
TI2736-B: Assignment 6
Big Data Processing

Due date: 15.01.2017 @ 11.59pm

Please submit your report and code via Blackboard (please do not copy & paste your
code directly into the report). Make sure to include your name and student number in
your report.
The goal of this assignment is to familiarize yourself with the concepts used for graph
processing in Pregel/Giraph. The first three exercises are pen-and-paper exercises. The
last exercise asks you to implement a piece of code in Giraph - this exercise will take
time, as Giraph is not the easiest tool to work with. Please take this advice into account
when scheduling your work!

1. Explain how Aggregators can be used to take care of dangling nodes in the PageR-
ank computation. Assume the following:

• several aggregators can exist at any time,

• in superstep S a node can send values to one or more aggregators, and,

• in superstep S + 1 the aggregated values from S are available to all nodes.

2. Given a number of items (e.g. points in a 2D space), the goal of the K-means clus-
tering algorithm is to assign each item to one of k clusters (the number k is fixed in
advance).
Below you find the pseudo-code of K-means. A visualization of a toy example is
shown in Figure 1.

1 Input: items to be clustered, number k (#clusters)
2 Output: cluster label of each item

3 Initialise:
4 - Pick k items randomly (the initial cluster centroids)
5 - For each item:
6 - Compute distance to all centroids
7 - Assign item to the cluster with minimum distance

8 Repeat until no more label changes or 1000 iterations reached:
9 - Re-compute cluster centroids (the mean of assigned items)
10 - For each item:
11 - Compute distance to all centroids
12 - Assign item to the cluster with minimum distance
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Figure 1: K-means example with k = 3 and 12 items to cluster.

How can K-means be computed in the Giraph/Pregel framework of thinking?
Clearly indicate how you transform this problem space into a graph (what are
vertices and what are edges here?). Then, explain superstep by superstep the data
contained in each vertex, the local computation(s), messages send/received and
votes to halt.

3. The following paragraphs define the so-called local clustering coefficient of a
node in a graph; intuitively, the larger the local clustering coefficient of a node,
the more connected the node and its direct neighbours are to each other. Such a
statistic is useful for instance to compute how tightly or loosely connected mem-
bers of different communities are (a community can consist of all authors of a
particular research field, or of all Twitter users from a particular geographic area,
etc.).

Let ki be the number of outgoing edges of a node Ni. Let NHi be the set of all nodes
which have an incoming edge from Ni (this is also called the neighbourhood of Ni).
Finally, let `i be the number of edges between the nodes in NHi.

Then, the local clustering coefficient of Ni is defined as the number of edges be-
tween the nodes in the neighbourhood divided by the total number of possible
edges between them (this value is ki × (ki − 1)):

ci =
`i

ki(ki − 1)
(1)

As an example, lets look at node N2 in Figure 2: it has outgoing edges to k2 = 4
other nodes with NH2 = {N3, N4, N5, N8}. We also find one edge between nodes
in NH2: between N4 an N8. Thus,

c2 =
1

4× 3
. (2)
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How can the clustering coefficient of a node be computed in the Giraph/Pregel
framework of thinking? Explain superstep by superstep the local computation(s),
messages send and votes to halt. Assume the following input format: the graph
is represented in adjacency list format with each vertex containing an list of its
outgoing edges.

N1:20

N3:5

N2:15

N4:0

N8:90

N5:17

N6:7

N7:13

Figure 2: A directed graph with eight nodes. The label in each node shows the node
identifier, e.g. N5, and the node’s value, e.g. 17 for N5.

4. Finally, we turn to using Giraph.

(a) You first need to install Giraph as outlined in the procedure setup-giraph.pdf
available on Blackboard. As part of the setup, you will also run your first
Giraph job (single source shortest path) on a toy dataset. Note that the instal-
lation of Giraph is not an easy one, it will take you some time to get it right.
Having run the single source shortest paths algorithm on the provided toy
graph, report the Giraph Stats and Giraph Timers output of the job
you ran. You find those statistics among the program statistics that are printed
out to console (reporting these numbers shows that you were able to install
Giraph successfully).

(b) Implement the local clustering coefficient from the previous exercise in Gi-
raph. The simplest way to add your own code to Giraph is to take one of the
examples as your blueprint and adapt it where necessary. If you followed the
setup as described in 5(a) you can find the shortest path source code at:
/usr/local/giraph/giraph-examples/src/main/java/org/apache/
giraph/examples/SimpleShortestPathsComputation.java

Save the new class within the same folder as the original and recompile the
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Maven project. You are now able to use your own class in the same manner
as the examples provided by Giraph.

(c) To test your implementation, use one directed graph data set of your own
choice from http://snap.stanford.edu/data/. Note that in most cases
you will have to adjust the data slightly to a format that is compatible with
your Giraph code (you can use any tool of your choice for that step).
What is the average clustering coefficient of your chosen data set? Is it sim-
ilar to the one listed on the dataset’s SNAP webpage? How long did it take
Giraph to compute the local clustering coefficient?
Submit your code alongside the answers to these questions.
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