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Abstract. Mind-wandering or loss of focus is a frequently occurring ex-
perience for many learners and negatively impacts learning outcomes.
While in a classroom setting, a skilled teacher may be able to react to
students’ loss of focus, in Massive Open Online Courses (MOOCs) no
such intervention is possible (yet). Previous studies suggest a strong re-
lationship between learners’ mind-wandering and their gaze, making it
possible to detect mind-wandering in real-time using eye-tracking de-
vices. Existing research in this area though has made use of specialized
(and expensive) hardware, and thus cannot be employed in MOOC sce-
narios due to the inability to scale beyond lab settings. In order to make
a step towards scalable mind-wandering detection among online learners,
we propose the use of ubiquitously available consumer grade webcams.
In a controlled study, we compare the accuracy of mind-wandering detec-
tion from gaze data recorded through a standard webcam and recorded
through a specialized and high-quality eye tracker. Our results suggest
that a large-scale application of webcam-based mind-wandering detec-
tion in MOOCs is indeed possible.

Keywords: learning analytics, MOOCs, mind-wandering, eye tracking

1 Introduction

Mind-wandering is an essential part of human behavior consuming up to 50% of
everyday thoughts [8], and can be described as “thoughts and images that arise
when attention drifts away from external tasks and perceptual input toward a
more private, internal stream of consciousness” [12]. While mind-wandering can
also have positive effects (such as fostering creativity [23]), many educational
tasks including following a lecture or solving an assignment require active atten-
tion and focus to reach the desired learning outcomes. For these tasks, excessive
mind-wandering has disastrous effects on learning efficiency [19].

In the traditional classroom setting, mind-wandering and attention lapses
have been studied for a long time, e.g. [3, 24]. Although researchers do not yet
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agree on the actual attention span of learners, several past works have found
attention among students during lecture time to vary in a cyclic manner.

For online courses and MOOCs, this problem is even more severe as they
are consumed using digital display devices. This mode of consumption is par-
ticularly prone to mind-wandering. Likely due to the ubiquity of smartphones
and digital content, a significant subgroup of online users adopt a “heavy media
multitasking” behavior [10], making it challenging for them to focus on a sin-
gle multimedia content unit. This finding is also supported by our work, where
learners frequently lose focus even in short video clips of around seven minutes.

In order to detect mind-wandering among online learners during their con-
sumption of digital materials, we require an approach that is scalable (it can be
deployed to thousands of learners), near real-time (mind-wandering is detected
as soon as it occurs), unobtrusive (learners are not distracted by the detection
procedure) and autonomous. In addition to providing insights into learners’ be-
haviors, such a method would also enable real-time interventions that lower the
amount of mind-wandering taking place. As a concrete example we envision an
intelligent MOOC video player: the player (via the webcam feed) monitors a
learner’s attention state and when a loss of focus is detected, the player pauses
the video automatically in order to avoid skipping over relevant content. In or-
der to ensure learners’ privacy, all necessary processing will be client-side (i.e.
executed within the browser).

To this end, previous research showed that by analyzing people’s gaze data,
mind-wandering can be detected, e.g. whilst reading texts on screen [1], or watch-
ing (non-educational) films [2]. These results can be attributed to the eye-mind
link effect [15], which states that “there is no appreciable lag between what is
fixated and what is processed.” Existing works usually rely on expensive and
specialized eye-tracking hardware (e.g. a Tobii eye tracker) to obtain gaze data,
which is not available to the average MOOC learner. It is therefore still an open
question whether eye-tracking based mind-wandering detection can be performed
in a scalable manner.

Our goal in this paper is to develop a fully automatic method for detecting
mind-wandering and loss of focus in near real-time using only low-end webcams
ubiquitously found on laptop computers. To this end, we conducted a labora-
tory study with 13 participants, collecting a dataset of gaze features (i.e. features
extracted from gaze data) and self-reported mind-wandering. To motivate this
approach, refer to Fig. 1 which visualizes the gaze of two of our study partic-
ipants through heatmaps. The MOOC video shown has several relevant visual
areas, including the lecture slides, the subtitles, and the speaker’s face. In the
depicted scene, a changing set of examples is shown on the slides which are
important to grasp the lecture content. The participant who reported mind-
wandering in the 30s interval intently gazed on a spot on the speaker’s face,
ignoring the slides and the shown examples, while the second participant who
reported no mind-wandering focused on all relevant areas of the video. Our pro-
posed approach employs supervised machine learning to automatically learn such
mind-wandering patterns based on gaze features.
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(a) reported mind-wandering (b) no mind-wandering

Fig. 1: Gaze heatmaps of two study participants over a 30 second interval

Our contributions in this work are as follows:

1. We create an elaborate gold dataset to foster eye-tracking based mind-
wandering research, featuring 13 participants watching two MOOC videos
each in a controlled laboratory setting, reporting feedback on mind-wandering
in brief intervals. In addition to these mind-wandering reports, we provide
video and gaze data as recorded and analyzed by a professional eye tracker
as well as gaze data recorded by a webcam and processed by an open-source
gaze library. We make this data available on our companion Web page [25].

2. We implement and evaluate an approach to automatically detect mind-
wandering based on gaze data (i) collected with a specialized eye-tracking
device (Tobii X2-30), relying on the results and best practices published
in [2], and (ii) collected with a standard webcam.

3. We extensively discuss and evaluate both approaches, and argue that our
webcam-based method is indeed suitable for large-scale deployment outside
a controlled laboratory setting.

2 Background: Mind-Wandering

Different data collection methods have been used to study mind-wandering of
students in traditional classrooms since the 1960s, such as the observation of inat-
tention behaviors [7], the retention of course content [11], using direct probes in
class [9, 21] and relying on self-reports from students [3]. A common belief was
that learners’ attention may decrease considerably after 10-15 minutes of the
lecture, which was supported by [21]. However, Wilson and Korn [24] later chal-
lenged this claim and argued that more research is needed. In a recent study,
Bunce et al. [3] asked learners to report their mind-wandering voluntarily dur-
ing 9-12 minute course segments. Three buttons were placed in front of each
learner, representing attention lapses of 1 minute or less, of 2-3 minutes and of
5 minutes or more. During the lectures, the learners were asked to report their
mind-wandering by pressing one of three buttons once they noticed their mind-
wandering. This setup led Bunce et al. [3] to conclude that learners start losing
their attention early on in the lecture and may cycle through several attention
states within the 9-12 minute course segments.
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In online learning environments, mind-wandering may be even more frequent.
Risko et al. [16] used three one hour video-recorded lectures with different topics
(psychology, economics, and classics) in their experiments. While watching the
videos, participants were probed four times throughout each video. The mind-
wandering frequency among the participants was found to be 43%. Additionally,
Risko et al. [16] found a significant negative correlation between test performance
and mind-wandering. Szpunar et al. [22] investigated the impact of interpolated
tests on learners’ mind-wandering within online lectures. The study participants
were asked to watch a 21-minute video lecture (4 segments with 5.5 minutes
per segment) and report their mind-wandering in response to random probes
(one probe per segment). In their experiments, the mind-wandering frequency
was about 40%. Loh et al. [10] also employed mind-wandering probes to mea-
sure learners’ mind-wandering and found a positive correlation between media
multitasking activity and learners’ mind-wandering (average frequency of 32%)
whilst watching video lectures. Based on these considerably high mind-wandering
frequencies we conclude that reducing mind-wandering in online learning is an
important approach to improve learning outcomes.

Inspired by the eye-mind link effect [15], a number of previous studies [1,2,13]
focused on the automatic detection of learners’ mind-wandering by means of
gaze data. In [1, 2], Bixler and D’Mello investigated the detection of learners’
mind-wandering during computerized reading. To generate the ground truth, the
study participants were asked to manually report their mind-wandering when an
auditory probe (i.e. a beep) was triggered. Based on those reports, the mind-
wandering frequency ranged from 24.3% to 30.1%. During the experiment, gaze
data was collected using a dedicated eye tracker. In [13], Mills et al. asked the
study participants to watch a 32 minute, non-educational movie and self-report
their mind-wandering throughout. In order to detect mind-wandering automat-
ically, statistical features and the relationship between gaze and video content
were considered. In contrast to [1,2], the authors mainly focused on the relation-
ship between a participant’s gaze and areas of interest (AOIs), specific areas in
the video a participant should be interested (like the speaker or slides).

3 Methodology

In our study, we focus on the automatic detection of learners’ mind-wandering
through webcam-based eye tracking. The scenario we consider is video lecture
watching, which is the most common manner of conveying lecture content in
MOOCs [16]. We collect data through a lab study with 13 participants who were
asked to watch two lecture videos and regularly report their mind-wandering
during this time. We recorded their gaze data with a dedicated high-quality eye
tracker and a standard webcam. In our paper, gaze data refers to both gaze points
(the points on the screen a participant is actively looking at) and gaze events
(i.e. fixations and saccades). Fixation refers to the action that concentrates the
gaze points on a single area, and saccade refers to the quick and simultaneous
movement of both eyes between two or more phases of fixations.



Scalable Mind-Wandering Detection for MOOCs 5

Fig. 2: The overview of the processing pipeline

Compared to previous works [10,13,16,22], the two MOOC lecture videos in
our study are considerably shorter - they are between six and eight minutes in
length, in line with standard MOOC practices today. To collect the ground-truth
(did mind-wandering occur in the last n seconds?) we rely on mind-wandering
probes which have proven to be effective in the traditional classroom setting [4,
9, 21] and online learning [1, 2]. Probes (regularly and actively seeking input
from the study participants) are more reliable than self-caught reports which
require study participants to think about their loss of focus and about reporting
it [20]. In response to our probes (in the form of an auditory signal — a bell)
during video lecture playback, participants were asked to press a key to indicate
that they experienced mind-wandering in the past 30 seconds. Participants who
did not experience mind-wandering were asked to ignore the bell and continue
watching.

Having collected the ground truth data, we next turned to the extraction of
features from gaze data, following [13]. In line with previous works, we extracted
features from gaze events. These gaze events are generated by gaze points. Note
that gaze points are not measured directly - they are estimated from the recorded
eye and iris movements; we used the existing software libraries of our dedicated
high-quality eye tracker and our open-source webcam-based framework to turn
eye and iris movements into gaze points.

Finally we used employed the ground truth data and extracted features in
a supervised machine learning task to explore to what extent the automatic
detection of mind-wandering in this setting is possible.

The overview of the processing pipeline is shown in Fig. 2. In the following
sections, we first describe in more detail the experimental design of our study,
and then elaborate on the features we extracted.

3.1 Study Setup

Our study is built around two introductory videos taken from two different
x-MOOCs [17] professionally produced and offered by the Delft University of
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Fig. 3: An example mind-wandering report

Technology on the edX1 platform. One video, (taken from the Understanding
Nuclear Energy MOOC), covers the basics of the atomic model with a length
of 6:41 minutes; the second one (part of the Solar Energy MOOC and 7:49
minutes long) introduces the concept of energy conversion. We selected those
videos specifically as they contain rich visual lectures slides overlayed with the
speaker (see Fig. 1). They cover topics we consider interesting to a wider audience
and do not require extensive prior knowledge due to their introductory nature.
All study participants watched both videos; their order was randomized to avoid
order effects.

We used two eye-tracking devices in the study, a high-quality one as a ref-
erence and a low-quality webcam. Concretely, we made use of the professional
Tobii X2-30 eye tracker and its corresponding software Tobii Studio to esti-
mate participants’ gaze points. Our webcam is the built-in camera of our exper-
imental laptop, a Dell Inspiron 5759 with a 17-inch screen and a 1920 × 1080
resolution. To estimate the gaze points based on a live webcam feed, we relied
on WebGazer.js [14], an open source eye-tracking library written in JavaScript.
We built a Web application closely resembling existing MOOC lecture video
players with additional logging capabilities. In order to alert our participants to
each mind-wandering probe, we included a medium-volume acoustic bell signal
played by the Web application. After the bell, participants reported their mind-
wandering in the past 30 seconds by pressing a feedback button. The next bell
signal occurred after another 30-60 seconds. The actual time was randomized
within those boundaries, as previous research [1, 10] suggests that participants
perceive interruptions which are not perfectly periodic as less interrupting. In or-
der to further limit the mental annoyance of this process, participants were only
asked to actively report in case they had indeed experienced mind-wandering.
This process resulted in mind-wandering reports for each participant, including
the bell signals and participant responses with respect to mind-wandering as
shown in Fig. 3.

We recruited our study participants (six females, seven males, all with a
computer science background) through an internal mailing list and did not pay
them. After a pre-study briefing, we asked our participants, six of whom wore
glasses or contact lenses, to sit stable and comfortably in front of the laptop
(with a distance of 52− 68 cm between eyes and screen). The study consisted of
pre- and post-study questionnaires, an instruction phase by the experimenter,

1 http://edx.org/

http://edx.org/
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a calibration phase (to calibrate the eye trackers) and the watching of the two
lecture videos; overall, participants spent about 35 minutes in the experiment.
We conducted all experiments during daylight hours with both office lights and
natural daylight contributing to our lighting.

The data generated by Tobii Studio during the study includes (among oth-
ers) the estimated 2D coordinates of gaze points for each eye, the duration and
coordinates of gaze events (i.e. fixations and saccades), the eye and pupil posi-
tions of the participant as well as the distance between the participant and the
camera with a sample rate of 30 samples/second. In contrast, the data extracted
from our webcam-based eye-tracking solution only includes the estimated 2D
coordinates of gaze points of both eyes sampled at a rate of 5 samples/second.

3.2 Mind-wandering Detection using Gaze Features

To realize eye-tracking based mind-wandering detection using the professional
eye tracker and our webcam-based solution, we turn the task into a standard
supervised machine learning task. Our classifiers are trained using the aforemen-
tioned mind-wandering reports as reference labels, and extracted gaze features
for each time span between two bell signals as collected by either technique as
input.

Given Tobii Studio’s gaze data and inspired by [1,2] we extracted 58 features
in total. These features can be classified into two groups, global features and
local features. The global features refer to features which are independent of
the current content of the MOOC video, and are as shown in Tab. 1 based
on fixations and saccades. The feature vector of a given bell time span covers
statistical aggregates of fixation and saccade data such as maximum, minimum,
mean, median, standard deviation, range, kurtosis and skew of fixation durations,
saccade durations, saccade distance and saccade angles.

Local features are mainly based on the relationship between fixations/saccades
and the areas of interest (AOIs) in the MOOC video, i.e. local features correlate
gaze data with the current video content. There are certain areas of a video
where a focused learner should focus her attention (e.g. the slides) in order to
follow the content, while others are less interesting. While this opens a complex
design space for engineering features, we opted for a simple implementation in
which we manually defined three fixed areas of interest: the instructor’s face,
subtitles, and the lecture slides. The resulting local features include then the
number and length of saccades and fixations which focus on different areas of
interest for a given time span. Recall once more that all saccade and fixation
data are computed by Tobii Studio with high precision for each bell time span
based on a raw sample rate of 30 Hz.

Due to limitations of the WebGazer.js framework2, we only achieve a sam-
ple rate of 5 Hz for our webcam-based experiments. As changes of fixations and
saccades usually happen within the range of 200 ms to 400 ms [18], reliable gaze

2 It is based on an iterative algorithm that each detection runs after the previous
detection is finished.
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Table 1: Features leveraged in the detection of participants’ mind-wandering
Feature Name Explanation

Global Features

Fixation Duration the durations (ms) of fixations
Saccade Duration the durations (ms) of saccades
Saccade Distance the distances (pixel) of saccades
Saccade Angle the angles (degree) between saccades and the horizon
Number of Saccade total number of saccades

Horizontal Saccade Ratio
the proportion of the number of saccades which have saccade angles less
than 30 degree

Fixation Saccade Ration the ratio of the durations of fixations to the duration of saccades

Local Features

Saccade Landing the proportion of the number of saccades landing in different areas
Fixation Duration AOI the durations (ms) of fixations located in different areas

data comparable to the one provided by the high-speed Tobii tracker is impos-
sible to obtain using such a low sample rate and thus needs to be estimated
algorithmically. For this purpose we implement micro-saccade detection as dis-
cussed in [6]: we first determine whether the movement between two consecutive
gaze points is a saccade based on the movements’ velocity. Then we treat gaze
points between two saccades as a fixation. If there is only a single gaze point
between two saccades, we assume this gaze point is a fixation with a duration
between this gaze point and the previous gaze point. After the detection of sac-
cades and fixations, we can generate the same 58 features as already shown in
Tab. 1. Intuitively, the feature vectors from the webcam-based solution are less
precise (as the sampling rate is much lower), however, we will show later that
they still show comparable classification performance as we aggregate features
over the time spans between consecutive bells, thus this imprecision carries little
weight.

To train our classifiers, we adopt leave-one-participant-out cross-validation [13].
In each run, the data of one participant is selected as test data and the data
of all other participants is used for training. Based on the results reported in
previous works [1, 2, 13], the collected data on learners’ mind-wandering is usu-
ally unbalanced with considerably less than 50% of probes resulting in reported
mind-wandering. We counter the effects of this imbalance by applying the over-
sampling method Synthetic Minority Over-sampling Technique (SMOTE) [5].

We have two requirements for our choice of classifiers as follows:

1. The selected models trained with our data can be used effectively to infer
mind-wandering in data of unseen participants.

2. The selected models trained with our data can be used in real-time mind-
wandering detection.

For the first requirement, we consider the bias-variance trade-off of machine
learning models and the data size in our experiments. We select Logistic Regres-
sion, Linear SVM and Naive Bayes classifiers in our experiments as they have
a low variance on small datasets like ours. These classifiers are also suitable for
our second requirement. Since the trained models are small and require few in-
ference steps, they can easily be integrated into Web applications within MOOC
platforms.
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In order to determine the effect of different feature types, we evaluate dif-
ferent subsets of features in our experiments: (i) global features only (G), (ii)
local features only (L) and (iii) the combination of global and local features
(G+L). Since we also include SMOTE as a pre-processing step to deal with the
unbalanced nature of our data, overall we report results on six different setups.

4 Results

In this section, we focus on the experimental results of our study and described
mind-wandering detection methods. We address two main research questions:

RQ1: How many mind-wandering reports are collected from participants across
each video, and what can be learned from them?

RQ2: How well does our webcam-based mind-wandering detection method per-
form, and how does it compare to detection based on data collected from a
professional eye tracker?

For RQ2, we first compare the overall effectiveness of our three selected
classifiers with different sets of gaze features. Then, we delve deeper into the
mind-wandering detection results. Considering that the mind-wandering reports
are not evenly distributed among participants nor across the entire length of
the lecture videos, we address two sub-questions RQ2.1 and RQ2.2. A final
sub-question is dedicated to the generalizability of our trained models.

RQ2.1: Does mind-wandering detection perform equally well across all partic-
ipants?

RQ2.2: Does mind-wandering detection perform equally well across the entire
length of a lecture video?

RQ2.3: Does a mind-wandering detection model trained on one video perform
well to detect mind-wandering on a different video?

4.1 Exploratory Analysis of Mind-Wandering Reports

In order to answer RQ1, we now analyze our participants’ mind-wandering
behaviour while watching the two MOOC lecture videos.

In Fig. 4, the distributions of participants’ reported mind-wandering events
over the course of each of the two videos are shown. As discussed in the last
section, participants were shown both videos in a random order, which is also
reflected in the diagram. As the number of participants in each of the experi-
mental groups is very small, no statistically significant conclusions can be drawn.
However, it is visible that mind-wandering is indeed a rather frequent occur-
rence even for very short video lectures of roughly 7 minutes: our measured
mind-wandering rate is 29%; i.e. in 71% of all bell time spans, our subjects
actually stayed focused. In addition, it appears that our participants tire con-
siderably during the second video when the experiment draws to its conclusion.
This feedback was pro-actively provided by several of our participants in a post-
experiment questionnaire, and seems to be at least anecdotally confirmed by the
presented mind-wandering reports.
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Table 2: Mind-wandering detection results based on gaze data (G means global
features and L means local features)

Data Feature SMOTE Precision Recall F1 Classifier

Baseline − − 0.290 0.291 0.290 −

G − 0.316 0.515 0.350 Logistic Regression
G X 0.358 0.487 0.336 Logistic Regression

Tobii L − 0.263 0.625 0.309 Logistic Regression
Data L X 0.294 0.682 0.364 Naive Bayes

G+L − 0.342 0.486 0.335 Naive Bayes
G+L X 0.346 0.502 0.330 Linear SVM

G − 0.309 0.671 0.395 Naive Bayes
G X 0.306 0.744 0.405 Naive Bayes

WebGazer L − 0.313 0.650 0.394 Naive Bayes
Data L X 0.320 0.691 0.403 Naive Bayes

G+L − 0.289 0.696 0.378 Naive Bayes
G+L X 0.286 0.674 0.378 Naive Bayes

4.2 Mind-Wandering Detection

In order to answer RQ2, we investigate how accurately we can detect partici-
pants’ mind-wandering based on gaze data extracted by WebGazer.js compared
to Tobii’s X2-30. The results are shown in Tab. 2. The results are based on the
nested leave-one-participant-out cross-validation, which means that a leave-one-
participant-out cross-validation is used as the inner cross-validation for model
selection and a leave-one-participant-out cross-validation is used as the outer
cross-validation for measuring performance of the selected model. For the sake
of brevity3, we only list the best performing classifier for each feature set. As a
baseline method, we used a random classifier which includes the knowledge that
the mind-wandering rate is 0.29 and thus each feature vector is labeled as mind-
wandering with a probability of 0.29. Since accuracy is not a suitable metric for
unbalanced data, precision, recall, and F1-measure are reported.

Based on our results in Tab. 2, all our methods are significantly better than
the random baseline according to all three metrics. We do not observe a large

3 The full results, as well as all hyperparameter settings of the classifiers can be found
online [25].

Fig. 4: Overview of the reported mind-wandering (MW) reports across the
MOOC videos. Due to the randomized video order in the experiment, we parti-
tioned the results according to whether the video was shown first (“order 1”) or
last (“order 2”). The video time displays the number of seconds since the start
of the video.
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Table 3: Statistics of detection results on individual participants (Phighest shows
the detection results of the participant with highest F1-measure, Plowest with
lowest)

Data Metrics Max Min Mean Std Phighest Plowest

Tobii Precision 0.714 0 0.294 0.198 0.600 0
Data Recall 1.000 0 0.682 0.357 0.857 0

F1 0.706 0 0.364 0.200 0.706 0

WebGazer Precision 0.700 0 0.306 0.209 0.700 0
Data Recall 1.000 0 0.744 0.354 1.000 0

F1 0.824 0 0.405 0.244 0.824 0

impact of SMOTE: applying the SMOTE pre-processing method on Tobii data
slightly increases Precision, however it has no effect on the detection results on
Webgazer.js data. The combination of local and global features does not benefit
the detection on Tobii data nor the detection on Webgazer.js data.

All our reported F1 scores are slightly lower than reported by previous re-
search [2] which relied on similar features and classifiers. We believe the difference
(0.1 in F1 score) to be due to the slightly different data collection setup: Bixler
et al. [2] utilized a short movie instead of MOOC lectures and free self-reporting
instead of periodic self-reporting to obtain mind-wandering reports. With re-
spect to the evaluated classification methods, we find that the Gaussian Naive
Bayes models outperform the other approaches on WebGazer.js data in every
feature set combination.

The most surprising finding in this experiment is that compared to the Tobii
data we achieve higher Recall and F1 scores based on the gaze features extracted
from WebGazer.js data. Based on our intuition, features extracted from the
data which is generated from the high-quality eye tracker X2-30 should lead
to a more accurate detection of mind-wandering, than features extracted from
the data which is generated by a standard webcam. A possible reason for this
experimental artifact is the small number of participants in our study; in future
work we plan increase our participant pool to at least 100 participants.

Based on Tab. 2, we now delve deeper into our mind-wandering detection
results. In order to answer RQ2.1, we investigate the detection results on each
participant separately. For this step, we select the best-performing models for
each data source (Tab. 2). For the detection on Tobii data, we use Gaussian
Naive Bayes with local features and the SMOTE method. For the detection on
Webgazer.js data, we use Gaussian Naive Bayes with global features and the
SMOTE method. The results are shown in Tab. 3. We observe that across all
metrics, the minimum observed accuracy is zero (for both Tobii and Webgazer
data), which implies that there are participants for whom our prediction is not
working at all. At the same time, we observe that at best a participant’s mind-
wandering can be detected with high accuracy with an F1 of 0.7 (Tobii data)
and 0.8 (Webgazer data) respectively. The large standard deviations across the
three metrics - 0.2 to 0.35 - further show that the accuracy of our detector varies
widely between participants. Therefore, we conclude that the detection does not
work equally well for all participants in our experiments.
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Table 4: Detection across the entire length of the video (Part 1 means the first
half part of the video, and Part 2 means the second half part of the video)

Solar Energy Nuclear Energy
Data Metrics Part 1 Part 2 Part 1 Part 2

Tobii Precision 0.147 0.410 0.276 0.321
Data Recall 0.308 0.763 0.397 0.462

F1 0.195 0.474 0.285 0.369

WebGazer Precision 0.365 0.240 0.295 0.327
Data Recall 0.615 0.500 0.462 0.615

F1 0.438 0.285 0.344 0.416

Table 5: Detection with model translation (i.e. using a model on a different video
than it was trained on)

Trained on Solar Trained on Nuclear
Data Metrics used in Solar used in Nuclear used in Nuclear used in Solar

Tobii Precision 0.267 0.171 0.294 0.149
Data Recall 0.705 0.372 0.410 0.205

F1 0.355 0.229 0.296 0.150

WebGazer Precision 0.240 0.298 0.346 0.344
Data Recall 0.679 0.692 0.596 0.667

F1 0.317 0.401 0.392 0.423

Based on the analysis in Sec. 4.1, we find that mind-wandering is not evenly
distributed throughout a video. This leads to our RQ2.2. We split each video
into two parts with the same length. Then, for each part of the video, we use
the data of the other part and the data of the other video to train the model
and to detect the mind-wandering in this specific left-out part of the video. The
models, feature sets and the SMOTE method used in this experiments are same
as in RQ2.1. The results are shown in Tab. 4. We conclude that the detection
of mind-wandering cannot be made equally well across the entire length of the
lecture videos in our experiments. For X2-30 data, we find the results of the
mind-wandering detection in the second part of the same video to be much better
than the first part. For WebGazer.js data, we observe no trend, the results vary
depending on the lecture video. We hypothesize this result to be connected to
the fact that different participants were shown the videos in different orders.

Our last experiment answers RQ2.3. So far we have shown that our method
can detect a participant’s mind-wandering based on a model trained on the gaze
data and mind-wandering reports of other participants. To scale out, we need
to determine to what extent we can detect learners’ mind-wandering in video
lectures of one course with a model trained in lecture videos of other courses. If we
were to obtain good detection results for such scenarios, there may be a general
model which can be used in different lecture videos at scale (i.e., “train once,
deploy everywhere”). In this experiment, the experimental settings for classifiers,
feature sets and the SMOTE method on different kinds of data are same as in
our previous experiments (RQ2.1 and RQ2.2). We evaluate the cross-video
performance by training our model on one video, and test the performance of
the model using the other video. The results of all video combinations are shown
in Tab. 5. For reference, this table also includes training and testing using the
same video, using leave-one-participant-out cross-validation.
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Based on the results in Tab. 5, we find the model trained on WebGazer.js

data to be more robust to a change of video context than the model trained on
X2-30 data. We also observe that it does matter whether we train on video A
and test on B or vice versa as results are comparable. Overall, we believe that a
model trained on the WebGazer.js data collected on one video can lead to good
predictions in other videos, at least if the videos share similarities with respect
to style and type as in our scenario.

5 Conclusions

In this paper, we presented a study on the automatic and scalable detection of
mind-wandering during lecture video watching collected by a standard consumer-
grade webcam. In a lab study we compared the effectiveness of a webcam plus
the open-source library WebGazer.js to the effectiveness of the specialized (and
expensive) Tobii X2-30 for the task of mind-wandering detection. In our ex-
periments, we could show that the accuracy of our webcam-based approach is
on par with the specialized eye-tracking device. This opens the way for large-
scale experiments in real-world MOOCs, allowing for both investigating learn-
ers’ mind-wandering behavior and investigating the effectiveness of interventions
based on mind-wandering detection in future research under realistic conditions.

Our work is in a preliminary stage and has a number of limitations including
the small pool of participants all sharing similar educational backgrounds. Sim-
ilarly, the number of evaluated MOOC videos is very limited and both videos
have a comparable (but very common) style. Thus, it is unclear how well our
approach can be applied to completely different types of videos or user groups. In
addition, we relied on a number of established and straightforward-to-implement
features; we expect a further boost in detection accuracy when more sophisti-
cated features are introduced.

A core contribution provided by our work is the published repository of data
collected during our controlled lab study. In addition to including the mind-
wandering reports of our experiment’s participants, we also provide the full set
of gaze data obtained by the X2-30 and our webcam as well as the complete
results of our data analysis.
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