SIREN: a simulation framework for understanding the effects of recommender systems in online news environments $\rightarrow ACM FA(cc)T^*$ Conference 2019

Dimitrios Bountouridis, Jaron Harambam, Mykola Makhortykh, Mónica Marrero, Nava Tintarev and <mark>Claudia Hauff</mark>

c.hauff@tudelft.nl / TU Delft

Fairnews project

66

Equal access to news is a precondition for a well-functioning democracy.

Data analytics and personalized recommendations make it possible to pre-sort news based on individual user profiles and social sorting. This project investigates to what extent algorithms can and may go into filtering information for the purpose of **fairness**. Unequal access to information can have major consequences for freedom of expression and non-discrimination.

Recommender systems

Help **consumers** deal with information overload via filtered and personalized suggestions

Help **content providers** to increase user engagement, satisfaction and boost sales

Recsys algorithms ...

→ Opaque

→ Complex

- → No transparency
- Lack of user control
- → Matthew effect

Our domain: news industry

- → Recommenders deliver information in line with people's interests and preferences (→homogeneity)
- Lowers people's chances to encounter different content, opinions, viewpoints
- Media form an arena for
 public debate in which a diversity of voices should be heard

Our contribution

- Simulation framework SIREN: visualization and analysis of the effects of different recommenders systems on news consumption
- Simulation setup based on empirical data and the literature

* Fleder, D., & Hosanagar, K. (2009). Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Management science, 55(5), 697-712.

"FH" model

News consumption context

- → Mechanics of article publishing and consumption
- Intent of users and content providers
- Unique news-article characteristics: large volume, short-term relevancy, editorial cues (font size, positioning, title, etc.)
- News-reading behavior departs from the typical "show me something interesting" attitude

SIREN

- Enables content providers to insert their own specifications (specific to *their* values, publishing habits, readers) and to test different recommender algorithms
- Adjustable parameters: articles (items), readers (users) and recommendation algorithms
- Evaluation metrics: Expected Popularity Complement (long-tail) and Expected Profile Distance (unexpectedness diversity) *

* Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. In *Proceedings of the fifth ACM conference on Recommender systems* (pp. 109-116).

Recommender settings

Article settings

User settings

	General Topic weights Topic prominence	
Recommender algorithms (scroll for more):	The likelihood of an article of a certain	Active users per day:
BPRMF	topic to appear in the news headlines (from 0.1 to 1)	100 🗘
ItemAttributeKNN	Entertainment:	Average read articles per day:
ItemKNN		
Bandom		6
	Business:	Reading focus:
Recommender salience:		
5	Politics:	
Days:	Sporte	
10 🗘		
Recommended articles per day:		
	Tech:	
5	0	

Running...

Random: Exporting iteration data...

Figures

Unexpectedness diversity (Expected Profile Distance)

1600

Long-tail diversity

Unexpectedness diversity

Topical distribution

One simulation iteration

- Users and articles are placed in a 2D attribute space
- One news cycle (article pool and recommendations are updated)
 - → A user is aware of articles in their proximity, promoted articles and personalized recommended articles
 - → Some of those will be read
 - → User preferences are updated

Articles

- → Articles and readers are placed in a topic space
 - BBC 2K news dataset: TF.IDF representations followed by t-SNE projection
- → Article t_j's prominence encoded by prominence attribute z (changes over time) → long-tail distribution

Articles

- → Articles and readers are placed in a topic space
 - → BBC 2K news dataset: TF.IDF representations followed by t-SNE projection
- → Article t_j's prominence encoded by prominence attribute z (changes over time) → long-tail distribution
- Starting prominence: article promotion on its first (x=1) day of publication
 - → 90% of interactions with an article happen within the first 5 days of the publication lifespan

$$z_{j}^{x} = (-px + 1)z_{j}^{0}, where \ p = 0.1$$

Users

Preferences (i.e. a user's ideal article) are represented as points in the topic space

$$P_{read}(u_i \ drifts \ towards \ t_j) = e^{-\frac{distance_{ij}^2}{\theta_i^*}}$$

Euclidean distancewidth of bivariate normal around u(sampled uniformly - readers vary)

User choice: prior to choosing, a user is aware of only a subset of all articles

$$P(u_i \text{ aware of } t_j) = \lambda \theta' \log (1 - z_j)^{-1} + (1 - \lambda) e^{-distance_{ij}^2/\theta}$$

prominent vs. neighouring article awareness fading wrt. prominence/proximity

Case study based on US news

	Variable	Adjustable	Default	Description
	$ \mathcal{U} $	1	200	Total number of active, daily users/readers.
	heta	×	0.07	Awareness decay with distance.
	heta'	×	0.5	Awareness decay with article prominence.
User	λ	1	0.6	Awareness weight placed on prominent versus neighborhood articles.
settings	w	✓	40	Maximum size of awareness pool.
	k	×	3	Choice model: the user's sensitivity to distance on the map.
	θ_i^*	×	$\sim \mathcal{N}(0.1, 0.03)$	User-drift: user's sensitivity to distance on the map.
	m	×	$0.05 \times \text{distance}_{ij}$	User-drift: distance covered between the article t_j and user u_i .
	S	1	$\sim \mathcal{N}(6,2)$	Amount of articles read per iteration per user (session size).
	n	✓	5	Number of recommended articles per user per iteration.
Recommender	δ	✓	1	Factor by which distance decreases for recommended articles (salience).
settings	β	×	0.9	Ranking-based decay of recommender salience.
	d	1	30	Number of simulation iterations per recommender.
	$ \mathcal{T} $	✓	$d \times 100$	Total number of articles (number of iterations \times articles per day).
Article	topic weights	1	$\mathcal{U}(0,5)$	Percentage of articles added per day/iteration per topic.
settings	z^0	1	see section 4.1	Awareness: initial article prominence per topic.
	Þ	×	0.1	Prominence decrease factor per iteration.

Discussion

- Recommenders' effects wrt. diversity are dependent on the evolution of readers' preferences
- Studies based on snapshots of real-life data can only provide a short-term understanding of the recommender effects
- Accurate modeling of user-drift is vital for accurate simulations
- Content providers need to understand their users' impulse to change preferences prior to adopting any algorithm

Conclusions

SIREN: an online news consumption simulation framework

- Designed to aid content providers to decide between different recommender algorithms
- → Based on seminal work by Fleder & Hosanagar, adapted to the news context

→ Limitations

- → Missing factors in news consumption (social media, user-user interactions)
- Standard parametrizations of common recommender algorithms
- → Insightful in practice (i.e. for content providers)?
- → https://github.com/dbountouridis/siren

