
IN4325
Indexing and query processing

Claudia Hauff (WIS, TU Delft)



The big picture



Information need 
Topic the user wants 
to know more about

Query
Translation of need 
into an input for the 
search engine

Relevance
A document is 
relevant if it 
(partially) provides 
answers to the 
information need 

Information need: Looks like I need Eclipse for this job. Where can I 
download the latest beta version for macOS Sierra?

The essence of IR

user  (re)formulate a query eclipse download osx

index
crawling,
indexing

WWW, library 
records, medial 
reports, 
patents, ...

      retrieve results

document ranking

assess relevance
to information need

incomplete,
underspecified
& ambiguous

retrieval engine: 
scoring, ranking 
and presentation

today: indexing



Terminology
Inverted index maps terms back to the part of the 
documents they occur in

Albert 1 1|2|5|8
cell 2 2|3|7
cristo 3 2|6
dantes 4 1|3|5|7
edmond 5 4|5|7|9
imprisoned 6 1|7
prison 7 1|4|7|8

dictionary
(entries sorted 
alphabetically)

postings lists
(postings often 
ordered by docIDs)

docID
(document identifier)
+ other information
= a posting

1) Collect the documents to index

“I am not going there to be 
imprisoned,” said Dantes.

2) Tokenize the content (from string 
to tokens)

“I am not going there to be 
imprisoned,” said Dantes.

3) Normalize the tokens 
(preprocessing), decide on terms

i am not go there to be imprison
said dantes

4) Index the documents

D1

(imprison,D1) pair

What is a document 
unit depends on the 
application.

Often, terms==normalized 
tokens. Not required though.

Relatively easy in English
(majority of docs on the Web).
Less trivial in other languages
or mixed script documents.

termID
(term identifier)

What’s wrong 
with a
file-based
posting list?



Inverted index

The computational 
equivalent of the index 
at the back of most 
textbooks

Basic position 
information and 
pointers

“Inverted”: usually 
words are part of 
documents, now  
documents ‘belong to’
words



Inverted index

Data structures depend on the retrieval models employed.

Indexing as an 
offline process

Wide variety of 
retrieval models
(direct access to 

index data structure)

Retrieval model
required for
index creation
(low level details
remain hidden)

Umbrella term for different data structures



3.4 billion Web pages
270 TB uncompressed 
content
1.1 billion new URLs last month

No queries



WT10g:    1.7 million documents
   GOV2: 25.2 million documents

Academic corpora

flickr@yourcastlesdecor



“
Choosing the optimal encoding for an inverted 
index is an ever-changing game for the system 
builder, because it is strongly dependent on 
underlying computer technologies and their 
relative speed and sizes.

Chris Manning, Introduction to Information Retrieval, Chapter 2 (p. 35)



Hardware constraints to think 
about

- Disks maximize input/output throughput if 
contiguously stored data is accessed

- Memory access is faster than disk access

- Operating systems read/write blocks of fixed 
size from/to disk

- Reading compressed data from disk and 
decompressing it is faster than reading 
uncompressed data from disk



Indexing in five steps

- Types of inverted 
indices

- Compression 
algorithms

- Index construction

- Query processing

- Distributed indexing
flickr@loush



Boolean retrieval: 
appropriate index 

structures



Is this really complicated?

- Searching for the lines in the book Count of Monte 
Christo that contain the terms Dantes AND prison but 
NOT Albert

- Naive solution: 
more infile |grep Dantes|grep prison|grep -v Albert

- Problems:
- Proximity operators not easy to implement, e.g. Dantes within at 

most 3 terms of prison
- Approximate/semantic matches require users to think ahead, e.g. 

(Edmond OR Dantes) AND (prison OR cell OR imprisoned) NOT Albert



Boolean retrieval over posting lists

Dantes AND Albert

dantes
AND

albert

1) Preprocess the query in the same 
manner as the corpus

2) Determine whether both query terms 
exist

3) Locate pointers to the respective 
posting lists

4) Intersect posting lists

1 7 17 18 33 43 60

4 7 54 60 61 82 posting lists

….

….



Posting lists data structures

Index needs to be optimized for:
- Storage and access efficiency

How to implement postings lists?
- Fixed length array: easy, wastes a lot of space

- Singly linked list: cheap insertion

- Variable length arrays
- Require less space than linked lists (no pointers)
- Allow faster access (contiguous memory increases)
- Good if few updates are required

1 3

6

7



Boolean retrieval over posting lists

Skip pointers (created at indexing time)

dantes
AND

albert

List intersection without skip pointers: O(n+m)

1 7 17 18 33 43 60

4 7 54 60 61 82

….

….

list size n

list size m



Boolean retrieval over posting lists

Skip pointers are shortcuts

dantes
AND

albert

List intersection without skip pointers: O(n+m)
List intersection with skip pointers: sublinear

Are skip pointers useful for OR queries?
Is anything stopping us from conducting a binary search?

1 7 17 18 33 43 60

4 7 54 60 61 82

17
43 75

11 82 111



Boolean retrieval over posting lists

Skip pointers

dantes
AND

albert

List intersection without skip pointers: O(n+m)
List intersection with skip pointers: sub-linear

Question: what about OR queries?

1 7 17 18 33 43 60

4 7 54 60 61 82

17
43 75

11 82 111

posting lists

common docID found in both lists

Increment posting list 
counter, skip if possible

Source: Introduction to Information Retrieval, Manning et al. (p. 35)



Posting lists data structures

Tradeoff:
- More skips yield shorter skip spans; more skips are likely 

(requires many skip pointer comparisons & pointer storage)
- Fewer skips yield larger skip spans; few skips are likely 

(requires few comparisons, less space)

Heuristic: for posting lists of length L, use sqrt(L) evenly spaced 
skip pointers (ignores particularities of the query term 
distribution)

Effective skip pointers are easy to create in static indices, harder 
when the posting lists are frequently updated

Skip pointers: where to place them



Positional postings

Concepts and names may be multi-word compounds, 
e.g. “Edmond Dantes”

- If treated as a phrase, it should not return the sentence “Edmond 
went to the town of Dantes.”

- Web search engines introduced the “...” syntax for phrase queries 
(~10% of posed queries are explicit phrase queries)

Posting lists of the form termID→d1|d2|d3|... do not provide sufficient 
granularity

- Require substantial post-retrieval filtering



Biword indices

Biwords: every pair of consecutive words

I am not going there to be imprisoned ...

i am

am not

not going

going there

there to

to be

be imprisoned

vocabulary

Each biword is one 
vocabulary term.

Two-word phrase queries 
can be handled 
immediately

Longer phrase queries are 
broken down, e.g. “Count 
of Monte Cristo” 
becomes “Count of” 
AND “of Monte” AND 
“Monte Cristo”  (false 
positives possible)

What can we do if we also 
want to include phrases like 
“declaration of independence”?



Biword indices

Can be extended to longer and 
variable length sequences 
(“phrase indices”)

Single term queries are not 
handled naturally in biword 
indices (entire index scan is 
necessary); add a single term 
index as solution

Arbitrary phrases are usually not 
indexed, vocabulary sizes 
increase greatly

Vocabulary size

Single-term 
index

19,236

Biword index 866,914

Triword index 6,425,444

The Count of Monte Cristo
~50K lines of text



Positional indices

Most common index type
For each term, postings are stored with frequency values

to occurs 993,427 times in the corpus

to occurs 6 
times in 
document 1

to occurs at positions 7, 
18, 33, 72, 86 and 231 in 
document 1.

Source: Introduction to Information Retrieval, Manning et al. (p. 38)



Positional indices
To process a phrase query: “to be or not to be”

- Access the postings list for each term
- When merging (intersecting) the result list, check if the 

positions of the terms match the phrase query
- Calculate offset between terms
- Start with the least frequent term

Increased index size: the index is 2-4x larger
than a non-positional index 

Why not more? Position integers tend to be 
small; they are limited by the document length

In practice: combine biword and positional
indices. Which queries should be processed
which index type?

Querying the inverted index



Dictionary lookup

Also known as “lexicon” or “vocabulary”

1) Determine whether all query terms exist
2) Locate pointers to the respective posting lists

Implementation options: hashes or search trees
Choice depends on:

- Number of terms (keys)
- Frequency and type of changes (key insert/delete) in 

the index
- Frequency of key accesses



Dictionary lookup

Hashes: each vocabulary term is hashed into an integer
- Querying: hash each term separately, follow pointer to 

corresponding postings list
- Issues

- Unable to react to slight differences in query terms 
(e.g. Dantes vs. Dante)

- Unable to seek for all terms with a particular prefix 
(e.g. Dant*)

Binary search trees overcome those issues. Care needs to be 
taken when terms are added/deleted from the tree (might 
require rebalancing)

In practice: B-trees is the data structure of choice 
(self-balancing search tree with #children in [a,b])

a-h
i-p

q-z

a-b c-d e-f g-h i-l m-p q-t u-z



Wildcard queries

Commonly employed when:
- There is uncertainty about the spelling of a term
- Multiple spelling variants of a term exist (labour vs labor)
- All terms with the same stem are sought (restoration vs 

restore)

Trailing wildcard query: restor*
- Search trees are perfect for this situation: walk along the 

edges and enumerate the W terms with prefix restor; 
followed by |W| lookups of the respective posting lists to 
retrieve all docIDs

single wildcard



Wildcard queries

Leading wildcard query: *building (building vs. rebuilding)
- Reverse dictionary B-tree: constructed by reading each term in 

the vocabulary backwards
- Reverse B-tree is traversed backwards: g-n-i-d-l-i-u-b

Single wildcard query: analy*ed (analyzed vs analysed)
- Traverse the regular B-tree to find the W terms with prefix 

analy
- Traverse the reverse B-tree to find the R terms with suffix ed
- Final result: intersect W and R

single wildcard

single wildcard



Multiple wildcards: 
Permuterm index

Query pr*son → pr*son$
- Move * to the end: son$pr*
- Look up the term in the permuterm index (search tree)
- Look up the found terms in the standard inverted index

Query pr*s*n → pr*s*n$
- Start with n$pr*
- Filter out all results not containing ‘s’ in the middle
- Look up the found terms in the standard inverted index

prison$
rison$p
ison$pr
son$pri

….

prison

Dictionary increases
substantially in size!

end of term marker

permuterm
vocabulary



Multiple wildcards: N-gram index

Each N-gram in the dictionary points to all terms containing 
the N-gram

Wildcard query: pr*on
- Boolean query $pr AND on$
- Look up in a 3-gram index yields a list of matching terms
- Look up the matching terms in a standard inverted index

Wildcard query: red* 
- Boolean query $re AND red (also retrieves retired)
- Post-filtering step to ensure enumerated terms match

prison
prison

ris grisly prison pristine rise
lexicographic ordering



Beyond boolean retrieval



A high-level view

term
term
term
term
…
category
...

PageRank
domain
readability
#hyperlinks
last update
...

quality features
(query-independent)

topical features
(query-independent)

Ranking 
function

query

doc.
score

Feature: any attribute we can express numerically

feature i

feature function



Complex retrieval models ...

Require additional information to be stored in the postings lists
- presence/absence of terms in documents
- term counts
- term positions
- document fields (e.g. header, title, main, footer)

A query with N terms in most cases requires the scan of N postings lists 

How can we deal with semantic approaches?

BM25F

1 2Edmond 1 4 7 2 8 9

docid
term positiontitle 1 1:2

docid 1, title: terms 1-2

2 11:15

extent lists



Auxiliary data

Most retrieval models require global corpus statistics:
- Vocabulary size
- Number of documents
- Average document length
- …

Lemur/Indri stores those statistics in an XML file (generated 
during index creation)

Actual document content is not stored in an inverted index - is 
that a problem? 

- Not for ranking, but for snippet generation
- Additional system needed to link docids to (cached) 

documents



Compression



Overview

- Memory hierarchy: smallest and fastest (cache memory) vs. largest 
and slowest (disk)

- Compression aim: to make use of the hierarchy efficiently

- Inverted files of large collections are large themselves 

- Compression enables:
- more data can use fast levels of the memory hierarchy
- to seek more data from disk at a time

- Efficient compression requires a fast decompression algorithm.

- Text compression is lossless (in contrast to audio, video, …)

 



Main insight

Represent common 
terms (or termIDs, i.e. 
integers) with short 
codes and less frequent 
terms with longer 
codes.

Usage assumptions 
guide the way:
e.g. word counts (docids) in postings 
lists tend (not) to be small.

flickr@47582678@N08



Delta encoding

Inverted file data mostly encoded as positive integers (document 
identifiers, term positions, …)
If upper bound for x is known, x can be encoded in

Inverted lists can be considered as a sequence of run length or 
document gaps between document numbers

D-gaps are small for frequent terms, large for infrequent terms.

Have we gained anything? We still have a list of integers - however, 
those integers are mostly small (lets compress those!)

 

dantes 1 7 17 18 33 43 60 ….

6 10 1 15 10 17d-gaps 1

Stopword 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, … (long list)
Rare term  74324, 432, 849503                 (short list)



Unary code

Idea: use a single symbol to encode numbers

Unary encoding is efficient for 0/1 but not 1023 (requires 10 
bits in binary vs. 1024 in unary code)

However: it is unambiguous, convenient and easy to decode.

 

Number Symbol

0 0

1 10

2 110

5 111110

Why can’t we just use binary code?

Unambiguous decoding is not possible 
101110101110110100 



Elias-γ code

Idea: combine the strength of unary and binary code

To encode a number k we compute:

 

kd is the number of 
binary digits needed 
to express k in binary 
form.

If k>0 the leftmost 
digit is 1. Erase it. The 
remaining binary 
digits are kr 

Unary code
 

Binary code

= Elias-γ code

k kd kr Code

1 0 0 0

2 1 0 100

3 1 1 101

6 2 2 11001

15 3 7 1110111

1023 9 511 1111111110111111111



Elias-γ code

Idea: combine the strength of unary and binary code

To encode a number k we compute:

Space requirements (in bits) for a number k: 

 

kd is the number of 
binary digits needed 
to express k in binary 
form.

If k>0 the leftmost 
digit is 1. Erase it. The 
remaining binary 
digits are kr 

Unary code
 

Binary code

= Elias-γ code



Refinement: Elias-δ code

Elias-γ is not ideal for inputs that may contain large numbers

A single change: instead of encoding kd  in unary code (long for large 
numbers), encode it in Elias-γ code!

Elias-δ is less
efficient for small 
numbers than Elias-γ 
but more efficient for 
larger numbers.

Source: Search Engines - IR in Practice, Croft et al. (p. 147)



How does it all come together?

(1,1) (1,7) (2,6) (2,17) (2,197) (3,1)

(1,2,[1,7]) (2,3,[6,17,197]) (3,1,[1])

(1,2,[1,7]) (1,3,[6,17,197]) (1,1,[1])

(1,2,[1,6]) (1,3,[6,11,180]) (1,1,[1])

1 2 1 6 1 3 6 11 180 1 1 1

81 82 81 86 81 83 86 8B 01 B4 81 81 81

posting list (doc,position)

rewrite (doc,count,[pos.])
brackets only 
for readability delta encoding of docids

delta encoding of positions

v-byte compression

Earlier on we considered binary search (bs) within a posting list but this 
example shows that compression and bs are not easily compatible.

Source: Search Engines - IR in Practice, Croft et al. (p. 149)



Index construction

How can we compute the inverted file
when our document corpus has 
Terabytes or Petabytes of text?



Increasing complexity

In-memory index 
construction

Single machine (disk-based) 
index construction

Cluster-based index 
construction (corpus does not 
fit onto a single machine)

flickr@michmutters



In-memory indexing

All posting lists are 
maintained in memory

Requires additional 
effort to parallelize

Source: Search Engines - IR in Practice, Croft et al. (p. 157)



Using the disk ...

- Run BuildIndex() until memory runs out
- Write the partial index to disk (in lexicographic order) 

and start a new one in memory
- At the end, a number of partial indices exist on disk

- Merge pairs of partial indices until a single index 
remains

 

Source: Search Engines - IR in Practice, Croft et al. (p. 158)



Distributed indexing
How can you employ Hadoop’s
map/reduce functionality to create an
inverted index of e.g. CommonCrawl?

flickr@techmsg



Index updates
- Static collections: indexing as a one-off process

- Collections with few changes over time can be 
re-indexed every so often
- Inverted file update not an option, as it requires 

writes in the middle of the file

- Dynamic collections change: Twitter and Ebay are 
extreme cases 
- Requires multiple indices (in memory/on disk) at the 

same time (plus a deleted doc. list) that are merged 
from time to time

- Queries are scored against all indices and the 
deleted doc. list

 

Zipf’s law 
Collection term 
frequency 
decreases rapidly 
with rank

Heap’s law
The vocabulary size 
grows linearly with 
the size of the 
corpus 



Impressive, considering the
500+ million tweets a day!



Query processing



Query processing

Document-at-a-time

Given a query, score a 
document, then move to 
the next document …

Per document, all posting 
lists containing a query 
term are scanned to 
compute the RSV(Q,D)

Add the RSV(Q,D) to 
priority queue

Term-at-a-time

Given a query, process 
one posting list (short to 
long) at a time

Store partial document 
scores in accumulators 
(one per document)

Compute final RSV values 
from accumulators and 
store in priority queue

Memory vs. disk access?



More efficient query 
processing 

Early stopping
- Ignore some of the documents 

(DAAT) or terms (TAAT)
- Reduces impact of overly 

expensive queries, e.g. “the 
who” or “to be or not to be”

- Ideally in combination with 
postings list impact ordering 
(sort documents by their 
quality, update frequency, …)

- Approximation
flickr@krynowekeine



More efficient query 
processing 

MAXSCORE
- Compute the largest partial 

score for documents with only 
some of the query terms

- If that score is lower than the k 
RSVs currently in the 
PriorityQueue ignore all 
documents that contain this 
subset of query terms

- Not an approximation
flickr@krynowekeine



Distributed indexing



Overview

- We have already seen index creation across a cluster of 
machines
- Several indexers must be coordinated for the final 

inversion

- Single-machine query processing is likewise not feasible for 
large corpora (e.g. CommonCrawl)

- Final index needs to be partitioned, it does not fit into a 
single machine
- Splitting documents across servers
- Splitting index terms across servers



Term-based index partitioning

- Known as “distributed global indexing”

- Query processing:
- Queries arrive at the broker server which distributes the 

query and returns the results
- Broker determines index server to collect all postings 

lists and compute the final document ranking
- Results returned via the broker

- Load balancing depends on the distribution of query terms 
and its co-occurrences (query log analysis can help here)



Document-based index partitioning

- Known as “distributed local indexing”

- Most common approach for distributed indexing today

- Query processing:
- Every index server receives all query terms and 

performs a local search
- Result documents are sent to the broker, which sorts 

them

- Issue: maintenance of global collection statistics inside 
each server (needed for document ranking)



Research in efficiency



What are we concerned with?

Metrics
Memory consumption vs. 
indexing time

Indexing throughput (n 
GB per hour/minute)

Efficiency vs. 
effectiveness: impact of 
pruning (#terms in 
pruned index) on retrieval 
effectiveness

Average time per query 
for “top-k retrieval”

Hardware 
software 
interplay
Is compression effective for 
current CPU architectures?

Effective cache population

Exploiting CPUs and GPUs to 
reduce query processing 
latency

Energy-efficient query 
processing (do not execute a 
query faster than required)

Predict and 
approximate

Selective query 
rewriting based on 
efficiency predictions

Simulation and cost 
models


