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ABSTRACT
Visual Question Answering is a field that combines computer
vision techniques and natural language processing techniques.
One of the most challenging question types in this field is
counting, such as How many sheep are in this picture. In
this paper, we focus on counting questions and improve upon
the state-of-the-art method DPPnet. We train concept de-
tectors on the MSCOCO dataset and use these detectors in
addition to the pre-final layer from the original visual net-
work. Additionally, we use a postprocessing technique to
output the right type of answer to each type of question.
Both the concept detectors, and the postprocessing slightly
improve performance and is usable on current state-of-the-
art methods.
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•Information systems → Information retrieval; Image
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1. INTRODUCTION
One of the most common forms of visual question answer-

ing is one where a system answers natural language questions
posed by human users about images [12]. In practice this
could take recent developments such as Google Now, Siri
and Cortana a step further by not only being able to an-
swer questions on general topics that are searchable on the
web, but also on the local user context using e.g. a smart-
phone’s camera. This could be especially useful for visually
impaired users, who can take a picture using their smart-
phone and ask their device questions about the local scene,
such as where is an empty seat in this train? or is there a
pedestrian crossing here?.
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A dataset that enables image question answering is the
VisualQA task [1], set up by VirginiaTech and Microsoft
Research after the release of the Microsoft Common Objects
in Context (MSCOCO) dataset [7]. This MSCOCO dataset
consists of more than 250,000 images. In the VisualQA task
three questions for each image were posed together with 10
human answers to each question. The type of answers to
the questions can be categorized into three major categories:
closed (yes / no), numerical answers, categorical answers.

In this paper, we focus on the Visual QA questions with
numerical answers. Current state-of-the-art methods have
low performance for this type of question compared to the
questions with closed and categorical answers. We propose
to count the amount of certain objects using concept detec-
tors with object segmentations. In addition, we introduce a
post-processing method to provide an answer that is in the
right category.

Results show that the use of concept detectors improves
performance. Post-processing slightly improves performance
further.

2. RELATED WORK
According to Wu et al. [12], visual question answering

solutions can be put into four categories: joint embedding,
attention, compositional, knowledge bases. We focus on the
first and biggest category. Approaches in this category use
deep learning networks for both the image and the ques-
tion and combine these in a classifier such as another neu-
ral network to predict the most probable answer. This is
used in the baseline for the VisualQA task [1], but current
state-of-the-art and a good performer in the task is DPPnet
[8]. DPPnet uses the state-of-the-art VGGnet network [9],
trained on the ImageNet images in the ILSVC-2012 [3], to
understand the image. This pre-trained model is finetuned
using the MSCOCO dataset [7] to create a network that is
tailored to the VisualQA task. Instead of the 1000 concepts
from ImageNet, the 4096 features in the pre-final layer are
used. To understand the question, Gated Recurrent Units
(GRU) are used. The question model is pre-initialized us-
ing the skip-thought vector model [5] which is trained on the
BookCorpus dataset [13], containing 74 million sentences.
To generate an answer DPPnet uses a dynamic parameter
layer to combine the image and question features. The image
features are used as input for this layer and the weights are
determined by the question features using a hashing func-
tion [2]. Recently, the Multimodal Compact Bilinear Pool-
ing (MCB) [4] further improves performance. This model
combines the joint embedding with attention. The winning



submissions in the VisualQA challenge, linked to the Vi-
sualQA task1, combine joint embedding with some type of
attention model to focus on a specific part of the image.

3. METHOD
In our method, we build upon DPPnet [8]. We use concept

detectors in addition to the 4096 pre-final layer for the part
of the network with the dynamic parameter layer. To train
the concept detectors we use masked images of the ground
truth annotations of the MSCOCO dataset. The concept
detectors can be applied on 1. the full image or 2. object
proposals within the image and sum the activations to count.
Additionally, we add postprocessing repair to make sure that
only the answers of the same category as the question are
proposed.

3.1 Concept Detection
We train concept detectors using the ground truth anno-

tation of the MSCOCO dataset [7] for each of the 80 classes.
These 80 classes are tailored to the test set, whereas the 1000
ImageNet concepts are not and thus we expect better per-
formance for these classes. We use a pretrained GoogLeNet
model [11] based on the Inception architecture. GoogLeNet
was chosen for its high accuracy and the fact that it uses
12 times fewer parameters and thus fewer VRAM than the
next-best ImageNet submission. From the ground truth an-
notations we use a masked version of each separate segmen-
tation with a black background. This masked segmentation
is fed through the convolutional neural network to obtain its
features, similarly to the normal process for the unmasked
images. A fixed amount of segmentations is chosen (25 in
our experiments) and if an image has fewer segmentations,
the concatenated feature vector is zero-padded.

The network is trained on the segmentations using gra-
dient descent with Nesterov momentum [10] for 25 epochs.
For the first 10 epochs, the weights of the convolutional lay-
ers are locked to prevent the noisy gradients from the ran-
domly initialized fully-connected layers from changing the
pretrained weights too much. Cross-entropy loss is used and
Top 1 accuracy is used for validation. The segmentation
masks are stretched to use the entire 224× 224 image space
(aspect ratio is retained), which improves validation accu-
racy from 57% to 87%. This removes scale variance and
reduces overfitting. Furthermore, segmentations that have
a surface smaller than 500 pixels are removed from training
as they provide no meaningful information. The biases in
the first convolutional layer are set to 0 to ensure the black
background causes no activations. Finally, since the class
balance is skewed – the most prevalent class occurs 185,316
times, while the rarest class occurs only 135 times – the
amount of data per epoch is limited to 5000 per class. Note
that if a class has more than 5000 samples, each epoch dif-
ferent data is shown to the network. Effectively, this means
samples in underrepresented classes will be shown to the
network more than samples in large classes.

These concept detectors can be used on either the full
image or the object proposals within the image. Using the
full image, we expect a deterioration of the activation with
less objects (i.e. less pixels firing on the object), for which
DPPnet can learn that for example an activation of 0.6 for
a certain concept will most probably resemble a number 4.

1http://visualqa.org/challenge.html

When we use object proposals, we expect that the activa-
tion will be high for objects that are in that proposal and
summing over the proposals will resemble actual counting.

The object proposals can be obtained in several ways.
First, ground truth segmentations as present in the MSCOCO
dataset could be used. These segmentations are, however,
not available in many datasets, so automatic object propos-
als can be obtained using Edgebox [14] or Deepbox [6] (with
non-maximum supression), which are state-of-the-art seg-
mentation methods. Edgebox generates bounding box ob-
ject proposals, which makes it especially suited for objects
that are rectangular. Often, the Edgebox strategy gener-
ates hundreds of object candidates. The algorithm scores
and sorts these according to the number of contours that
are wholly contained within the image. Deepbox [6] uses a
different scoring metric: it trains a convolutional neural net-
work that reranks the proposals that Edgebox made. Using
Deepbox, the same recall is achieved with four times less
proposals.

3.2 Postprocessing repair
For some questions, such as how many... questions, we

know that the answer should be numerical. Often, the net-
work will predict other answers as well, such as the string
equivalents of the numeric digits, e.g. one instead of 1. For
questions that start with are there..., does this..., and so on,
we expect as an answer yes, no or a word that exists in the
question. For example, the question does this image contain
a cat? always has to be answered by either yes or no, while
the question is there a cat or a dog in this image? should
be answered with either cat, dog, yes or no. Using a sim-
ple rule-based program, questions that start with how many
always get the numerical answer that generates the highest
softmax response in the network and the questions that have
a closed answer are processed as explained above.

4. RESULTS
In our experiments, we first investigate the optimal perfor-

mance gain using segmentations. We use the validation set
to set the ground truth annotations (which are not available
in the test set), the Deepbox and Edgebox methods. These
methods do not yet use the concept detectors, but have as in-
put a vector of 25*4096 + 4096, which resembles the output
of the pre-final layer of the VGGnet on each of the 25 object
proposals and the full image. Furthermore, we test classifi-
cation and regression as last layer. Classification is similar
to DPPnet, using a softmax over all possible answers and for
regression we have one output node outputting a number.
Because the use of finetuning and the large dynamic param-
eter layer require at least 12GB of VRAM (i.e. a GTX Titan
X or Tesla M40), we remove the finetuning and the large dy-
namic parameter layer to make the network fit into 6GB of
VRAM, enabling its use on state-of-the-art hardware. In the
downsized network, the hash size is decreased from 40000 to
10240 and the amount of linear units in the dense part of the
network is decreased from 2000 to 1024. Afterwards, we use
the finetuned and the full network on our best run to make a
submission in the VisualQA challenge. The results of these
experiments are shown in Table 1. These results show that
object proposals can increase performance by 3%. Classifi-
cation works slightly better than regression for the counting
questions and overall. The ground truth annotations obvi-
ously have highest performance, but the bounding boxes by



Method All Yes/No Number Other
DPPnet (downsized) 51.94 78.34 33.66 36.77
Ground truth annotations 52.29 78.34 36.46 36.77
Ground Truth Regression 52.23 78.40 34.84 37.01
Edgebox 52.08 78.34 34.97 36.77
Deepbox 52.16 78.34 35.36 36.77

Table 1: Evaluation of segmentation methods on val2014.

(a) How many giraffes are in this pic-
ture?
DPPnet: 2
Ground truth annotations: 4
Edgeboxes: 2
Deepboxes: 3

(b) How many sheep are in this pic-
ture?
DPPnet: 1
Ground truth annotations: 3
Edgeboxes: 2
Deepboxes: 2

(c) How many players can you see?
DPPnet: 2
Ground truth annotations: 3
Edgeboxes: 3
Deepboxes: 3

Figure 1: Comparison of segmentation methods. Overlays are the ground truth proposals.

Deepbox can gain 2% performance and are slightly better
than those produced by the Edgebox system. To gain some
insight, we show a few images with the answers to a nu-
merical question for the different methods in Figure 1. In
1a) and 1b), we see that automatic segmentation techniques
such as Edgeboxes and Deepboxes have trouble segmenting
the objects, while in 1c) this seems to be no problem. This
makes sense when realizing that Edgeboxes and Deepboxes
create rectangular object proposals, which suits the 1c) very
well, but 1a) and 1b) less so.

Based on these results, we continue with the classification
method and the Deepboxes, because the ground truth anno-
tations are not available in the test set. We now use the sum
the concept detector scores over all 25 object proposals and
concatenate this vector to the 4096 vector of the original
pre-final layer. In the full image runs, the concept detec-
tor scores over the whole image are concatenated with the
4096 vector. Results are shown in Table 2. Interestingly, us-
ing the full image is better than using the object proposals.
As indicated before the deterioration of the concept detec-
tors scores might be more insightful for the DPPnet system
compared to the top 25 rectangular object proposals. The
postprocessing repair slightly improves performance. In Fig-
ure 2 we can see some example questions and images with
the answers given by the regular DPPnet and the DPPnet

with concept detector information. In 2a), the bias of DPP-
net towards more often occuring answers can be seen. Using
concept detectors, the answer is closer to the truth, but still
not correct. In 2b) and 2c), we view the disadvantage of
building a scale invariant system. The concept detector ac-
tivations for both images are almost equal, caused by the
larger objects in 2c) compared to 2b). In the context of the
VQA challenge, using concept detectors as an additional in-
put to the classification network scores 5th place out of 30
on numerical answers, tested on the test-standard dataset
split.

5. CONCLUSIONS
Using concept detectors to count in a visual question an-

swering task improves performance upon only using the fea-
tures. The postprocessing further improves performance.
Object proposals intuitively should increase performance,
but with current state-of-the-art methods, performance on
the full image is higher. The top performing methods, such
as Multimodal Compact Bilinear Pooling (MCB) [4], could
use the concept detectors and postprocessing to improve
their system.
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