
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Software
• Virtual machine-based: Cloudera CDH 5.8, based on CentOS

• Saves us from a “manual” Hadoop installation (especially
difficult on Windows) — but if you want to install Hadoop ‘by
hand’ feel free to do so.

• Ensures that everyone has the same setup  
 
 
 
 
 

2

“As part of the boot process, the VM automatically launches Cloudera Manager
and configures HDFS, Hive, Hue, MapReduce, Oozie, ZooKeeper, Flume,
HBase, Cloudera Impala, Cloudera Search, and YARN.
Only the ZooKeeper, HDFS, MapReduce, Hive, and Hue services  
are started automatically.”

3

Hadoop runs in “pseudo-distributed” mode on a single  
machine (yours).
Hadoop: write once, run on one machine or a cluster of  
20,000+ machines.

4

• Explain the difference between MapReduce and
Hadoop

• Explain the difference between the MapReduce
paradigm and related approaches (RDMBS, HPC)

• Transform simple problem statements into map/
reduce functions

• Employ Hadoop’s partitioner functionality

Learning objectives

Introduction

6

MapReduce & Hadoop

“MapReduce is a programming model for expressing distributed
computations on massive amounts of data and an execution
framework for large-scale data processing on clusters of
commodity servers.”
—Jimmy Lin

Hadoop is an open-source implementation of the MapReduce
framework.

7

• Batch processing

• No limits on #passes over the data or time

• No memory constraints

MapReduce characteristics

8

• Developed by engineers at Google around 2003
• Built on principles in parallel and distributed processing

• Seminal papers:
The Google file system by Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung (2003)
MapReduce: Simplified Data Processing on Large Clusters by
Jeffrey Dean and Sanjay Ghemawat (2004)

• “MapReduce is used for the generation of data for
Google’s production web search service, for sorting, for
data mining, for machine learning and many other
systems” (2004)

• Google has produced other technologies since,  
e.g. BigTable, Percolator, Dremel, …

History of MapReduce

MapReduce provides a clear separation between what to compute and
how to compute it on a cluster.

9

• Created by Doug Cutting as solution to Nutch’s scaling  
problems, inspired by Google’s GFS/MapReduce papers

• 2004: Nutch Distributed Filesystem written (based on GFS)

• Middle 2005: all important parts of Nutch ported to MapReduce
and NDFS

• February 2006: code moved into an independent subproject of
Lucene called Hadoop

• In early 2006 Doug Cutting joined Yahoo! which contributed
resources and manpower

• January 2008: Hadoop became a top-level project at Apache

History of Hadoop
Apache project Web crawler

Apache project search engine

Apache Software Foundation

at Cloudera
since 2009

Today, Hadoop is more than “just” MapReduce.

http://hadoop.apache.org/

http://hadoop.apache.org/

Hadoop versioning
[warning]

Apache Hadoop 3.0.0-alpha1 (09/2016) incorporates a number of significant
enhancements over the previous major release line (hadoop-2.x).

Ideas behind MapReduce
• Scale “out”, not “up”

• Many commodity servers are more cost effective than few high-end
servers

• Assume failures are common
• A 10,000-server cluster with a mean-time between failures of 1000

days experiences on average 10 failures a day.

• Move programs/processes to the data
• Moving the data around is expensive
• Data locality awareness

• Process data sequentially and avoid random access
• Data sets do not fit in memory, disk-based access (slow)
• Sequential access is orders of magnitude faster

12

Ideas behind MapReduce
• Hide system-level details from the application

developer
• Frees the developer to think about the task at hand

only (no need to worry about deadlocks, …)
• MapReduce takes care of the system-level details

• Seamless scalability
• Data scalability (given twice as much data, the ideal

algorithm runs twice as long)
• Resource scalability (given a cluster twice the size,

the ideal algorithm runs in half the time)

13

Ideas behind MapReduce
• Hide system-level details from the application

developer
• Frees the developer to think about the task at hand

only (no need to worry about deadlocks, …)
• MapReduce takes care of the system-level details

• Seamless scalability
• Data scalability (given twice as much data, the ideal

algorithm runs twice as long)
• Resource scalability (given a cluster twice the size,

the ideal algorithm runs in half the time)

14

System-level details:
- data partitioning
- scheduling, load balancing
- fault tolerance
- inter-machine communication

“… MapReduce is not the final word, but
rather the first in a new class of
programming models that will allow us to
more effectively organize computations on
a massive scale.” (Jimmy Lin)

MapReduce vs. RDBMS

15

RDBMS MapReduce
Data size Gigabytes (mostly) Petabytes
Access interactive & batch batch

Updates many reads & writes write once, read a lot (the
entire data)

Structure static schema data interpreted at
processing time

Redundancy low (normalized data) high (unnormalized data)
Scaling nonlinear linear

MapReduce vs. RDBMS

16

RDBMS MapReduce
Data size Gigabytes (mostly) Petabytes
Access interactive & batch batch

Updates many reads & writes write once, read a lot (the
entire data)

Structure static schema data interpreted at
processing time

Redundancy low (normalized data) high (unnormalized data)
Scaling nonlinear linear

Trend: disk seek times are improving more slowly than the disk transfer rate (i.e. it is faster to
stream all data than to make seeks to the data)

fcrawler.looksmart.com - - [26/Apr/2000:00:00:12 -0400] "GET /contacts.html HTTP/1.0" 200
fcrawler.looksmart.com - - [26/Apr/2000:00:17:19 -0400] "GET /news/news.html HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/wpaper.gif HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET /asctortf/ HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/5star2000.gif HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:50 -0400] "GET /pics/5star.gif HTTP/1.0" 200

Blurring the lines: MapReduce moves into the direction of RDBMs (Hive, Pig) and
RDBMs move into the direction of MapReduce (NoSQL).

MapReduce vs. High
Performance Computing (HPC)
• HPC works well for computationally intensive

problems with low to medium data volumes
• Bottleneck: network bandwidth, leading to idle

compute nodes
• MapReduce: moves the computation to the data,

conserving network bandwidth
• HPC gives a lot of control to the programmer, requires

handling of low-level aspects (data flow, failures, etc.)
• MapReduce requires programmer to only provide

map/reduce code, takes care of low-level details

17

MapReduce basics

MapReduce paradigm
• Divide & conquer: partition a large problem into smaller sub-

problems
• Independent sub-problems can be executed in parallel by

workers (anything from threads to clusters)
• Intermediate results from each worker are combined to get

the final result
• Issues:

• How to transform a problem into sub-problems?
• How to assign workers & synchronise the intermediate

results?
• How do the workers get the required data?
• How to handle failures in the cluster?

19

MapReduce in brief

20

1. Define the map() function
1.1. Define the input to map() as key/value pair
1.2. Define the output of map() as key/value pair  

2. Define the reduce() function
2.1. Define the input to reduce() as key/value pair
2.2. Define the output of reduce() as key/value pair

Map & fold: two higher order
functions

21

f f f f f f

g g g g g g

map: applies function f to
every element in a list;
f is argument for map

fold: applies function g
iteratively to aggregate
the results;
g is argument of fold plus
an initial value

initial value

input

output

Map & fold example: sum of
squares

22

a b c d e f

f f f f f f

? ? ? ? ? ?

g g g g g g

? ? ? ? ? ??

transformation

aggregation

a2 + b2 + c2 + d2 + e2 + f2

Map & fold example: sum of
squares

23

a b c d e f

f f f f f f

g g g g g g

… … … …0

a2 b2 c2 d2 e2 f2

a2 a2+b2

transformation

aggregation

can be done
in parallel

execution
framework

data is
aggregated

0 + a2 + b2 + c2 + d2 + e2 + f2

Map & fold example: sum of
squares

24

a b c d e f

f f f f f f

g g g g g g

… … … …0

a2 b2 c2 d2 e2 f2

a2 a2+b2

transformation

aggregation

can be done
in parallel

execution
framework

data is
aggregated

0 + a2 + b2 + c2 + d2 + e2 + f2

/* JavaScript map */
var numbers = [1, 4, 9];
var roots = numbers.map(Math.sqrt);
// roots is now [1, 2, 3], numbers is still [1, 4, 9]

/* JavaScript reduce */
var total = [0, 1, 2, 3].reduce(function(a, b) {
 return a + b;
}); //total == 6

25

a b c d e f

f f f f f f

? ? ? ? ? ?

g g g g g g

? ? ? ? ? ??

transformation

aggregation

Map & fold example:
maximum

Map & fold example:
maximum

26

transformation

aggregation

a b c d e f

f f f f f f

g g g g g g

… … … …0

a b c d e f

a b>a?

max(a, b, c, d, e, f)

Map & reduce

27

• Apply a map operation to each record in the input
to compute a set of intermediate key/value pairs

• Apply a reduce operation to all values that share
the same key

Key/value pairs form the basic data structure.

map: (ki, vi) ! [(kj , vj)]
map: (k

i

, v
i

) ! [(k
j

, v
x

), (k
m

, v
y

), (k
j

, v
n

), ...]

reduce: (k
j

, [v
x

, v
n

]) ! [(k
h

, v
a

), (k
h

, v
b

), (k
l

, v
a

)]

There are no limits on the number of key/value pairs.

Map & reduce: developer
focus

• Divide the data into appropriate key/value pairs

• Make sure that the memory footprint of the map/
reduce functions is limited

• Think about the number of key/value pairs to be
sent over the network

28

4 MapReduce examples

Example: word count

30

D1

D2

D3

D4

map

(the,1),(dog,1),(walks,1),(around,1)

(around,1),(the,1),(dog,1) (walking,1),(my,1),(dog,1)

(running,1),(away,1)

Hadoop: shuffle & sort (aggregate values by keys)

(the,1),(the,1)

(the,2)

reduce
Σ

(dog,1),(dog,1)
(dog,1)

(dog,3)

reduce
Σ

(walking,1)

(walking,1)

…

map …

reduce
Σ

running away

around the dog

Term #tf
the 2

dog 3

walks 1

around 2

walking 1

my 1

… …

wanted result

Task: compute the frequency of every term in the corpus.

the dog walks around

walking my dog

Example: word count

31

 map(String key, String value):
 foreach word w in value:
 EmitIntermediate(w,1);

 reduce(String key, Iterator values):
 int res = 0;
 foreach int v in values:
 res += v;
 Emit(key, res)

docid document content

intermediate key/value pairsterm

all values with the same key

count of ‘key’ in the corpus

Important: the iterator in the reducer can only be used once! There is no
looking back! There is no restart option.

Example: word count

32

D1

D2

D3

D4

map

(the,1),(dog,1),(walks,1),(around,1)

(around,1),(the,1),(dog,1) (walking,1),(my,1),(dog,1)

(running,1),(away,1)

map

Hadoop: shuffle & sort (aggregate values by keys)

(the,1),(the,1)

(the,2)

reduce
Σ

reduce
Σ

(walking,1)

(walking,1)

…

…

reduce
Σ

running away

around the dog

Term #tf
the 2

dog 3

walks 1

around 2

walking 1

my 1

… …

wanted result

Question: What is an easy improvement to make?

(dog,1),(dog,1)
(dog,1)

(dog,3)

(the,1),(dog,2),(walks,1),(around,1)
(walking,1),(my,1)

(dog,1),(dog,2)

the dog walks around

walking my dog

Example: inlink count

33

D1

D2

D3

D4

(D4,D3)
(D4,D2),(D3,D2)

(D2,D1)

…

D1

D2

D3

D4

mapmap

D4:running away

around the dog

the D2:dog walks around

D4:walking my D3:dog

“D3 links to D4”

(D2,D1) (D4,D3),(D4,D2) (D3,D2)

Hadoop: shuffle & sort (aggregate values by keys)

(D2,1) (D4,2) (D3,1)

….reduce
Σ

reduce
Σ

reduce
Σ

inlink graph

2 inlinks

Example: inlink count

34

 map(String key, String value):
 foreach link target t in value:
 EmitIntermediate(t,key);

 reduce(String key, Iterator values):
 int res = 0;
 foreach source s in values:
 res++;
 Emit(key,res);

source document content

intermediate key/value pairstarget

all sources pointing
to target

#pages linking to ‘key’

Example: list documents and their
categories occurring 2+ times

35

category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

…
{{DEFAULTSORT:Bush, Vannevar}}
[[Category:1890 births]]
[[Category:1974 deaths]]
[[Category:American electrical engineers]]
[[Category:Computer pioneers]]
[[Category:Futurologists]]
[[Category:Harvard University alumni]]
[[Category:IEEE Edison Medal recipients]]
[[Category:Internet pioneers]]
…

D1

D2

D3

D4

running away

around the dog

the dog walks around

walking my dog

cat:C1,C2

cat:C1,C3

cat:C1,C4,C5

cat:C2,C6

Example: list documents and their
categories occurring 2+ times

36

D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

(C1,D3),(C4,D3),(C5,D3)

(C1,D2),(C3,D2)

(C1,D1),(C2,D1)

(C2,D4),(C6,D4)
cat:C2,C6

(C1,D3),
(C1,D1),(C1,D2)

(C2,D4),(C2,D1) (C3,D2)

…

…

(D3,C1),(D1,C1),
(D2,C1)

(D4,C2),(D1,C1)

reduce: (1) count #categories, (2) output DX with categories >1category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1Question: Is the reducer straightforward to implement?

Example: list documents and their
categories occurring 2+ times

37

category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

D1

D2

D3

D4

map map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

(C1,D3),(C4,D3),(C5,D3)

(C1,D2),(C3,D2)

(C1,D1),(C2,D1)

(C2,D4),(C6,D4)
cat:C2,C6

(C1,D3),
(C1,D1),(C1,D2)

(C2,D4),(C2,D1) (C3,D2)

…

…

(D3,C1),(D1,C1),
(D2,C1)

(D4,C2),(D1,C1)

reduce: (1) count #categories, (2) output DX with categories >1

 reduce(String key, Iterator values):
 int numDocs = 0;
 foreach v in values:
 numDocs += v;

 if(numDocs<2)
 return;

 foreach v in values:
 Emit(key, res)

category documentsone idea

But: no looking back!

(does not work)

Example: list documents and their
categories occurring 2+ times

38

category #

C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

cat:C2,C6

…

…

(D3,C1),(D1,C1),
(D2,C1)

(D4,C2),(D1,C1)

reduce: (1) count #categories, (2) output DX with categories >1

Insight: use of additional (key/value) pairs to enable enable the count step.

(C1,D3),(C1,*),(C4,D3),(C4,*),
(C5,D3),(C5,*) (C1,D2),(C1,*),(C3,D2),(C3,*)

(C1,D1),(C1,*),(C2,D1),(C2,*)

(C2,D4),(C2,*),(C6,D4),(C6,*)

(C1,*),(C1,*),
(C1,*),(C1,D3),
(C1,D1),(C1,D2)

(C2,*),(C2,*),
(C2,D4),(C2,D1)

(C3,*),(C3,D2)

Hadoop allows ordering of values in a reduce() call.

Example: list documents and their
categories occurring 2+ times

39

map(String key, String value):
 foreach category c in value:
 EmitIntermediate(c,key);
 EmitIntermediate(c,*);

reduce(String key, Iterator values):
 int numDocs = 0;
 foreach v in values:
 if(v==*)
 numDocs++;
 else if(numDocs>1)
 Emit(d,key);

docid document content

we can emit more
than 1 key/value pair

category

*’s and docids

document’s category with min freq. 2

Assumption: the
values are sorted in
a particular order

(* first).

Example: list documents and their
categories occurring 2+ times

40

map(String key, String value):
 foreach category c in value:
 EmitIntermediate(c,key);
 EmitIntermediate(c,*);

reduce(String key, Iterator values):
 List list = copyFromIterator(values)

 int numDocs = 0;
 foreach l in list:
 if(l==*)
 numDocs ++;
 if(numDocs<2)
 return;
 foreach l in list:
 Emit(d,key)

docid document content

we can emit more
than 1 key/value pair

category

We assume no
sorting of values.

What if there are 100GB of
values for key? Do they fit

into memory?

41

D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away cat:C1,C4,C5

cat:C1,C2

cat:C1,C3

cat:C2,C6

…

…

the
dog

walks
around
walking

my
running

away

1 0 0 1
1 1 0 1
1 0 0 0
1 0 0 1
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0

D1 D2 D3 D4

Example: a simple inverted
index

D1 D4
D1 D2 D4
D1
D1 D4
D2
D2
D2
D3
D3

}

(the,D1),(dog,D1),
(walks,D1),(around,D1) (around,D4),(the,D4),(dog,D4)

(running,D3),(away,D3)

(walking,D2),(my,D2),(dog,D2)

(the,D1),
(the,D4)

(dog,D1),
(dog,D4)

(around,D1),
(around,D4)

(the,D1),
(the,D4)

(dog,D1),
(dog,D4)

(around,D1),
(around,D4)

Example: a simple inverted
index

42

map(String key, String value):
 foreach term t in value:
 EmitIntermediate(t,key);

reduce(String key, Iterator values)
 foreach docid d in values:
 Emit(key,d);

document contentdocid

all documents
with term ‘key’

term

Not much to be done
in the reducer.

(“IdentityReducer”)

43

D1

D2

D3

D4

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce reducereduce

the dog walks around

walking my dog map

around the dog

running away

…

Example: parsing

(D3,run|away)
(D2,walk|my|dog)

(D1,the|dog|walk|around)
(D4,around|the|dog)

Not needed.

A reducer is not always necessary. A mapper is always required.

Partitioner

There is more: the partitioner

45

• Responsible for dividing the intermediate key space
and assigning intermediate key/value pairs to
reducers

• Within each reducer, keys are processed in sorted
order (i.e. several keys can be assigned to a reducer)
• All values associated with a single key are

processed in a single reduce() call

• Default key-to-reducer assignment: 
hash(key) modulus num_reducers

Summary

• MapReduce vs. Hadoop

• MapReduce vs. RDBMS/HPC

• Problem transformation into MapReduce programs

• Partitioner

46

Recommended reading

47

Chapter 1, 2 and 3.

A warning: coding takes time.

MapReduce is not difficult to
understand, but different templates,
different advice on different sites  
(of widely different quality) can make
progress slow.

THE END

