

reduce: (k
j

, [v
x
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n

]) ! [(k
h
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a

), (k
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, v
b

), (k
l

, v
a

)]

There are no limits on the number of key/value pairs.



Map & reduce: developer 
focus

• Divide the data into appropriate key/value pairs 

• Make sure that the memory footprint of the map/
reduce functions is limited 

• Think about the number of key/value pairs to be 
sent over the network
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4 MapReduce examples



Example: word count
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D1

D2

D3

D4

map

(the,1),(dog,1),(walks,1),(around,1)

(around,1),(the,1),(dog,1) (walking,1),(my,1),(dog,1)

(running,1),(away,1)

Hadoop: shuffle & sort (aggregate values by keys)

(the,1),(the,1)

(the,2)

reduce
Σ

(dog,1),(dog,1)
(dog,1)

(dog,3)

reduce 
Σ

(walking,1)

(walking,1)

…

map …

reduce
Σ

running away

around the dog

Term #tf
the 2

dog 3

walks 1

around 2

walking 1

my 1

… …

wanted result

Task: compute the frequency of every term in the corpus.

the dog walks around

walking my dog



Example: word count
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 map(String key, String value): 
  foreach word w in value: 
   EmitIntermediate(w,1); 

 reduce(String key, Iterator values): 
  int res = 0; 
  foreach int v in values: 
   res += v; 
  Emit(key, res)

docid document content

intermediate key/value pairsterm

all values with the same key

count of ‘key’ in the corpus

Important: the iterator in the reducer can only be used once! There is no 
looking back! There is no restart option.



Example: word count
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D1

D2

D3

D4

map

(the,1),(dog,1),(walks,1),(around,1)

(around,1),(the,1),(dog,1) (walking,1),(my,1),(dog,1)

(running,1),(away,1)

map

Hadoop: shuffle & sort (aggregate values by keys)

(the,1),(the,1)

(the,2)

reduce
Σ

reduce 
Σ

(walking,1)

(walking,1)

…

…

reduce
Σ

running away

around the dog

Term #tf
the 2

dog 3

walks 1

around 2

walking 1

my 1

… …

wanted result

Question: What is an easy improvement to make?

(dog,1),(dog,1)
(dog,1)

(dog,3)

(the,1),(dog,2),(walks,1),(around,1)
(walking,1),(my,1)

(dog,1),(dog,2)

the dog walks around

walking my dog



Example: inlink count
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D1

D2

D3

D4

(D4,D3)
(D4,D2),(D3,D2)

(D2,D1)

…

D1

D2

D3

D4

mapmap

D4:running away

around the dog

the D2:dog walks around

D4:walking my D3:dog

“D3 links to D4”

(D2,D1) (D4,D3),(D4,D2) (D3,D2)

Hadoop: shuffle & sort (aggregate values by keys)

(D2,1) (D4,2) (D3,1)

….reduce
Σ

reduce 
Σ

reduce
Σ

inlink graph

2 inlinks



Example: inlink count
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 map(String key, String value): 
  foreach link target t in value: 
   EmitIntermediate(t,key); 

 reduce(String key, Iterator values): 
  int res = 0; 
  foreach source s in values: 
   res++; 
  Emit(key,res);

source document content

intermediate key/value pairstarget

all sources pointing 
to target

#pages linking to ‘key’



Example: list documents and their 
categories occurring 2+ times
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category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

… 
{{DEFAULTSORT:Bush, Vannevar}} 
[[Category:1890 births]] 
[[Category:1974 deaths]] 
[[Category:American electrical engineers]] 
[[Category:Computer pioneers]] 
[[Category:Futurologists]] 
[[Category:Harvard University alumni]] 
[[Category:IEEE Edison Medal recipients]] 
[[Category:Internet pioneers]] 
…

D1

D2

D3

D4

running away

around the dog

the dog walks around

walking my dog

cat:C1,C2

cat:C1,C3

cat:C1,C4,C5

cat:C2,C6



Example: list documents and their 
categories occurring 2+ times
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D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

(C1,D3),(C4,D3),(C5,D3)

(C1,D2),(C3,D2)

(C1,D1),(C2,D1)

(C2,D4),(C6,D4)
cat:C2,C6

(C1,D3),
(C1,D1),(C1,D2) 

(C2,D4),(C2,D1) (C3,D2)

…

…

(D3,C1),(D1,C1), 
(D2,C1)

(D4,C2),(D1,C1)

reduce: (1) count #categories, (2) output DX with categories >1category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1Question: Is the reducer straightforward to implement?



Example: list documents and their 
categories occurring 2+ times
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category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

D1

D2

D3

D4

map map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

(C1,D3),(C4,D3),(C5,D3)

(C1,D2),(C3,D2)

(C1,D1),(C2,D1)

(C2,D4),(C6,D4)
cat:C2,C6

(C1,D3),
(C1,D1),(C1,D2) 

(C2,D4),(C2,D1) (C3,D2)

…

…

(D3,C1),(D1,C1), 
(D2,C1)

(D4,C2),(D1,C1)

reduce: (1) count #categories, (2) output DX with categories >1

 reduce(String key, Iterator values): 
  int numDocs = 0; 
  foreach v in values: 
   numDocs += v; 
   
  if(numDocs<2) 
   return; 

  foreach v in values: 
   Emit(key, res)

category documentsone idea

But: no looking back!

(does not work)



Example: list documents and their 
categories occurring 2+ times
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category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

cat:C2,C6

…

…

(D3,C1),(D1,C1), 
(D2,C1)

(D4,C2),(D1,C1)

reduce: (1) count #categories, (2) output DX with categories >1

Insight: use of additional (key/value) pairs to enable enable the count step.

(C1,D3),(C1,*),(C4,D3),(C4,*),
(C5,D3),(C5,*) (C1,D2),(C1,*),(C3,D2),(C3,*)

(C1,D1),(C1,*),(C2,D1),(C2,*)

(C2,D4),(C2,*),(C6,D4),(C6,*)

(C1,*),(C1,*),
(C1,*),(C1,D3),
(C1,D1),(C1,D2) 

(C2,*),(C2,*),
(C2,D4),(C2,D1) 

(C3,*),(C3,D2)

Hadoop allows ordering of values in a reduce() call.



Example: list documents and their 
categories occurring 2+ times
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map(String key, String value): 
 foreach category c in value: 
  EmitIntermediate(c,key); 
  EmitIntermediate(c,*); 

  
reduce(String key, Iterator values): 
 int numDocs = 0; 
 foreach v in values: 
  if(v==*) 
   numDocs++; 
  else if(numDocs>1) 
   Emit(d,key);

docid document content

we can emit more 
than 1 key/value pair

category

*’s and docids

document’s category with min freq. 2

Assumption: the 
values are sorted in 
a particular order 

(* first).



Example: list documents and their 
categories occurring 2+ times
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map(String key, String value): 
 foreach category c in value: 
  EmitIntermediate(c,key); 
  EmitIntermediate(c,*); 

  
reduce(String key, Iterator values): 
  List list = copyFromIterator(values) 
   
  int numDocs = 0; 
  foreach l in list: 
   if(l==*) 
    numDocs ++; 
  if(numDocs<2) 
   return; 
  foreach l in list: 
   Emit(d,key)

docid document content

we can emit more 
than 1 key/value pair

category

We assume no 
sorting of values.

What if there are 100GB of 
values for key? Do they fit 

into memory?
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D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

cat:C2,C6

…

…

the 
dog 

walks 
around 
walking 

my 
running 

away

1  0  0  1 
1  1  0  1 
1  0  0  0 
1  0  0  1 
0  1  0  0 
0  1  0  0 
0  0  1  0 
0  0  1  0

D1   D2    D3   D4 

Example: a simple inverted 
index

D1 D4 
D1 D2 D4 
D1 
D1 D4 
D2 
D2 
D2 
D3 
D3

}

(the,D1),(dog,D1),
(walks,D1),(around,D1) (around,D4),(the,D4),(dog,D4)

(running,D3),(away,D3)

(walking,D2),(my,D2),(dog,D2)

(the,D1),
(the,D4)

(dog,D1),
(dog,D4)

(around,D1),
(around,D4)

(the,D1),
(the,D4)

(dog,D1),
(dog,D4)

(around,D1),
(around,D4)



Example: a simple inverted 
index
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map(String key, String value): 
 foreach term t in value: 
  EmitIntermediate(t,key); 

reduce(String key, Iterator values)  
 foreach docid d in values: 
  Emit(key,d);

document contentdocid

all documents 
with term ‘key’

term

Not much to be done 
in the reducer. 

(“IdentityReducer”)
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D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away

…

Example: parsing

(D3,run|away)
(D2,walk|my|dog)

(D1,the|dog|walk|around)
(D4,around|the|dog)

Not needed.

A reducer is not always necessary. A mapper is always required.



Partitioner



There is more: the partitioner
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• Responsible for dividing the intermediate key space 
and assigning intermediate key/value pairs to 
reducers 

• Within each reducer, keys are processed in sorted 
order (i.e. several keys can be assigned to a reducer) 
• All values associated with a single key are 

processed in a single reduce() call 

• Default key-to-reducer assignment: 
hash(key) modulus num_reducers



Summary

• MapReduce vs. Hadoop 

• MapReduce vs. RDBMS/HPC 

• Problem transformation into MapReduce programs 

• Partitioner

46



Recommended reading
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Chapter 1, 2 and 3.

A warning: coding takes time.  

MapReduce is not difficult to 
understand, but different templates, 
different advice on different sites  
(of widely different quality) can make 
progress slow.



THE END


