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ABSTRACT
In this paper we investigate how to cluster ordinal survey
data in a highly structured ranking to identify groups of
like-minded people. We experiment with several rank cor-
relation coefficients to compare rankings, including Spear-
man’s rank-order coefficient and Kendall’s tau. To cluster
the survey answers we use K-Means, spectral clustering and
an evolutionary algorithm. K-Means clustering using Spear-
man’s rank-order coefficient with inverted tie-correct scores
highest, but all results seem to lead to clusters with no sig-
nificant cohesion.

1. INTRODUCTION
Labeling people is something we all tend to do. In surveys,

this often means that respondents are grouped by some cho-
sen attribute in order to observe or investigate certain differ-
ences in their responses. However, for businesses it might be
valuable to automatically detect groups of like-minded peo-
ple. In other words: performing unsupervised clustering on
the responses while excluding personal (demographic) data.
Detecting groups in the data can help businesses to establish
the appropriate strategies to satisfy their employees and/or
clients.

In this study we use survey responses that are gathered
using the survey tool shown in figure 1. Respondents rank
items in a diamond shape. The ordinal data itself has many
tied ranks and is highly correlated: if one item is ranked
highest (i.e. ‘most important’), others cannot have this rank
anymore. Although the scale unit (i.e. importance), and size
of the diamond are customizable, most conducted surveys
are about importance of aspects in collective labor agree-
ments.

Often, survey data is ranked data in which respondents
have to rank certain items or subjects on a certain scale.
Few studies have been carried out on clustering ranked data.
Moreover, most of these studies focused on describing the
structure or analyzing the distribution of the ranks of all
data together instead of assuming disagreement within the
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Figure 1: Diamond shape in survey tool.

population [4]. While some even say that ranked (or ordi-
nal) data is not appropriate for cluster analysis [8], Heiser
and D’Ambrosio [4] reports on some studies which have suc-
ceeded to do so. These, and similar studies mostly use com-
plex probabilistic models. However, Heiser and D’Ambrosio
[4] implements a generalized K-means method and concludes
that “loss-function based methods enjoy general advantages
compared to methods based on probability models”. Other
attempts of using classical cluster methods or loss-function
based methods on clustering ranked data are not common.

The aim of this study is to investigate how we can clus-
ter ordinal survey data in a highly structured ranking. We
answer the following two research questions:

1. How can we create rank correlation coefficients that
accurately represent dissimilarity between survey re-
sponses?

2. How can we cluster ordinal survey data and allocate
respondents into a pre-determined number of groups?
We will experiment with several cluster techniques.

This paper is organized as follows. In the next section
we find rank correlation coefficients to compare responses
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(2)and compare the rank coefficients in terms of desirable
behavior. In Section 3 we describe the clustering algorithms.
In Section 4 we describe our experiments and evaluate the
different sets of clusters. And finally, in Section 5 we draw
our conclusions. This paper is a short version of Werrij [10].

2. RANK CORRELATION COEFFICIENTS
A few rank correlation coefficients are available: for non

normally distributed data the suggested coefficients are Spear-
man’s rank-order and Kendall’s tau rank correlation [3].
Both aforementioned coefficients range from -1 to 1, in which
0 suggests no correlation, -1 indicates that the ranks of a pair
of responses are correlated negatively and 1 indicates that
these are correlated positively [11].

Spearman’s rank-order coefficient
Spearman’s rank-order coefficient uses the summed squared
difference of item’s ranks to calculate the similarity [11].
This summed squared difference is then divided by a term
based on the number of total items to make sure it is -1
when this difference is maximized and 1 if the difference is
0. Because it uses the difference of ranks, even the smallest
differences in rank are penalized. It handles tied ranks by a
correction of the divisor term. On top of that, it also sets
values to the mean of the ranks of their positions in the
ordered data set [11].

Kendall’s tau rank correlation
Kendall’s tau rank correlation is based on the total num-
ber of discordant pairs of items in their ranking order [1].
Instead of using the exact ranks of items, it compares per
item how many concordant and discordant pairs (in terms
of ranking) there are and divides these by the total num-
ber of possible pairs. So although item’s ranks might be
different for two responses, if many items are still ranked
lower than others in both, the coefficient might still suggest
a high correlation. The coefficient handles tied ranks only
by a correction of the divisor term.

Spearman’s rank-order coefficient with inverted tie-correct
The fact that Spearman’s rank-order coefficient handles ties
by setting values to the mean of the ranks might not suffice
for our use-case. We can see this in a small example, pre-
sented in figure 2, which uses a diamond shape with 5 levels
to rank items in.

Figure 2: Example diamond shape with ranks

When we correct these ranks for the ties, we get the values
in figure 3a. As visible, the rank differences between more
important items is in this case smaller than the difference
between neutrally ranked items in the middle. One could
argue that a swap of two items near the middle should not
be the cause of a significant difference in coefficient. There-
fore, we define another rank correlation coefficient based on

(a) Regular tie-correct (b) Inverted tie-correct

Figure 3: Example of two kinds of tie-corrected ranks for
Spearman’s rank-order coefficient

Spearman’s rank-order coefficient in which the tied ranks are
corrected by using the centrally inverted differences (diffs)
of the regular tie-correct mechanism.

In the example: the regular tie-correct mechanism has
[1.5, 2.5, 2.5, 1.5] as diffs between each of the possible ranks.
Inverting this both ways from the center gives us [2.5, 1.5,
1.5, 2.5]. If we apply these diffs to our ranks, we get the tie-
corrected ranks seen in figure 3b. By using this as basis for
Spearman’s rank-order coefficient, the squared differences of
item’s ranks will be larger for changes in top/bottom ranks.

2.1 Rank coefficient criteria
Before we use the introduced coefficients in the cluster al-

gorithms, we evaluate them by comparing some responses.
Particularly of interest was to verify whether the newly in-
troduced Spearman’s rank coefficient with inverted tie-correct
did what was expected of it. In consultation with domain
experts a set of rough criteria was defined. The criteria con-
sist of the desirable behavior of rank coefficients when faced
with certain changes of ranks as follows:

1. For similar responses the rank coefficient should devi-
ate very little.

2. For inverted responses the rank coefficient should be
negative for fully inverted responses and neutral for
centrally inverted responses.

3. For shifted responses the rank coefficient should be
strongly positive for 1-rank shifts and positive for 2-
rank shifts.

4. For swapped responses the rank coefficient should de-
viate more for top/bottom item swaps than middle
item swaps.

For every rank coefficient it was checked whether they
were met sufficiently. As the criteria are rough guidelines,
the fact whether the coefficients behaved sufficiently was de-
cided on their relative behavior. Besides giving insights in
their reaction to differences in responses it might also help
in confirming what coefficient performs best.

The criteria were checked by comparing a default response
to several other responses by using the three rank coef-
ficients. In these comparisons artificial responses for the
(most common) 16 slot diamond were used. From our tests
we conclude they all meet the first three criteria. For the
fourth criteria, the swapped responses criteria, we find some
differences so we look at it in more detail here.



Consider the following three assignments of ranks to some
items:

A := [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7]
B := [2,1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6,7,6]
C := [1, 2, 2, 3, 3,4,3, 4, 4,5,4, 5, 5, 6, 6, 7]

Table 1: Swapped responses rank coefficients r

Kendall tau Spearman Spearman inverted
r(A,B) 0.9434 0.9864 0.9258
r(A,C) 0.8774 0.9258 0.9864

The results in Table 1 show that when swapping top/bottom
(r(A,B)) ranks both Kendall’s tau and Spearman’s rank
coefficient reported a higher correlation compared to swap-
ping middle ranks (r(A,C)). Only Spearman’s rank with
inverted tie-correct has the desirable opposite behavior to
deviate more for top/bottom item swaps than middle item
swaps. Spearman’s rank coefficient with inverted tie-correct
never exhibits unwanted behavior and sometimes results in
more desirable results than the other rank coefficients. Con-
sequently, we assume that this measure generates the best
results when using it in the cluster algorithms.

3. CLUSTERING
The rank correlation coefficients described in the previous

sections can be used to determine the distance between two
ranks. The cluster algorithms described in this section use
these rank correlation coefficients to cluster survey responses
into groups.

3.1 Popular Algorithms
Cluster methods come in many shapes and sizes. Two

of the most popular ones are K-means and spectral clus-
tering [2, 6, 9]. Both the spectral clustering and K-means
algorithm are implemented using the scikit-learn library1 in
Python in such a way that they can deal with any dissimi-
larity measure.

3.2 Evolutionary Algorithms
Many studies have shown that evolutionary algorithms for

clustering problems prove to be superior compared to tradi-
tional algorithms [5, 6]. On top of that, the central ranking
problem, in which finding an average ranking for a set of re-
sponses is the objective, can also be avoided by constructing
an algorithm which has a set of clusters as representation.
In other words: even if some clustering techniques create
clusters with a strong structure, there are still many ways
in which these can be represented as actual response. The
implemented evolutionary algorithm follows the description
in Table 2.

Fitness function
To make the algorithm more efficient, the distance from a
response (i) to a cluster is calculated not by averaging the
dissimilarities of all its responses, but by taking the dissim-
ilarity (d) to the real-valued representation of the cluster.
Consider a to be the currently assigned cluster and b the

1http://scikit-learn.org/

Table 2: Description of the evolutionary algorithm

Representation (k) Centroid-based permutations
Recombination Cycle crossover
Mutation Non-uniform rank shift with

adaptive step size
Parent selection Rank-based selection
Survival selection (µ+ λ) selection
Initialisation Random

‘nearest’ other cluster, then the fitness function is defined
as:

fitness(i) =
d(b, i)− d(a, i)

max{d(a, i), d(b, i)} (1)

4. EXPERIMENTS
In this section we describe the data used, and the set-up

and results of our experiments.

4.1 Data
We use survey data from six companies having 113, 149,

350, 493, 2451 and 3426 respondents. All surveys held were
using the 16-slot diamond shape. Five of the surveys are
about the importance of aspects for a collective labor agree-
ment and one is about the competences which should be
present in a certain department.

4.2 Set-up
To compare different kinds of cluster techniques, dissimi-

larity measures, cluster sizes and surveys, a script was cre-
ated which would run any kind of a combination of these.
Each combination was run three times and the script out-
put the average calculation time, average (silhouette) score
and a silhouette coefficient plot for the last run. In total
there were 3 (cluster sizes) * 6 (surveys) * 3 (dissimilarity
measures) * 3 (algorithms) = 162 averaged test cases.

As the business requirement usually is to create up to a
maximum of a handful of clusters, only benchmarks were
run to compare 2, 3 and 4 number of clusters. Although the
cohesion of clusters might be better with a larger number of
clusters, from the business perspective it was more valuable
to invest time on comparing the different techniques on a
low number of clusters.

To evaluate the sets of created clusters, we use the silhou-
ette coefficient which is based on the cohesion and separation
of each individual element (i.e. survey response) [7].

4.3 Results
Clustering results for 3 and 4 clusters are shown in Table

3 and 4 respectively. Due to space constraints we omit the
results for cluster size 2. Results are similar to the results
of cluster sizes 3 and 4. Also the results for Kendall’s tau
coefficient are omitted, these always score lowest.

4.3.1 Dissimilarity measure
In all cases, using Kendall’s tau coefficient scored lowest,

while in 61% of the 54 cases, using Spearman’s rank-order
coefficient with inverted tie-correct scored highest. If we
only look at the K-Means method cases, then in almost 80%
the adapted Spearman’s rank-order coefficient scored best.

http://scikit-learn.org/


Table 3: Average silhouette scores for 3 clusters

K-Means Spectral Evolutionary
Size Sp. Sp.Inv Sp. Sp.Inv Sp. Sp.Inv
113 0.1724 0.1785 0.1741 0.1704 0.1612 0.1767
149 0.1579 0.1621 0.1403 0.1374 0.1569 0.1561
350 0.1781 0.1717 0.1452 0.1510 0.1271 0.1648
493 0.1416 0.1821 0.1094 0.1275 0.1697 0.1789
2,451 0.1487 0.1834 0.1392 0.1730 0.1570 0.1481
3,426 0.1316 0.1394 0.1214 0.0998 0.1254 0.1403

4.3.2 Clustering
Not only in cases in which the K-means scored best (high-

est silhouette score) was the number of negative silhouette
coefficients low, but also in some test cases where other tech-
niques scored better. In those cases, the other algorithms
made the ‘sacrifice’ of having a cluster with some negative
silhouette coefficients in order to reach a higher (average)
silhouette score.

Another observation is that the evolutionary algorithm
often presented solutions in which the cluster sizes were not
as equal as the other techniques. It seems that the algorithm
often converged to solutions near the constraint boundary
that cluster sizes for a solution should not be too imbalanced.

All results generated seem to lead to clusters with no sig-
nificant cohesion according to Rousseeuw’s proposed inter-
pretations of the silhouette score.

4.3.3 Calculation time
The test cases of the benchmark were run on multiple

computers, so exact calculation time varies. Therefore a
relative comparison between cluster techniques and dissimi-
larity measures is more appropriate. All computation times
were averaged by the number of responses of the survey.
In the case of creating 2 clusters, if the K-means method’s
average duration is 1, Spectral clustering is on average 2.5
times as slow and the evolutionary algorithm’s duration is
on average 20 times longer.

5. CONCLUSION
Our main goal was to examine whether it is possible to

create meaningful clusters of ordinal survey data in a highly
structured ranking. First we answered the research question:
How can we create rank correlation coefficients that accu-
rately represent dissimilarity between clusters?. Our custom
Spearman’s rank-order coefficient with inverted tie-correct
performs best for this specific data. Our second research
question was: How can we cluster ordinal survey data and al-
locate respondents into a pre-determined number of groups?
Taking into account performance and computation time, K-
Means relatively does the best job. The combination of K-
means and Spearman’s rank with inverted tie-correct leads
to the best results.

However, all of the silhouette scores suggest that clusters
without significant structure were created, confirming the
claim that this kind of data is unsuitable for cluster analysis
[8]. On the contrary, it could also be the case that the
conducted surveys do not have any distinguishable groups
in them, or that more meaningful clusters could be created
with larger, for the business less useful, k.

Future research should consider optimizing the parame-
ters of the evolutionary algorithm more for the specific data.

Table 4: Average silhouette scores for 4 clusters

K-Means Spectral Evolutionary
Size Sp. Sp.Inv Sp. Sp.Inv Sp. Sp.Inv
113 0.1699 0.1885 0.1636 0.1772 0.1626 0.1600
149 0.1607 0.1397 0.1242 0.1066 0.1370 0.1241
350 0.1572 0.1542 0.1327 0.1366 0.1247 0.1306
493 0.1280 0.1472 0.0831 0.1207 0.1293 0.1429
2,451 0.1378 0.1574 0.1146 0.1460 0.1180 0.1215
3,426 0.1186 0.1273 0.1038 0.0920 0.1185 0.1119

Also, it might be possible to create more meaningful clusters
when some elements are left out. Some aspects of a collec-
tive labor agreement might not be related to the ranking of
the other aspects, so excluding it from the calculation might
improve the results. However, this would require specific
analyses for each survey.
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