7

il

1127360-B
mY Big Data Processing

”""’M Claudia Hauff
QL et

mailto:ti2736b-ewi@tudelft.nl

Software

* Virtual machine-based: Cloudera CDH 5.8, based on CentOS

e Saves us from a “manual” Hadoop installation (especially
difficult on Windows) — but if you want to install Hadoop ‘by
hand’ feel free to do so.

* Ensures that everyone has the same setup

“As part of the boot process, the VM automatically launches Cloudera Manager
and configures HDFS, Hive, Hue, MapReduce, Oozie, ZooKeeper, Flume,

HBase, Cloudera Impala, Cloudera Search, and YARN.
Only the ZooKeeper, HDFS, MapReduce, Hive, and Hue services
are started automatically.”

«%® Applications Places System @& & B i =" 4 TueNov22,15:35 cloudera

aunch Cloudera
nterprise(tral)
clipse l '

Hadoop runs in “pseudo-distributed” mode on a single

machine (yours).
Hadoop: write once, run on one machine or a cluster of

20,000+ machines.

|_earning objectives

the ditference between MapReduce and
Hadoop

the difference between the MapReduce
paradigm and related approaches (RDMBS, HPC)

simple problem statements into map/
reduce functions

Hadoop's partitioner functionality

INntroduction

MapReduce & Hadoop

‘MapReduce is a programming model for expressing
computations on and an execution

framework for large-scale data processing on clusters of

—Jimmy Lin

IS an open-source implementation of the MapReduce

framework. S
(O In=lalalo)s,

MapReduce characteristics

processing

on #passes over the data or time

History of MapReduce

 Developed by engineers at Google around 2003
» Built on principles in parallel and distributed processing

 Seminal papers:

The Google file system by Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung (2003)

MapReduce: Simplified Data Processing on Large Clusters by
Jeffrey Dean and Sanjay Ghemawat (2004)

 “MapReduce is used for the generation of data for
Google’s production web search service, for sorting, for
data mining, for machine learning and many other
systems” (2004)

MapReduce provides a clear separation between what to compute and

how to compute it on a cluster.

History of Hadoo:

. . , _ Doug Cutting
Created by Doug Cutting as solution to Nutch’s scaling @

problems, inspired by Google’s GFS/MapReduce papers at Cloudera
since 2009

2004: Nutch Distributed Filesystem written (based on GFS)

Middle 2005: all important parts of Nutch ported to MapReduce
and NDFS

Apache project search engine

February 2006: code moved into an independent subproject of
Lucene called Hadoop

In early 2006 Doug Cutting joined Yahoo! which contributed

resources and Mmanpower
Apache Software Foundation

January 2008: Hadoop became a top-level project at Apache

9

The project includes these modules: http://hadoop.apache.org/

e Hadoop Common: The common utilities that support the other Hadoop modules.

e Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application
data.

e Hadoop YARN: A framework for job scheduling and cluster resource management.
e Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.
Other Hadoop-related projects at Apache include:
e Ambari™: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters which includes support for
Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard

for viewing cluster health such as heatmaps and ability to view MapReduce, Pig and Hive applications visually alongwith features
to diagnose their performance characteristics in a user-friendly manner.

e Avro™: A data serialization system.
e Cassandra™: A scalable multi-master database with no single points of failure.

e Chukwa™: A data collection system for managing large distributed systems.

e HBase™: A scalable, distributed database that supports structured data storage for large tables.
e Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.
. Mahout"" A Scalable machlne Iearnlng and data mlmng library.

Pi : A hlgh Ievel data-flow Ianguage and execution framework for parallel computatlon

} Spark™: A fast and general compute engine for Hadoop data. Spark provides a simple and expressive programming model that *
i supports a wnde range of appllcatlons, mcludmg Er L, machlne Iearnmg, stream processmg, and graph computatlon |

. Tez“" A generallzed data flow programmmg framework bunlt on Hadoop YARN which provndes a powerful and ﬂexuble englne to
execute an arbitrary DAG of tasks to process data for both batch and interactive use-cases. Tez is being adopted by Hive™, Pig™
and other frameworks in the Hadoop ecosystem, and also by other commercial software (e.g. ETL tools), to replace Hadoop™

_MapReduce as the underlying execution engine.

ZooKeeper"" A h|gh performance coordlnatlon service for dlstrlbuted appllcatuons

Today, Hadoop is more than “just” MapReduce.

http://hadoop.apache.org/

Hadoop versioning
'warning|

Feature 1.x 0.22 2.X
Secure authentication Yes No Yes

Old configuration names Yes Deprecated | Deprecated
New configuration names No Yes Yes
seseetliy | Old MapReduce API Yes Yes Yes
-»-u-& New MapReduce API Yes (with somemissing libraries) | Yes Yes
@& | MapReduce 1 runtime (Classic) | Yes Yes No
sy | MapReduce 2 runtime (YARN) | No No Yes
HDES federation No No Yes
HDES high-availability No No Yes

Apache Hadoop 3.0.0-alphal (09/2016) incorporates a number of significant
enhancements over the previous major release line (hadoop-2.x).

|[deas behind MapReduce

 Many commodity servers are more cost effective than few high-end
servers

e Assume

A 10,000-server cluster with a mean-time between failures of 1000
days experiences on average 10 failures a day.

 Moving the data around is expensive
o Data locality awareness

 Process data and avoid random access
e Data sets do not fit in memory, disk-based access (slow)

e Sequential access is orders of magnitude faster
12

|[deas behind MapReduce

. from the application
developer

* Frees the developer to think about the task at hand
only (no need to worry about deadlocks, ...)

 MapReduce takes care of the system-level details

* Data scalability (given twice as much data, the ideal
algorithm runs twice as long)

* Resource scalability (given a cluster twice the size,
the ideal algorithm runs in half the time)

13

|[deas behind MapReduce

Hide system-level details from the application
developer
* Frees the developer to i vartitioning

SULAUIIEECR ORI} _ o cheduling, load balancing

« MapReduce takes care GEENlIRG]EIE=Taef=
- Inter-machine communication

System-level details:

» Seamless scalability
* Data scalability (given twice as much data, the ideal

algorithm runs twice as | "... MapReduce is not the final word, but

* Resource scalability (giviREiaERiaER TR E A EEER
the idea] algorithm FUNS programming models that will allow us to

more effectively organize computations on
a massive scale.” (Jimmy Lin)

MapReduce vs. RDBMS

RDBMS MapReduce
Data size Gigabytes (mostly) Petabytes

interactive & batch batch

write once, read a lot (the

SERELEER many reads & writes entire data)

data interpreted at

static schema . .
processing time

SELIGERGA [ow (normalized data) high (unnormalized data)
nonlinear linear

15

MapReduce vs. RDBMS

RDBMS MapReduce
Data size Gigabytes (mostly) Petabytes

Trend: disk seek times are improving more slowly than the disk transfer rate (i.e. it is faster to
stream all data than to make seeks to the data)

fcrawler.looksmart.com - - [26/Apr/2000:00:00:12 -0400] "GET /contacts.html HTTP/1.0" 200
fcrawler.looksmart.com - - [26/Apr/2000:00:17:19 -0400] "GET /news/news.html HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/wpaper.gif HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:47 -0400] "GET /asctortf/ HTTP/1.0" AV
123.123.123.123 - - [26/Apr/2000:00:23:48 -0400] "GET /pics/5star2000.gif HTTP/1.0" 200
123.123.123.123 - - [26/Apr/2000:00:23:50 -0400] "GET /pics/5star.gif HTTP/1.0" 200

Blurring the lines: MapReduce moves into the direction of RDBMs (Hive, Pig) and
RDBMs move into the direction of MapReduce (NoSQL).

MapReduce vs. Hign
Performance Computing (HPC)

e HPC works well for

with low to medium data volumes
* Bottleneck: network bandwidth, leading to idle

compute nodes
* MapReduce:

conserving network bano

« HPC gives a lot of contro

WIO
the programmer, requires
nandling of low-level aspects (data tlow, tailures, etc.)

o

th

* MapReduce requires programmer to only provide

map/reduce code,

17

MapReduce basics

MapReduce paradigm

. . partition a large problem into smaller sulb-
problems

. can be executed in parallel by
workers (anything from threads to clusters)

* Intermediate results from each worker are to get
the final result

* How to a problem into sub-problems?

* How to workers & synchronise the intermediate
results?

* How do the workers get the required ?

e How to handle iIn the cluster?

19

MapReduce in briet

1. Define the

1.1.

el

1.2.

el

ne t

ne t

2. Define the

2.1. Define the
2.2. Define the

e

e

function
to map () as key/value pair

of map () as key/value pair- |

function

to reduce () as key/value pair
of reduce () as key/value pair

20

Map & fold: two higher order
functions _

: applies function /' to CP ? ? CP CP CP
every element in a list;
fis argument for map 7 ff f 7 f
: applies function ¢ é d) é)
iteratively to aggregate l l l
the results;
g g g g g g
an initial value / V V V V l/'l

g is argument of fold plus
initial value output

21

Map & fold example: sum of
squares a® +b° + ¢ +d° + e + [

i

gggggg

TTTTIT

Map & fold example: sum of
sguares

can be done
in paraliel

transformation

framework

O o
e
e e
OEe o

0101010

l 1

1 ! execution
slojclolo

: data Is
ragregation /W aggregated

0 a2 22222

0+ a2+b2+ 2 +d%+ e+ f2

23

Map & fold example: sum of
sguares

transformation

Py
A Y A

execution

(o) () (o) (o) (o) (e framework

var numbers = [1, 4, 9];
var roots = numbers.map(Math.sqgrt);

—< v Y Y Y ¥

var total = [0, 1, 2, 3].reduce(function(a, b) {
return a + b;

)i

24

Map & fold example:

maximum

Map & fold example:
maximum

gggggg

mazx(a,b,c,d, e, f)

Map & reduce

Key/value pairs form the basic data structure.

 Apply a map operation to each record in the input
to compute a set of intermediate key/value pairs

map: (k;,v;) — |(ki, v,

map: (k;,v;) —

 Apply a reduce operatiop-to all values-tnat share
the same key

reduce: (kj, [vx, Unl) — [(k‘h, Ua), (kh, Ub), (klv Ua)]

There are no limits on the number of key/value pairs.

Map & reduce: developer
focus

. the data into appropriate key/value pairs

« Make sure that the of the map/
reduce functions is limited

e Think about the to be

28

4 MapReduce examples

Example: word count

_

DI the dog walks around M s E—

map : map

D2 walking my dog
D3 running away (running,1l), (away, 1) (the,1), (dog,1l), (walks,1l), (around, 1)

(around, 1), (the, 1), (dog,1) (walking,1l), (my,1l), (dog,1)

D4 around the dog
Hadoop: shuffle & sort (aggregate values by keys)

wanted result

B (the,1), (the,1) (dog,1),(dog,1) (walking,1)
the 2 (dog, 1)
dog 3
walks 1
around 2
walking 1
my 1 (the, 2) (dog, 3) (walking, 1)

Task: compute the frequency of every term in the corpus.

Example: word count

map (String key, String value)
foreach word w 1n value

FmitIntermediate (
m intermediate key/value pairs

reduce (String key, Iterator values)

int res = 0;
foreach int v in values: ECUNEIEERTTIRIERERERCN

res += vy
Fmit (key, res)

count of ‘key’ in the corpus

Important: the iterator in the reducer can only be used once! There is no

looking back! There is no restart option.

Example: word count

_

DI the dog walks around M s E—

map : map

D2 walking my dog
D3 running away (running,1l), (away, 1) (the, 1), (dog,2), (walks,1), (around, 1)

(around, 1), (the,1), (dog,1) (walking, 1), (my,1)

D4 around the dog
Hadoop: shuffle & sort (aggregate values by keys)

wanted result
(the,1), (the,1) (d°9,1),(dog,2) (walking, 1)

Term #if

the 2
dog 3
walks 1
around 2
walking | 1 (the,2) (dog, 3) (walking,1)
my 1

Question: What is an easy improvement to make?

cxample: inlink count

D) the D2:dog walks around

D2 D4 :walking my D3:dog e m— P e
e
D3 D4 :running away (D4,D3) (D2,D1)
- “D3 links to D4” (D4,D2),(D3,D2)

D4 around the dog

Hadoop: shuffle & sort (aggregate values by keys)

D1 inlink graph D3 (D2,D1) (D4,D3), (D4,D2) (D3,D2)
(D2,1) (D4,2) (D3,1)
D4
2 inlinks b2

33

Example: Inlink count

m document content

map (String key, String wvalue):
foreach link target t in value
FmitIntermediate (t, key) ;

m intermediate key/value pairs

reduce (String key, Iterator values)

int res = 0;
foreach source s in values: [ElREEeEERsl6lRiiRle
res++; {o target

Emit (key, res);

#pages linking to ‘key’

34

Example: list documents and their

categories occurring 2+ times &

D1 the dog walks around cat:Cl1l,C2
D2 walking my dog cat:C1l,C3
D3 running away cat:C1,C4,C5
D4 around the dog cat:C2,C6

H*

category

Cl
C2
C3
C4
C5
cé

=== |w

Categories: 1890 births

1974 deaths = American electrical engineers
Computer pioneers | Futurologists | Harvard University alumni

IEEE Edison Medal recipients | Internet pioneers

Massachusetts Institute of Technology alumni

Massachusetts Institute of Technology faculty

Manhattan Project people | Medal for Merit recipients

National Academy of Sciences laureates

National Inventors Hall of Fame inductees

National Medal of Science laureates

People associated with the atomic bombings of Hiroshima and Nagasaki
People from Belmont, Massachusetts

People from Everett, Massachusetts = Raytheon people

Tufts University alumni

{ {DEFAULTSORT :Bush, Vannevar}}

[
[
[
[
[
[
[
[

35

[Category:1890 births]]

[Category:1974 deaths]]
[Category:American electrical engineers]]
[Category:Computer pioneers]]
[Category:Futurologists]]
[Category:Harvard University alumni]]
[Category:IEEE Edison Medal recipients]]
[Category:Internet pioneers]]

Example: list documents and their
categories occurring 2+ times ~ “

D1 the dog walks around cat:Cl,C2 pusssmstitese |
D2 walking my dog cat:C1l,C3 rms map map
D3 running away Rl el e el (C1,D3), (C4,D3),(C5,D3) (Cc1,D1l),(C2,D1)

~ (C2,D4),(C6,D4) (C1,D2),(C3,D2)

D4 around the dog cat:C2,C6

Hadoop: shuffle & sort (aggregate values by keys)

(C1,D3), (C2,D4),(C2,D1) (C3,D2)
(C1,D1),(C1l,D2)
I | 1
reduce: (1) count #categories, (2) output DX with categories >1
Cl 3
c2 2 (D3,C1),(D1,C1), (D4,C2),(D1,Cl)
C3 1 (D2,C1)
C4 1

Question: |s the reducer straightforward to implement?

Example: list documents and their
Categorles OCCUIring 2+ tlmes

BN

EDIA
D1 the dog walks around cat:Cl,C2,
D2 walking my dog cat:C1l,C3 rms nap map
D3 running away or-Ra el el Ao (C1,D3), (C4,D3),(C5,D3) (Cc1,D1),(C2,D1)
~ (C2,D4), (C6,D4) (C1,D2),(C3,D2)

D4 around the dog cat:C2,C6

one |dea category ‘
(does not work)

reduce (String key, Iterator values)
int numbDocs = 0;
foreach v 1n values:

category #

numbDocs += v;

cl 3

€ 2 1f (numDocs<2)

c4 1

c5 1 foreach v 1n values: |
cé 1 _ Emit(key, res) |

Example: list documents and their
categories occurring 2+ times 4=

m (Ot
8 Vﬂxﬁiuu\
: _ The Froe Encyclepedia
D1 the dog walks around cat:Cl,C2 jusnssitibtie.
. " o il "\ ma ‘ . ma
D2 walking my dog cat:C1,C3 I - P P
D3 running away cat:Cl1,C4,C5 (c1,p3),(Cc1,*),(C4,D3),(Cc4,*), (C1l,Dl),(Cl,*),(C2,Dl),(C2,¥%)

(C5,D3),(C5,%)
(C2,D4),(C2,*),(C6,D4), (C6,*)

Hadoop: shuffle & sort (aggregate values by keys)
(C1,*),(Cl,*), (C2,%),(C2,%), (C3,%),(C3,D2)
category =~ # (c1,*),(Cl,D3), (C2,D4), (C2,D1)

(C1,p2),(C1,*),(C3,D2),(C3,*)

D4 around the dog cat:C2,C6

(C1,D1),(C1l,D2)
C1 3 roo.1 ro. | P |
CcC2 2 reduce: (1) count #categories, (2) output DX with categories >1
Cc3 1

Insight: use of additional (key/value) pairs to enable enable the count step.

Hadoop allows ordering of values in a reduce () call.

Example: list documents and their
categories occurring 2+ times

document content

map (String key, String value) :
foreach category ¢ 1n value:
EmitIntermediate (c, key) ; [NAt—u—"
FmitIntermediate (C, *) y than 1 key/value pair

category

reduce (String key, Iterator values):

int numDocs = 0;
*'s and docids

foreach v 1n wvalues:

1f (v==%*)
numbDocs++;

else 1f (numDocs>1)
Fmit (d, key) ;

Assumption: the
values are sorted in

a particular order
(* first).

document’s category with min freq. 2

Example: list documents and their
categories occurring 2+ times

m document content
map (String key, String wvalue) :

foreach category ¢ 1n value:

EFmitIntermediate (c, key) ; we can emit more
EmitIntermediate (c, *) ; than 1 key/value pair

reduce (String key, Iterator values):
List list = copyFromIterator (values)

int numbDocs = 0; What if there are 100GB of
We assume no foreach 1 in 1list: values for key? Do they fit
sorting of values. if (1==%) into memory?
numDocs ++;

1f (numDocs<2)
return;
foreach 1 in list:

Emit (d, key)
40

Example: a simple inverted
iIndex

pp

D1 the dog walks around cat:Cl,C2 yasmssstbtesse
: o - R ma ma
D2 walking my dog cat:Cl,C3 st - P P
D3 running away cat:Cl1,C4,C5 (the,D1), (dog,D1), (running,D3), (away,D3)
i (walks,D1l), (around,D1) (around,D4), (the,D4), (dog,D4)

o= (walking,D2), (my,D2), (dog,D2)
D4 around the dog cat:C2,C6

Hadoop: shuffle & sort (aggregate values by keys)

(the,D1l), (dog,D1), (around,D1),
(the,D4) (dog,D4) (around,D4)

D1 D2 D3 D4

the 1 0 0 1 D1 D4
dog 1 1 0 1 gi b2 D4
walks 10 0 0 D1 D4 (the,D1), (dog,D1), (around,D1),
arOL!nd 10 0 1 D2 (the,D4) (dog,D4) (around,D4)
walkking 0 1 0 O D2
my 0 1 0 O D2
running 0 0 1 O D3
away O 0 1 O D3

41

Example: a simple inverted
iIndex

document content

map (String key, String value) :
foreach term t 1n value:
EmitIntermediate (t, key) ;

reduce (String key, Iterator values)
foreach docid d in wvalues:
Emit (key,d); all documents

with term ‘key’

Not much to be done

In the reducer.
(“ldentityReducer”)

42

Example: ing

the dog walks around

walking my dog DRl 4

running away (D3, run|away) (D1,the|dog|walk|around)
g (D4,around|the|dog) (D2,walk|my|dog)

around the dog

Not needed.

A reducer is not always necessary. A mapper is always required.

Partitioner

Ihere I1s more: the partitioner

* Responsible for the
and assigning intermediate key/value pairs to
reducers

* Within each , kKeys are processed in sorted
order (i.e. several keys can be assigned to a reducer)

e All values associated with a are
processed in a call

» Default key-to-reducer assignment:
hash(key) modulus num reducers

45

summary

« MapReduce vs. Hadoop
 MapReduce vs. RDBMS/HPC
* Problem transformation into MapReduce programs

e Partitioner

46

Recommended reading

O'REILLY"

Chapter 1, 2 and 3.

A warning: coding takes time.

MapReduce is not difficult to

understand, but different templates,
different advice on different sites

(of widely different quality) can make
progress slow.

The Definitive Guide

STORAGE AND ANALYSIS AT INTERNET SCALE

Tom White

47

TRE END

