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• Explain and discuss the advantages of using 
ZooKeeper compared to a distributed system not 
using it 

• Explain ZooKeeper’s data model 

• Derive protocols to implement configuration tasks

Learning objectives



Introduction



ZooKeeper

• Developed at Yahoo! Research (2010 paper) 

• Started as sub-project of Hadoop, since 2011 a 
top-level Apache project

• Development is driven by application needs

5

A highly-available service for coordinating 
processes of distributed applications.

http://zookeeper.apache.org/

http://zookeeper.apache.org/


ZooKeeper in the Hadoop 
ecosystem
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HDFS

MapReduce (Job Scheduling/Execution) 

Pig  
(Data Flow)

Hive  
(SQL)
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Coordination
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Proper coordination 
is not easy. 



Fallacies of distributed 
computing

• The network is reliable 

• There is no latency

• The topology does not change 

• The network is homogeneous 

• The bandwidth is infinite 

• …
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Motivation
• In the past: a single program running on a single 

computer with a single CPU 

• Today: applications consist of independent programs 
running on a changing set of computers 

• Difficulty: coordination of those independent programs 

• Developers have to deal with coordination logic and 
application logic at the same time
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ZooKeeper: designed to relieve developers from 
writing coordination logic code.



Lets think ….



11

Question: how do you elect the leader?

A program that 
crawls the Web

a cluster with a  
few hundred machines

one machine (the leader)  
should coordinate the effort

application logic

coordination logic
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Question: how do you lock a service?

A program that 
crawls the Web

a cluster with a  
few hundred machines

The progress of the crawl 
is stored in a DB: who 
accesses what & when?

application logic

coordination logic

one database
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Question: how can the configuration be 
distributed?

A program that 
crawls the Web

a cluster with a  
few hundred machines

application logic

Every worker should 
start with the same 
configuration

coordination logic

configuration file



Introduction contd.



Solution approaches
• Be specific: develop a particular service for each 

coordination task 
• Locking service 
• Leader election 
• etc. 

• Be general: provide an API to make many services 
possible
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ZooKeeper The Rest
API that enables application 

developers to implement 
their own primitives easily

specific primitives are 
implemented on the 

server side



How can a distributed 
system look like?

Slave Slave Slave Slave

MASTER

+ simple
- coordination performed by the master
- single point of failure
- scalability



How can a distributed 
system look like?

Slave Slave Slave Slave

MASTER

BACKUP 
MASTER COORDINATION 

SERVICE

+ not a single point of failure anymore
- scalability is still an issue



How can a distributed 
system look like?

Slave Slave Slave Slave

MASTER

BACKUP 
MASTER COORDINATION 

SERVICE

+ scalability



What makes distributed 
system coordination difficult?

19

Partial failures make application writing difficult

message

nothing comes back

Sender does not know: 
• whether the message was received 
• whether the receiver’s process died before/after  

processing the message 

network failure



Typical coordination problems 
in distributed systems
• Static configuration: a list of operational parameters for the 

system processes 

• Dynamic configuration: parameter changes on the fly 

• Group membership: who is alive and part of the group? 

• Leader election: who is in charge who is a backup? 

• Mutually exclusive access to critical resources (locks) 

• Barriers (supersteps in Giraph for instance)
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The ZooKeeper API allows us to implement all these  
coordination tasks easily.



ZooKeeper principles



Dijkstra’s dining 
philosophers

Image source: http://zoo.cs.yale.edu/classes/cs422/2014fa/lectures/lec7.html#/25 

•N philosophers 
•N forks 
•To eat, both the left and right 

fork are needed 
•Each philosopher can pick up a 

fork (if one is available), eat 
(when having both forks) and 
think (having no forks)

How do we ensure (=design an algorithm) that  
no philosopher starves?



Dijkstra’s dining 
philosophers

Image source: http://zoo.cs.yale.edu/classes/cs422/2014fa/lectures/lec7.html#/25 

A simple algorithm: 
• think until the left fork is 

available; pick it up 
• think until the right fork is 

available; pick it up 
•eat for time t when both forks 

are available 
•after having eaten, put down 

the right fork 
•put down the left fork 
• repeat …deadlock!



Dijkstra’s dining 
philosophers

Image source: http://zoo.cs.yale.edu/classes/cs422/2014fa/lectures/lec7.html#/25 

A simple algorithm: 
• think until the left fork is 

available; pick it up 
• think until the right fork is 

available; pick it up 
•eat for time t when both forks 

are available 
•after having eaten, put down 

the right fork 
•put down the left fork 
• repeat …mutual exclusion!

does
 not w

ork!



ZooKeeper’s design 
principles
• API is wait-free

• No blocking primitives in ZooKeeper 
• Blocking can be implemented by a client 
• No deadlocks 

• Guarantees 
• Client requests are processed in FIFO order
• Writes to ZooKeeper are linearisable 

• Clients receive notifications of changes before the 
changed data becomes visible
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ZooKeeper’s strategy to be 
fast and reliable
• ZooKeeper service is an ensemble of servers that 

use replication (high availability)
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ZooKeeper’s strategy to be 
fast and reliable
• ZooKeeper service is an ensemble of servers that 

use replication (high availability) 

• Data is cached on the client side 

• What if a new leader is elected? 
• Potential solution: polling (not optimal) 
• Watch mechanism: clients can watch for an 

update of a given data object
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Example: a client caches the ID of the current leader 
instead of probing ZooKeeper every time.

ZooKeeper is optimised for 
read-dominant operations!



ZooKeeper terminology
• Client: user of the ZooKeeper service 

• Server: process providing the ZooKeeper service 

• znode: in-memory data node in ZooKeeper, 
organised in a hierarchical namespace (the data tree) 

• Update/write: any operation which modifies the state 
of the data tree 

• Clients establish a session when connecting to 
ZooKeeper

28



ZooKeeper’s data model: 
filesystem
• znodes organise in a hierarchical namespace 

• znodes can be manipulated by clients through the 
ZooKeeper API 

• znodes are referred to by UNIX style file system 
paths
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/

/app2/app1

/app1/p_3/app1/p_1 /app1/p_2
All znodes store data (file like) & can have 
children (directory like).



znodes
• znodes are not designed for general data storage; 

usually require storage in the order of kilobytes 

• znodes map to abstractions of the client 
application
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Group membership protocol:  
Client process pi creates znode p_i 
under /app1. 
/app1 persists as long as the process 
is running.

/

/app2/app1

/app1/p_3/app1/p_1 /app1/p_2



znode flags
• Clients manipulate znodes by creating and 

deleting them 

• EPHEMERAL flag: clients create znodes which 
are deleted at the end of the client’s session 

• SEQUENTIAL flag: monotonically increasing 
counter appended to a znode’s path;  
counter value of a new znode under a parent is 
always larger than value of existing children

ephemeral (Greek): passing, short-lived

/app1_5

/app1_5/p_3/app1_5/p_1 /app1_5/p_2

create(/app1_5/p_, data, SEQUENTIAL)
No flag: regular znode  
(needs to be deleted explicitly)



znodes & watch flag
• Clients can issue read operations on znodes with a 

watch flag 

• Server notifies the client when the information on the 
znode has changed  

• Watches are one-time triggers associated with a 
session (unregistered once triggered or session closes) 

• Watch notifications indicate the change, not the new 
data
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Sessions
• A client connects to ZooKeeper and initiates a 

session 

• Sessions have an associated timeout 

• ZooKeeper considers a client faulty if it does not 
receive anything from its session for more than that 
timeout 

• Session ends: faulty client or explicitly ended by 
client
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Versioning

• znodes have associated version counters 

• Allow clients to execute conditional updates based 
on the version of the znode
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A few implementation details
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ZooKeeper data is replicated on each server that  
makes up the service

replicated across 
all servers 
(in-memory)

write request requires 
coordination between  
ZooKeeper servers (leader coordinates)

updates first  
logged to disk; 
write-ahead log 
and snapshot 
for recovery

Source: http://bit.ly/13VFohW 

read requests served from
individual server

http://bit.ly/13VFohW


A few implementation details
• ZooKeeper server services clients 

• Clients connect to exactly one server to submit 
requests 
• read requests served from the local replica 
• write requests are processed by an agreement 

protocol (an elected server leader initiates 
processing of the write request)

36



Lets work through 
some examples



ZooKeeper API
• String create(path, data, flags)

• creates a znode with path name path, stores data in it  
and sets flags (ephemeral, sequential) 

• returns the name of the new znode 

• void delete(path, version)
• deletes the anode if it is at the expected version 

• Stat exists(path, watch)
• watch flag enables the client to set a watch on the znode 

• (data, Stat) getData(path, watch)
• returns the data and meta-data of the znode 

• Stat setData(path, data, version)
• writes data if the version number is the current version of the znode 

• String[] getChildren(path, watch)
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No partial read/writes 
(no open, seek or 
close methods). 
Absolute path names 
expected.

No createLock() or 
similar methods.

All methods exist as 
synchronous and as 
asynchronous 
versions.

version set to -1: 
execute method 
independent of  
current version



Example: configuration
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Questions:
1. How does a new worker query ZK 
for a configuration? 
2. How does an administrator change 
the configuration on the fly? 
3. How do the workers read the new 
configuration? /

/app2/app1

/app1/config /app1/progress

[configuration stored in /app1/config]
1. getData(/app1/config,true)
2. setData(/app1/config/config_data,-1)
[notify watching clients]
3. getData(/app1/config,true)

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)

app configuration



Example: group 
membership
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/

/app1

/app1/workers/worker1

/app1/workers

/app1/workers/worker2

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)Questions:

1. How can all workers (slaves) of an 
application register themselves on ZK? 
2. How can a process find out about all 
active workers of an application?

[a znode is designated to store workers]
1. create(/app1/workers/worker,data,EPHEMERAL)
2. getChildren(/app1/workers,true)



Example:  
simple locks
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/
/app1

/app1/workers/worker1

/app1/workers

/app1/workers/worker2

/app1/lock1

all processes compete at all times for the lock

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)

ok? use locked resource

create(/app1/lock1,…,EPHE.)

getData(/app1/lock1,true)

yes

Question:
How can all workers of an application use a single resource through a lock?

a database, ….



Example:  
locking without herd effect
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exists(max_id<id,true)

id=min(ids)? exit (use lock)

id=create(/app1/locks/lock_,SEQ.|EPHE.)

yes

ids = getChildren(/app1/locks/,false)

no

wait for notification

Question:
How can all workers of an application use a single resource through a lock?

/

/app1

/app1/locks/lock_1

/app1/locks

/app1/locks/lock_2



Example:  
leader election
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/

/app1

/app1/workers/leader

/app1/workers

/app1/workers/worker1
yes

ok? follow

create(/app1/workers/leader,IP,EPHE.)

ok?

yes

lead

getData(/app1/workers/leader,true)

no

if the leader dies, elect again (“herd effect”)

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)

Question:
How can all workers of an application elect a leader among 
themselves?



yes

ok?

getChildren(/app1/workers/leader1,false)
getChildren(/app1/workers/leader2,false)

ok?

yes

lead

getData(/app1/workers/leader1,true)

no

getData(/app1/workers/leader2,true)

ok? yes

no

yes

create(/app1/workers/leader2,IP,EPHE.)

ok? lead
no

no

create(/app1/workers/leader1,IP,EPHE.)

min. size leader L

create(/app1/workers/workerL_,IP,EPHE.|SEQ.

Exam question example



Example: rendezvous
• Scenario: a client wants to start a master and some 

worker processes 

• Processes are started by a scheduler, the client does 
not know the IP addresses of the processes in advance 

• Rendezvous znode z is created by the client 

• Full pathname of z is passed as startup parameter of 
the master/worker processes 

• Master starts and updates z with its IP/port information

45



ZooKeeper 
applications



The Yahoo! fetching service
• Fetching Service is part of Yahoo!’s crawler infrastructure 

• Setup: master commands page-fetching processes 
• Master provides the fetchers with configuration 
• Fetchers write back information of their status and health 

• Main advantage of ZooKeeper: 
• Recovery from master failures 
• Guaranteed availability despite failures 

• Used primitives of ZK: configuration metadata, leader 
election
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Yahoo! message broker
• A distributed publish-subscribe system 

• The system manages thousands of topics that clients 
can publish messages to and receive messages from 

• The topics are distributed among a set of servers to 
provide scalability 

• Used primitives of ZK: configuration metadata (to 
distribute topics), failure detection and group 
membership

48



Yahoo! message broker
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ephemeral nodes

monitored by 
all servers

primary and backup 
server per topic; 
topic subscribers

Source: http://bit.ly/13VFohW 

ZooKeeper filesystem setup

http://bit.ly/13VFohW


Throughput
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only read 
requests

only write 
requests

Setup: 250 clients, each client has at least 100  
outstanding requests (read/write of 1K data) 

Source: http://bit.ly/13VFohW 

http://bit.ly/13VFohW


Recovery from failure
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Setup: 250 clients, each client has at least 100  
outstanding requests (read/write of 1K data);  
5 ZK machines (1 leader, 4 followers), 30% writes

(1) failure & recovery of 
a follower 

(2) failure & recovery of 
a different follower 

(3) failure of the leader 
(4) failure of followers 

(a,b), recovery at (c) 
(5) failure of the leader 
(6) recovery of the 

leader

Source: http://bit.ly/13VFohW 

http://bit.ly/13VFohW
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http://bit.ly/13VFohW


Summary

• Whirlwind tour of ZooKeeper 

• Why do we need it? 

• Data model of ZooKeeper: znodes 

• Example implementations of different coordination 
tasks
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