
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Pig
Ctd. Pig

Map
ReduceStreams

HDFS

Intro Streams

Hadoop
Ctd.

Design
Patterns

Spark
Ctd.

Graphs Giraph SparkZoo
Keeper

3

• Implement Pig scripts that make use of complex
data types and advanced Pig operators

• Implement simple UDFs and deploy them

• Use and explain Pig’s different join
implementations

• Exploit capabilities of Pig’s preprocessor

Learning objectives

Complex schemas

4

Recall: Schemas
• Remember: pigs eat anything

• Runtime declaration of schemas

• Available schemas used for error-checking and
optimization

5

[cloudera@localhost ~]$ pig –x local
grunt> records = load ‘table1’ as (name:chararray,

 syear:chararray, grade:float);

grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}

John 2002 8.0
Mary 2010 7.5 
Martin 2011 7.0
Sue 2011 3.0

More about bags
• Bags are used to store collections when grouping

• Bags can become quite large

• Bags can be spilled to disk

• Size of a bag is limited to the amount of local disk
space

• Only data type that does not need to fit into
memory

6

Complex data types in
schema definitions

7

1:Jorge Posada Yankees {(Catcher),(Designated_hitter)} [games#1594,hit_by_pitch#65,grand_slams#7]
2:Landon Powell Oakland {(Catcher),(First_baseman)} [on_base_percentage#0.297,games#26,home_runs#7]
3:Martin Prado Atlanta {(Second_baseman),(Infielder),(Left_fielder)} [games#258,hit_by_pitch#3]

File: baseball (tab delimited)

bag of tuples, one field each map with chararray key

[cloudera@localhost ~]$ pig –x local
grunt> player = load ‘baseball’ as

(name:chararray, team:chararray,
 pos:bag{(p:chararray)}, bat:map[]);

grunt> describe player;

player: {name: chararray,team: chararray,
pos: {(p:chararray)},bat: map[]}

Bags & tuples are part of the file format!
Data source: https://github.com/alanfgates/programmingpig

https://github.com/alanfgates/programmingpig

Casts
• Explicit casting is possible

• Pig’s implicit casts are always widening
• int*float becomes (float)int*float

• Casting between scalar types is allowed; not allowed
from/to complex types

• Casts from bytearrays are allowed, but not easy:  
int from ASCII string, hex value, etc.?

8

grunt> records = load ‘table5’ as (name, year,
grade1, grade2);

grunt> filtered = FILTER records BY (int)grade2>grade1;
grunt> dump filtered;

User defined functions
(UDF)

9

Three types of UDFs
• Evaluation functions: operate on single elements of

data or collections of data

• Filter functions: can be used within FILTER statements

• Load functions: provide custom input formats

• Pig locates a UDF by looking for a Java class that
exactly matches the UDF name in the script

• One UDF instance will be constructed and run in each
map or reduce task

10similar instructions hold for the other supported languages

UDFs step-by-step
• Example: filter the student records by grade

• Steps:
1. Write a Java class that extends

org.apache.pig.FilterFunc, e.g. GoodStudent
2. Package it into a JAR file, e.g. bdp.jar
3. Register the JAR with Pig (in distributed mode, Pig

automatically uploads the JAR to the cluster)

11

grunt> filtered_records = FILTER records BY grade>7.5;
grunt> dump filtered_records;
(bob,1st_year,8.5)
…

grunt> REGISTER bdp.jar;
grunt> filtered_records = FILTER records
 BY bdp.GoodStudent(grade);
grunt> dump filtered_records;

import pdb;
import java.io.exception;
import org.apache.pig.backend.executionengine.execexception
import org.apache.pig.data.tuple;
import org.apache.pig.filterfunc;

public class GoodStudent extends FilterFunc {
@Override
public boolean exec(Tuple tuple) throws IOException {

if(tuple==null || tuple.size()==0)
return false;

try {
Object o = tuple.get(0);
float f = (Float)o;
if(f>7.5)

return true;
return false;

}
catch(ExecException e){

throw new IOException(e);
}

}
}

UDF: FilterFunc

12

import pdb;
import java.io.exception;
import org.apache.pig.backend.executionengine.execexception
import org.apache.pig.data.tuple;
import org.apache.pig.filterfunc;

public class GoodStudent extends FilterFunc {
@Override
public boolean exec(Tuple tuple) throws IOException {

if(tuple==null || tuple.size()==0)
return false;

try {
Object o = tuple.get(0);
float f = (Float)o;
if(f>7.5)

return true;
return false;

}
catch(ExecException e){

throw new IOException(e);
}

}
}

UDF: FilterFunc

13

Use annotations if
possible (they make
debugging easier)

UDF: FilterFunc

14

Type definitions are not always optional anymore

grunt> records = load ‘table’ as (name,year,grade);
grunt> filtered_records = FILTER records

BY bdp.GoodStu(grade);
grunt> dump filtered_records;
java.lang.Exception: java.lang.ClassCastException:
Org.apache.pig.data.DataByteArray cannot be cast
to java.lang.Float

UDF: EvalFunc

15

public class Trim extends EvalFunc<String> {
 @Override
 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;

 try {
 Object object = input.get(0);
 if (object == null)
 return null;
 return ((String) object).trim();
 }
 catch (ExecException e) {
 throw new IOException(e);
 }
 }
 @Override
 public List<FuncSpec> getArgToFuncMapping()
 throws FrontendException {

//returns null, if the input is not
 //of DataType.CHARARRAY
 }
}

type of return value

UDF: EvalFunc

16

public class Trim extends EvalFunc<String> {
 @Override
 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;

 try {
 Object object = input.get(0);
 if (object == null)
 return null;
 return ((String) object).trim();
 }
 catch (ExecException e) {
 throw new IOException(e);
 }
 }
 @Override
 public List<FuncSpec> getArgToFuncMapping()
 throws FrontendException {

//returns null, if the input is not
 //of DataType.CHARARRAY
 }
}

type of return value

grunt> fruit = load ‘fruit’;
grunt> dump fruit;
(apple)
(banana)
(pear)
grunt> REGISTER bdp.jar;
grunt> fruit_trimmed = foreach fruit
generate bdp.Trim($0);
grunt> dump fruit_trimmed;
(apple)
(banana)
(pear)

Not everything is
straight-forward

Counting lines in Pig

18

bob 1st_year 8.5
jim 2nd_year 7.0
tom 3rd_year 5.5
andy 2nd_year 6.0
bob2 1st_year 7.5
jane 1st_year 9.5
mary 3rd_year 9.5

1. Loading the data from file

2. Grouping all rows together into a single group

3. Counting the number of elements in each group  
 (there is only one, the output will be the #lines in  
 the file)

Doesn’t Pig have a COUNT function?

Counting lines in Pig

19

bob 1st_year 8.5
jim 2nd_year 7.0
tom 3rd_year 5.5
andy 2nd_year 6.0
bob2 1st_year 7.5
jane 1st_year 9.5
mary 3rd_year 9.5

[cloudera@localhost ~]$ pig –x local

grunt> records = load ‘table1’ as (name,year,grade);
grunt> describe records;

records: {name: bytearray,year: bytearray,grade: bytearray}

grunt> A = group records all;
grunt> describe A;

A: {group: chararray, records: {(name: bytearray,year:
bytearray,grade: bytearray)}}

grunt> dump A;

(all, {(bob,1st_year,8.5),(jim,2nd_year,7.0),…(mary,3rd_year,
9.5)})
grunt> B = foreach A generate COUNT(records);
grunt> dump B;
(7)

keyword!

foreach: Extracting data
from complex types

20

Uni Faculty Male Female
TUD EWI 200 123
UT EWI 235 54
UT BS 45 76
UvA EWI 123 324
UvA SMG 23 98
TUD AE 98 12

Doesn’t Pig have a SUM function?

• Remember: numeric operators are not defined for
arbitrary bags

• Example: sum up the total number of students at
each university

foreach: Extracting data
from complex types

21

Uni Faculty Male Female
TUD EWI 200 123
UT EWI 235 54
UT BS 45 76
UvA EWI 123 324
UvA SMG 23 98
TUD AE 98 12

grunt> A = load ‘data’ as (x:chararray, d, y:int, z:int);
grunt> B = group A by x; --produces bag A containing all vals for x

grunt> C = foreach B generate group, SUM(A.y + A.z);
ERROR!
grunt> A1 = foreach A generate x, y+z as yz;
grunt> B = group A1 by x;
—B: {group: chararray,A1: {(x: chararray,yz: int)}}
grunt> C = foreach B generate group,SUM(A1.yz);
(UT,410)
(TUD,541)
(UvA,568)

A.y, A.z are bags

• Remember: numeric operators are not defined for
arbitrary bags

• Example: sum up the total number of students at
each university

More Pig Latin
operators

• Removing levels of nesting

• Example: input data has bags to ensure one entry
per row

• Data pipeline might require the form

23

foreach flatten

1:Jorge Posada Yankees {(Catcher),(Designated_hitter)} [games#1594,hit_by_pitch#65,grand_slams#7]
2:Landon Powell Oakland {(Catcher),(First_baseman)} [on_base_percentage#0.297,games#26,home_runs#7]
3:Martin Prado Atlanta {(Second_baseman),(Infielder),(Left_fielder)} [games#258,hit_by_pitch#3]

Catcher Jorge Posada
Designated_hitter Jorge Posada
Catcher Landon Powell
First_baseman Landon Powell
Second_baseman Martin Prado
Infielder Martin Prado
Left_field Martin Prado

foreach flatten
• flatten modifier in foreach

• Produces a cross product of every record in the
bag with all other expressions in the generate
statement

24

grunt> bb = load ‘baseball’ as (name:chararray, team:chararray,  
 position:bag{t:(p:chararray)});
grunt> pos = foreach bb generate flatten(position) as position, name;
grunt> grouped = group pos by position;

Jorge Posada,Yankees,{(Catcher),(Designated_hitter)}

Jorge Posada,Catcher
Jorge Posada,Designated_hitter

• Flatten can also be applied to tuples

• Elevates each field in the tuple to a top-level field

• Empty tuples/empty bags will remove the entire
record

• Names in bags and tuples are carried over after
the flattening

25

foreach flatten

• foreach can apply a set of relational operations to
each record in a pipeline

• Also called “inner foreach”

• Example: finding the number of unique stock
symbols
grunt> daily = load ‘NYSE_daily’ as  
 (exchange,symbol);
grunt> grpd = group daily by exchange;
grunt> uniqct = foreach grpd {

sym = daily.symbol;
uniq_sym = distinct sym;
generate group, COUNT(uniq_sym);

};
—(NYSE,237) 26

nested foreach

Only valid inside  
foreach: take an  
expression and  
create a relation

indicates nesting

Last line must generate!

each record
passed is  
treated
one at a time

Inside foreach only some relational
operators are (currently) supported:
distinct, filter, limit, order

NYSE CLI 2009-12-31 35.39 35.70 34.50 34.57 890100 34.12
NYSE CLI 2009-12-30 35.22 35.46 34.96 35.40 516900 34.94
NYSE CPE 2009-02-18 1.75 1.80 1.56 1.56 452200 1.56
NYSE CPE 2009-02-17 1.91 1.95 1.75 1.75 361300 1.75
NYSE CLB 2009-04-07 75.17 75.92 73.75 75.52 339600 74.55
NYSE CVA 2009-01-12 20.46 20.88 19.91 20.24 700800 20.24

nested foreach
• Example: sorting a bag before it is passed on to a

UDF that requires sorted input (by timestamp, by
value, etc.)

27

grunt> register 'acme.jar';
grunt> define analyze com.acme.financial.AnalyzeStock();
grunt> daily = load 'NYSE_daily' as (exchange:chararray,

 symbol:chararray, date:chararray,
 open:float, high:float, low:float  

 close:float, volume:int, adj_close:float);
grunt> grpd = group daily by symbol;
grunt> analy= foreach grpd {
 sorted = order daily by date;
 generate group, analyze(sorted);
 };
grunt> dump analy;

NYSE CLI 2009-12-31 35.39 35.70 34.50 34.57 890100 34.12
NYSE CLI 2009-12-30 35.22 35.46 34.96 35.40 516900 34.94
NYSE CPE 2009-02-18 1.75 1.80 1.56 1.56 452200 1.56
NYSE CPE 2009-02-17 1.91 1.95 1.75 1.75 361300 1.75
NYSE CLB 2009-04-07 75.17 75.92 73.75 75.52 339600 74.55
NYSE CVA 2009-01-12 20.46 20.88 19.91 20.24 700800 20.24

nested foreach

Example: finding the top-k elements in a group

28

grunt> divs = load 'NYSE_dividends' as  
 (exchange:chararray,  
 symbol:chararray,  
 date:chararray, dividends:float);
grunt> grpd = group divs by symbol;
grunt> top3 = foreach grpd {
 sorted = order divs by dividends desc;
 top = limit sorted 3;
 generate group, flatten(top);
 };
grunt> dump top3;

NYSE CLI 2009-12-31 35.39 35.70 34.50 34.57 890100 34.12
NYSE CLI 2009-12-30 35.22 35.46 34.96 35.40 516900 34.94
NYSE CPE 2009-02-18 1.75 1.80 1.56 1.56 452200 1.56
NYSE CPE 2009-02-17 1.91 1.95 1.75 1.75 361300 1.75
NYSE CLB 2009-04-07 75.17 75.92 73.75 75.52 339600 74.55
NYSE CVA 2009-01-12 20.46 20.88 19.91 20.24 700800 20.24

parallel
• Reducer-side parallellism can be controlled

• Can be attached to any relational operator

• Only makes sense for operators forcing a reduce
phase:
• group, join, cogroup [most versions]
• order, distinct, limit, cross

grunt> A = load ‘tmp’ as (x:chararray, d, y:int, z:int);
grunt> A1 = foreach A generate x, y+z as yz;
grunt> B = group A1 by x parallel 10;
grunt> averages = foreach B generate group, AVG(A1.yz) as avg;
grunt> sorted = order averages by avg desc parallel 2;

Without parallel:
Pig uses a heuristic: one reducer for
every GB of input data.

partition
• Pig uses Hadoop’s default Partitioner, except for

order and skew join

• A custom partitioner can be set via partition

• Operators that have a reduce phase can take the
partition clause
grunt> register acme.jar; --contains partitioner
grunt> users = load ‘users’ as (id, age, zip);
grunt> grp = group users by id partition by  
 com.acme.cpartion parallel 100;

union
• Concatenation of two data sets

• Not a mathematical union, duplicates remain

• Does not require a reduce phase

31

A 2
B 3
C 4
D 5

A 2
B 22
C 33
D 44

grunt> data1 = load ‘file1’ as (id:chararray, val:int)
grunt> data2 = load ‘file2’ as (id:chararray, val:int)
grunt> C = union data1, data2;
(A,2)
(B,22)
(C,33)
(D,44)
(A,2)
(B,3)
(C,4)
(D,5)

file 1 file 2

union
Also works if the schemas differ in the inputs  
(unlike SQL unions)

32

A 2
B 3
C 4
D 5

A 2 John
B 22 Mary
C 33 Cindy
D 44 Bob

grunt> data1 = load ‘file1’ as (id:chararray, val:float)
grunt> data2 = load ‘file2’ as (id:chararray, val:int,  
 name:chararray)
grunt> C = union data1, data2; dump C;
(A,2,John)
(B,22,Mary)
(C,33,Cindy)
(D,44,Bob)
(A,2.0)
(B,3.0)
(C,4.0)
(D,5.0)
grunt> describe C;
Schema for C unknown.
grunt> D = union onschema data1, data2;  
grunt> dump D; describe D;
D: {id: chararray, val: float,name: chararray}

inputs must have schemas

shared schema: generated
by adding fields and casts

file 1 file 2

(A,2.0,John)
(B,22.0,Mary)
(C,33.0,Cindy)
(D,44.0,Bob)
(A,2.0,)
(B,3.0,)
(C,4.0,)
(D,5.0,)

cross
• Takes two inputs and crosses each record with

each other:

• Crosses are expensive (internally implemented as
joins), a lot of data is send over the network

• Necessary for advanced joins, e.g. approximate
matching (fuzzy joins): first cross, then filter

33

grunt> C = cross data1, data2;
(A,2,A,11)
(A,2,B,22)
(A,2,C,33)
(A,2,D,44)
(B,3,A,11)
…

A 2
B 3
C 4
D 5

A 11
B 22
C 33
D 44

file 1 file 2

mapreduce
• Pig: makes many operations simple

• Hadoop job: higher level of customization, legacy code

• Best of both worlds: combine the two!

• MapReduce job expects HDFS input/output; Pig stores
the data, invokes job, reads the data back

34

grunt> crawl = load ‘webcrawl’ as (url,pageid);
grunt> normalized = foreach crawl generate  
 normalize(url);
grunt> mapreduce ‘blacklistchecker.jar’

store normalized into ‘input’
load ‘output’ as (url,pageid)
`com.name.BlacklistChecker –I input –o output`;

Hadoop job parameters

illustrate
• Creating a sample data set from the complete one

• Concise: small enough to be understandable to
the developer

• Complete: rich enough to cover all (or at least
most) cases

• Used to review how data is transformed through a
sequence of Pig Latin statements

• Output is easy to follow, allows programmers to
gain insights into what the query is doing

35
grunt> illustrate path;

explain
• Displays execution plans
• Logical plan: shows a pipeline of operators to be

executed to build the relation.
• Physical plan: shows how the logical operators are

translated to backend-specific physical operators
• Mapreduce plan: shows how the physical

operators are grouped into map reduce jobs.

36

grunt> explain path;

explain

Slide reproduced from “Pig Optimization and Execution” by Alan F. Gates
https://www.cs.duke.edu/courses/fall11/cps216/Lectures/gates.pdf

Load

Group

Filter

Foreach

Store

Logical Plan

Load

Group

Filter

Foreach

Store

rule-based
optimization

Map

Reduce

Filter

Rearrange

Package

Foreach

MapReduce Plan

joins

join implementations
• Pig’s join starts up Pig’s default implementation of join

• Different implementations of join are available,
exploiting knowledge about the data

• In RDBMS systems, the SQL optimiser chooses the
“right” join implementation automatically

• In Pig, the user is expected to make the choice  
(knows best how the data looks like)

• Keyword using to pick the implementation of choice

39

join implementations
small to large
• Scenario: lookup in a smaller input, e.g. translate

postcode to place name (Germany has >80M people, but
only ~30,000 postcodes)

• Small data set fits into memory,  
i.e. reduce phase is unnecessary

• More efficient to send the smaller data set to every data
node, load it to memory and join by streaming the large
data set through the Mapper

• Called fragment-replicate join in Pig, keyword
replicated (large relation followed by small relation(s))

40
grunt> jnd = join X1 by (y1,z1), X2 by (y2,z2) using ‘replicated’

replicated can be used with
more than two tables.
The first is used as input to the
Mapper, the rest is in memory.

join implementations
skewed data
• Skew in the number of records per key  

(e.g. words in a text, links on the Web)

• Default join implementation is sensitive to skew, all records with the
same key sent to the same reducer

• Pig’s solution: skew join
1. Input for the join is sampled
2. Keys are identified with too many records attached
3. Join happens in a second Hadoop job

1. Standard join for all “normal” keys (a single key to one 
 reducer)

2. Skewed keys distributed over reducers

41

join implementations
skewed data

• Example scenario:
• A data set contains

• 20 users from Delft,
• 100,000 users from New York, and,
• 350 users from Amsterdam.

• A reducer can deal with 75,000 records in memory.

• Outcome: user records with key ‘New York’ are split across 2 reducers.
Records from city_info with key New York are duplicated and sent to
both reducers.

42

--users(name,city)
--city_info(city,population)
grunt> jnd = join city_info by city,  
 users by city using ‘skewed’

join implementations
skewed data
• In general:

• Pig samples from the second input to the join and
splits records with the same key if necessary

• The first input has records with those values
replicated across reducers

• Implementation optimised for one of the inputs being
skewed

• Skew join can only take two inputs; multiway joins need
to be broken up

43

Same caveat as order by: breaking
Hadoop guarantee of one key = one reducer.
Consequence: same key distributed
across different part-r-** files.

join implementations
sorted data
• Sort-merge join: first sort both inputs and then

walk through both inputs together
• Not faster in MapReduce than default join, as a

sort requires one MapReduce job (as does the
join)

• Pig’s merge join can be used if both inputs are
already sorted on the join key
• No reduce phase required
• Keyword is merge

44
grunt> jnd = join sorted_X1 by y1, sorted_X2 by y2 using ‘merge’

join implementations
sorted data
• But: files are split into blocks, distributed in the cluster

• First MapReduce job to sample from sorted_X2: job builds
an index of input split and the value of its first (sorted) record

• Second MapReduce job reads over sorted_X1: the first
record of the input split is looked up in the index built in step
(1) and sorted_X2 is opened at the right block

• No further lookups in the index, both “record pointers” are
advanced alternatively

45

grunt> jnd = join sorted_X1 by y1, sorted_X2 by y2 using ‘merge’

THE END

