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Retrieval models II 
IN4325 – Information Retrieval 
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Assignment 1 

• Deadline Wednesday means as long as it is Wednesday you are 
still on time 
•  In practice, any time before I make it to the office on Thursday 

(~8am) is okay 

• Amazon #instances still limited, please keep to 2-3 instances 
per run with m1.xlarge  
•  15GB memory, 8 EC2 compute units  the same as 8x m1.small 
•  Between 2-6 jobs ran yesterday at any time 

• Hadoop is difficult to learn, but well worth it   
LinkedIn: do a job search on „Hadoop“ or „Big data“ 
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Assignment I 

public class CategoryPerPageMapper extends Mapper<Object, Text, Text, Text> 
{ 

 public void map(Object key, Text value, Context context) throws Exception 
 { 

 SAXBuilder builder = new SAXBuilder(); 
 Pattern catPattern = Pattern.compile("\\[\\[[cC]ategory:.*?]]"); 
 Text emptyText = new Text(""); 

 
  try 
  { 
   String xml = value.toString(); 

           Reader in = new StringReader(xml); 
           String content =""; 
           Text title = new Text(); 
           Document doc = builder.build(in); 

   … 
  } 
  … 
 } 

} 
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Assignment I 

public class CategoryPerPageMapper extends Mapper<Object, Text, Text, Text> 
{ 

 SAXBuilder builder = new SAXBuilder(); 
 Pattern catPattern = Pattern.compile("\\[\\[[cC]ategory:.*?]]"); 
 Text emptyText = new Text(""); 

 
 public void map(Object key, Text value, Context context) throws Exception 
 { 
  try 
  { 
   String xml = value.toString(); 

           Reader in = new StringReader(xml); 
           String content =""; 
           Text title = new Text(); 
           Document doc = builder.build(in); 

   … 
  } 
  … 
 } 

} 
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Assignment I 

• Data-Intensive Text Processing with MapReduce by Jimmy 
Lin et al 
•  Highly recommended reading! 
•  ~170 pages full of useful knowledge 
•  A lot of information about design patterns in MapReduce 
•  No cookbook (no source code) 
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Last time 

• Term weighting strategies 

• Vector space model 

•  Pivoted document length normalization 
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Today 

• A look at relevance feedback 

• The cluster hypothesis 

• A first look at probabilistic models 
•  Language modeling! 
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Vector space model 

• A classic information retrieval model 
• Corpus: a set of vectors in a vector space with one dimension 

for each term 
•  S(Q,D): cosine similarity between query and document vector 

D1 = {cat,eats}
D2 = {dog}
D3 = {dog,eats,cat}
D4 = {cat,cat} 0
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A vector space model for automatic indexing.  
A classic paper by G. Salton et al. from 1975. 

tf ! idft ,D = tft ,D " idftIn one slide 

cos!retrieval by 
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The problem of synonymy 

•  Synonymy: different terms with the same meaning 

WordNet 3.1 
http://wordnet.princeton.edu/ 

synset 

Users try to combat these 
situations by adding terms 
they see in the retrieved 
documents to the query 
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Automatic query reformulation 
independent of the user/results 

• Query expansion: additional query terms derived from a 
thesaurus or WordNet 

  “King 1968”  (King 1968), (Martin Luther King),  
   (Martin Luther King jr.) 

 
• Query expansion through automatic thesaurus generation 
 
• Query reformulation by spelling correction 

  “Martin Luter King”  Martin Luther King 
 

Word sense 
disambiguation 
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Automatic query reformulation wrt. the 
user/results 

• Given an initial set of results, relevance feedback can be 
•  Obtained explicitly/interactively (ask the user!) 

•  +/- voting on the top results 
 

•  Inferred (observe the user!) 
•  How long does the user spend on viewing document X? 

•  What is his eye movement on the result page? 

•  Assumed (observe the top results!) 
•  Also called blind feedback, pseudo-relevance feedback 
•  The system takes the top returned results and assumes all of them 

to be relevant 
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Basic relevance feedback loop 

query retrieval 
engine results 

user 

feedback 

top-retrieved results 
iterative 
refinement 

Idea: users do not know the corpus (difficult to come up with all 
possible query reformulations), easy though for the user 
to decide if a given document is relevant 

evolving information 
needs served 

+- 
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Rocchio algorithm 

•  Incorporates relevance feedback into the vector space model 

relevant vs. 
non-relevant 

Optimal query 

An algorithm to take advantage of relevance feedback 

query space 
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Rocchio algorithm 

• Goal: query vector with max. similarity to the relevant 
documents and min. similarity to the non-relevant documents 

• Cosine similarity based: 

Theory 

 

!q = argmax
!q

[sim(!q,Cr )! sim(
!q,Cnrr )]

cosθ 

 

!q = 1
Cr

!
dj!

d j!Cr
" # 1

Cnr

!
dj!

d j!Cnr
" Optimal query is the 

vector difference 
between centroids 
of the relevant and 
non-relevant documents 



15 Claudia Hauff, 2012 

Rocchio algorithm 

• Given: a query and some knowledge about relevant/non-
relevant documents 

• Model parameters:  

 

!qm =!q0 + "
1
Dr

!
dj!

d j#Dr
$ %& 1

Dnr

!
dj!

d j#Dnr
$

original query known (non-)relevant documents 

Developed 1971 

! , ", #
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Rocchio algorithm 

• Given: a query and some knowledge about relevant/non-
relevant documents 

• Q: should the weights change over time? 

 

!qm =!q0 + "
1
Dr

!
dj!

d j#Dr
$ %& 1

Dnr

!
dj!

d j#Dnr
$

•  Higher alpha: large influence of original query 
•  Higher beta: large influence of the rel docs 
•  Higher gamma: go away from non-rel docs 

Q: what are good weights 
for “Find similar pages”? 

X terms are added to  
the expanded query 
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Rocchio algorithm 

relevant vs. 
non-relevant 

Initial query q0 

Graphically 

revised query qm Use revised query for retrieval 

Due to the subtraction 
we may end up with 
negative term weights; 
ignore those. 
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Effects of relevance feedback 

•  Improves precision and recall 

• Most important for recall 
•  Positive feedback more valuable than negative 

feedback (why?) 
•  γ<β 
•  Common values:  
•  Often only positive feedback: γ=0 

! = 1.0, " = 0.75, # = 0.15

recall = # rel. retrieved
# relevant!corpus

0.3 
0.6 

S4 S5 

0.4 
0.8 

P@10 
R=5, Recall 

precision = # rel. retrieved
# retrieved
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Rocchio algorithm 

• What influence does Rocchio have on the effectiveness of a 
system? 

• TREC routing task evaluation 
•  One long standing information need and new documents appear 

continuously, hundreds of positive qrels 
•  Query is updated depending on user feedback 

•  Effects studied of the #known relevant documents and 
#terms added to the query 
•  the more known relevant documents the better 
•  the more terms added to the query the better 

Empirical evaluation: Buckley et al. 1994 [7] 
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Relevance feedback 

•  If the initial query performs poorly, an expanded version is 
likely to perform poorly too, even with relevance feedback 
•  Misspellings 
•  Cross-language retrieval (document vectors in other languages 

are not nearby) 
•  Total mismatch of searcher’s vocabulary and collection 

vocabulary 

• Relevance feedback can only work, if the cluster hypothesis 
holds 

Issues 

unclear where 
to move to in 
the query space 
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Cluster hypothesis 

•  “Closely associated documents tend to be relevant to the 
same requests.” 

• Basic assumption of IR systems: relevant documents are 
more similar to each other than they are to non-relevant 
documents 

 

Keith van Rijsbergen [2] 

relevant 
docs (R) 

non-relevant 
docs (NR) 

… association between all 
document pairs (R-R), (R-NR) 
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Cluster hypothesis 

•  Plot the relative frequency against the strength of association 
 

Keith van Rijsbergen [2] 

association 

re
l. 

fr
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R-R 

R-NR 

association 
re

l. 
fr

eq
. 

R-R 

R-NR 

good separation 
high R-R association 

poor separation 
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Cluster hypothesis 

• Clustering methods should 
•  Produce a stable clustering: no sudden changes when 

items are added 
•  Be tolerant to errors: small errors should lead to small 

changes in clustering 
•  Be independent of the initial item ordering 

• Clustering fails 
•  Subsets of documents have very different important terms 

(Burma vs. Myanmar, TREC vs. CLEF) 
•  Queries that are inherently disjunctive (there is no 

document that contains all terms) 
•  Polysemy 

 

Keith van Rijsbergen [2] 

semantic approach: 
link both terms to the 
same concept in 
Wikipedia 
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Relevance feedback & users 

• Not popular with users (4% on Excite search engine, 2000) 
•  Explicit feedback is difficut to get (makes interaction with the 

search interface cumbersome) 
•  Users get annoyed if after a feedback round the results do not 

(seemingly) get better 

•  Efficiency issues 
•  The longer the query, the longer it takes to process it 
•  Use top weighted query terms only, though according to Buckley 

[7], the more terms the better 
•  Up to 4000 terms per query 
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Pseudo-relevance feedback 

• Blind relevance feedback 
• No user 

•  Proxy for relevance judgments: assume top k documents to 
be relevant, same computation otherwise 

• Works well in situations where many relevant documents 
appear in the top-k 
•  If the query performs well, pseudo-relevance feedback improves 

it further 
•  If the initial results are poor, they remain poor 



26 Claudia Hauff, 2012 

Query expansion 

• Users explicitly provide extra terms 
(instead of feedback on documents) 

 
 
 

• Thesaurus-based expansion for the user  
•  No user input 
•  E.g. PubMed automatically expands the 

query 
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Query expansion 

• Thesauri 
•  Can be built manually (time, money, people) 
•  Can be built automatically (co-occurrence statistics, large-scale 

corpora, processing power) 

• Query reformulations based on log data 
•  Exploits ‘manual’ data (*your* reformulation ideas) 
•  What about long-tail queries? 

 



28 Claudia Hauff, 2012 

Hearst patterns 

• Use simple patterns to decide on taxonomic relations 

 

Hearst [8] 

IS-A relations 

Pluto must be a planet! 

pluto 

asteroid 

planetoid 

celestial 
body 

natural 
object 
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Hearst patterns 

•  NP0 such as {NP1,NP2,…, (and|or)} NPn 
•  “American cars such as “  Chevrolet, Pontiac 

•  Such NP as {NP, }* {(or|and)} NP 
•  “such colors as red or orange” 

•  NP {, NP}* {,} or other NP 
•  NP {, NP}* {,} and other NP 
•  NP {,} including {NP,}* {or|and} NP 
•  NP {,} especially {NP,}* {or|and} NP 
 
• Bootstrapping the discovery of new patterns 

1.  Use standard patterns to find entity pairs 
2.  Where else do these pairs co-occur and with what terms? 

Hearst [8] 
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A new type of retrieval models 
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Probabilistic models 

• Binary independence model 

•  2-Poisson model 

•  Language modeling * 

• … 
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Basic probabilities 

P(B) = P(A,B)+ P(A,B)

P(A | B) = P(B | A)! P(A)
P(B)

P(A,B) = P(A | B)P(B) = P(B | A)P(A)

partition rule 

Bayes’ Theorem 

chain rule 
joint probability cond. probability 
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Probabilistic models in IR 

Information 
need 

query query 
representation 

documents document 
representation 

matching 

uncertain understanding  
of information need 

uncertain guess  
of relevance 

P(D |Q) = P(Q |D)! P(D)
P(Q)

central equation to 
language modeling 
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Probabilistic models in IR 

•  Probability models have a sounder theoretical foundation 
(reasoning under uncertainty) than boolean or vector space 
models 
•  And they usually perform better 

• Documents are ranked according to their probability 
of being relevant, they are ranked accoring to P(D|Q) 

• Many models exist 

• We start with language modeling 
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Language modeling 

•  Idea: rank the documents by the likelihood of the query 
according to the language  model 

 

Pontus Wernbloom's last-minute volley earned a draw to 
keep CSKA Moscow in the hunt in their last-16 Champions 
League match against Real Madrid. 
Real had looked set to return to Spain with a lead at the 
tie's halfway stage, but paid for their wastefulness. 
Cristiano Ronaldo fired under Sergei Chepchugov to open 
the scoring but fluffed a fine 84th-minute chance. 
CSKA had rarely threatened but Wernbloom crashed home 
with virtually the game's final kick to snatch a draw.  

Greece has avoided a nightmare scenario by agreeing to a 
130bn euros (£110bn; $170bn) bailout deal, Finance 
Minister Evangelos Venizelos has said. 
He said the deal was probably the most important in 
Greece's post-war history. The cabinet was meeting to 
discuss how to pass the reforms stipulated by international 
lenders, which include huge spending cuts and beefed-up 
monitoring by eurozone officials. Trade unions have called 
strikes and protests for Wednesday. 

“CSKA” 

If we throw all terms into a bag and 
randomly draw terms, for which 
document is the probability greater of 
drawing CSKA? 

Ponte & Croft, 1998. 
P(D |Q) = P(Q |D)! P(D)

P(Q)
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Language modeling 

• Query Q is “generated” by a probabilistic model based on 
document D 

Pontus Wernbloom's last-minute volley earned a draw to 
keep CSKA Moscow in the hunt in their last-16 Champions 
League match against Real Madrid. 
Real had looked set to return to Spain with a lead at the 
tie's halfway stage, but paid for their wastefulness. 
Cristiano Ronaldo fired under Sergei Chepchugov to open 
the scoring but fluffed a fine 84th-minute chance. 
CSKA had rarely threatened but Wernbloom crashed home 
with virtually the game's final kick to snatch a draw.  

to !0.0617!
the !0.0493!
a !0.0493!
s !0.0370!
but !0.0370!
in !0.0246!
their !0.0246!
with !0.0246!
wernbloom 0.0246!
real !0.0246!
had !0.0246!
draw !0.0246!
cska !0.0246!
…!
moscow !0.0123 

Maximum likelihood estimate 

P(D |Q)! P(Q |D)" P(D)

Goal! 
Hard! Relatively easy! Ignore for now! 

prior likelihood posterior 

P(Q)has no use
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Language modeling 

P(D |Q)! P(Q |D)" P(D)

P(Q |D) = P(qi |D)
i
!

Unigram (multinomial) language model: 

Problem reduced to estimating P(qi|D) 

What about the IDF component? (none in LM) 

term frequencies 

Assuming term 
independence 
makes the problem 
more tractable 

uniform 
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Language modeling 

•  Smoothing methods ‘smooth’ the document’s language model 
(maximum likelihood prob. distribution) to avoid terms with 
zero probability 

Smoothing 

P(Q |D) = P(qi |D)
i
!

Q = {CSKA,Moscow,Greece}
P(Q |D) = P(CSKA |D)P(Moscow |D)P(Greece |D)
P(Q |D) = 0.0246 " 0.0123" 0
P(Q |D) = 0
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Language modeling 
Smoothing 
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maximum likelihood
smoothed (JM)

Non-zero probability 

Smoothing removes 
Some prob. Mass 

From the original ML 
Distribution and gives 
It to the ‘zero’ terms 
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Language modeling 

•  Smoothing methods consider 2 distributions 
•  Model Pseen(t|D) for terms occurring in the document 
•  Model Punseen(t|D) for “unseen” terms not in the document 

Smoothing 

logP(Q |D) = logP(qi |D)
i
!

= logPseen (qi |D)+ logPunseen (qi |D)
i:c(qi ;D )=0
!

i:c(qi :D )>0
!

= log Pseen (qi |D)
Punseen (qi |D)

+ logPunseen (qi |D)
i
!

i:c(qi |D )>0
!

c(w;D) count of
word w in D

+
logPunseen (qi |D)

i:c(qi :D )>0
!

logPunseen (qi |D)
i:(qi ;D )>0
!



41 Claudia Hauff, 2012 

Language modeling 

•  Punseen(w) is typically proportional to the general frequency 
of w 

Smoothing 

 Punseen (qi |D) =! dP(qi |!)

document dependent constant collection language model 

 

logP(Q |D) = log Pseen (qi |D)
Punseen (qi |D)

+ logPunseen (qi |D)
i
!

i:c(qi |D )>0
!

= log Pseen (qi |D)
" dP(qi |!)

+ n log" d + logP(qi |!)
i
!

i:c(qi |D )>0
!

(previous slide) 
query length 

doc. independent 

term weight prob. mass to unseen words 
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Language modeling 

• What happens to                if the query term is a stopword? 
•  Similar to IDF 

•             : product of a document dependent constant and the 
query lengh 
•  Longer documents should receive less smoothing (greater 

penalty if a query term is missing) 
•  Similar to document length normalization 

 

 P(qi |!)

Smoothing 

n log! d

 
logP(Q |D)! log Pseen (qi |D)

" dP(qi |!)
+ n log" d

i:c(qi |D )>0
#
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Language modeling 

• How to smooth P(w|D) in practice? 
•  We look at 3 ideas (there are more) 

• General idea: discount probabilities of seen words, assign 
extra probability mass to unseen words with a fallback model 
(the collection language model) 

 
 
 
 
•  Laplace smoothing: simplest approach 

•  Add one count to every word 
 

 

Smoothing 
Pml (w |D) =

c(w;D)
c(w;D)

w
!

 
P(w |D) =

Psmoothed (w |D) if word w is seen
! dP(w |!) otherwise
"
#
$

all probabilities 

must sum to one. 

Plaplace(w |D) =
c(w;D)+1
( c(w;D)+1 )

w
!
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Language modeling 

•  Jelineck-Mercer (JM) smoothing 
•  Linear interpolation between ML and collection LM 

 
 
 
 
 
• Term-dependent Jelineck-Mercer smoothing 
 

 

Smoothing 

 P! (w |D) = (1" !)Pml (w |D)+ !P(w |!), ! #(0,1)

parameter controls amount of smoothing 

 P!w (w |D) = (1" !w )Pml (w |D)+ !wP(w |!) Different terms are 
smoothed to different  
degrees 
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Language modeling 

• Dirichlet smoothing * 

 
The longer the document, the less smoothing is applied 

• Absolute discounting 
 
 
 
 

 

Smoothing 

 

Pµ (w |D) =
c(w;D)+ µP(w |!)

c(w;D)+ µ
w
! , usually µ >100

What is the effect of the 
denominator when |D|=100 
and |D|=1000? 

 

P! (w |D) =
max(c(w;D)"! ,0)

c(w;D)
w
# +$P(w |!), ! %(0,1) and $ = !

|Dunique |
|Dall |

subtract constant from counts 
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Assignment II 

• Retrieval experiments 

•  You will get a number of queries to “run” on the Wikipedia 
corpus (training data) 

•  You have to implement the vector space model + 1 
modification (term normalization, language modeling, your 
own ideas) 
•  I make sure the output format and everything else is clear 

• We will run a benchmark between the groups 
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Sources 

①  Introduction to Information Retrieval. Manning et al. 2008 
②  Information retrieval. Keith van Rijsbergen, 1979. 
③  Managing gigabytes, Witten et al. 1999. 
④  The probability ranking principle in IR, S.E. Robertson, 1977 
⑤  A study of smoothing methods for language models applied 

to ad hoc information retrieval. Zhai & Lafferty. 2001. 
⑥  The importance of prior probabilities for entry page search. 

Kraaij et al. 2002. 
⑦  The effect of adding relevance information in a relevance 

feedback environment. Buckley et al. 1994 
⑧  Automatic acquisition of hyponyms from large text corpora. 

MA Hearst. 1992. 


