
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Pig
Ctd. Pig

Map
ReduceStreams

HDFS

Intro Streams

Hadoop
Ctd.

Design
Patterns

Spark
Ctd.

Graphs Giraph SparkZoo
Keeper

3

• Explain and discuss the advantages of using
ZooKeeper compared to a distributed system not
using it

• Explain ZooKeeper’s data model

• Derive protocols to implement configuration tasks

Learning objectives

Introduction

ZooKeeper

• Developed at Yahoo! Research (2010 paper)

• Started as sub-project of Hadoop, since 2011 a
top-level Apache project

• Development is driven by application needs

5

A highly-available service for coordinating
processes of distributed applications.

http://zookeeper.apache.org/

http://zookeeper.apache.org/

ZooKeeper in the Hadoop
ecosystem

6

HDFS

MapReduce (Job Scheduling/Execution)

Pig
(Data Flow)

Hive
(SQL)

Sqoop
(Data Transfer)

Zo
oK

ee
pe

r
(C

oo
rd

in
at

io
n)

Av
ro

(S

er
ia

liz
at

io
n)

HBase (Column DB)

Coordination

7

Proper coordination
is not easy.

Fallacies of distributed
computing

• The network is reliable

• There is no latency

• The topology does not change

• The network is homogeneous

• The bandwidth is infinite

• …
8

Motivation
• In the past: a single program running on a single

computer with a single CPU

• Today: applications consist of independent programs
running on a changing set of computers

• Difficulty: coordination of those independent programs

• Developers have to deal with coordination logic and
application logic at the same time

9

ZooKeeper: designed to relieve developers from
writing coordination logic code.

Lets think ….

11

Question: how do you elect the leader?

A program that
crawls the Web

a cluster with a  
few hundred machines

one machine (the leader)  
should coordinate the effort

application logic

coordination logic

12

Question: how do you lock a service?

A program that
crawls the Web

a cluster with a  
few hundred machines

The progress of the crawl
is stored in a DB: who
accesses what & when?

application logic

coordination logic

one database

13

Question: how can the configuration be
distributed?

A program that
crawls the Web

a cluster with a  
few hundred machines

application logic

Every worker should
start with the same
configuration

coordination logic

configuration file

Introduction contd.

Solution approaches
• Be specific: develop a particular service for each

coordination task
• Locking service
• Leader election
• etc.

• Be general: provide an API to make many services
possible

15

ZooKeeper The Rest
API that enables application

developers to implement
their own primitives easily

specific primitives are
implemented on the

server side

How can a distributed
system look like?

Slave Slave Slave Slave

MASTER

+ simple
- coordination performed by the master
- single point of failure
- scalability

How can a distributed
system look like?

Slave Slave Slave Slave

MASTER

BACKUP
MASTER COORDINATION

SERVICE

+ not a single point of failure anymore
- scalability is still an issue

How can a distributed
system look like?

Slave Slave Slave Slave

MASTER

BACKUP
MASTER COORDINATION

SERVICE

+ scalability

What makes distributed
system coordination difficult?

19

Partial failures make application writing difficult

message

nothing comes back

Sender does not know:
• whether the message was received
• whether the receiver’s process died before/after  

processing the message

network failure

Typical coordination problems
in distributed systems
• Static configuration: a list of operational parameters for the

system processes

• Dynamic configuration: parameter changes on the fly

• Group membership: who is alive and part of the group?

• Leader election: who is in charge who is a backup?

• Mutually exclusive access to critical resources (locks)

• Barriers (supersteps in Giraph for instance)

20

The ZooKeeper API allows us to implement all these  
coordination tasks easily.

ZooKeeper principles

Dijkstra’s dining
philosophers

Image source: http://zoo.cs.yale.edu/classes/cs422/2014fa/lectures/lec7.html#/25

•N philosophers
•N forks
•To eat, both the left and right

fork are needed
•Each philosopher can pick up a

fork (if one is available), eat
(when having both forks) and
think (having no forks)

How do we ensure (=design an algorithm) that  
no philosopher starves?

Dijkstra’s dining
philosophers

Image source: http://zoo.cs.yale.edu/classes/cs422/2014fa/lectures/lec7.html#/25

A simple algorithm:
• think until the left fork is

available; pick it up
• think until the right fork is

available; pick it up
•eat for time t when both forks

are available
•after having eaten, put down

the right fork
•put down the left fork
• repeat …deadlock!

Dijkstra’s dining
philosophers

Image source: http://zoo.cs.yale.edu/classes/cs422/2014fa/lectures/lec7.html#/25

A simple algorithm:
• think until the left fork is

available; pick it up
• think until the right fork is

available; pick it up
•eat for time t when both forks

are available
•after having eaten, put down

the right fork
•put down the left fork
• repeat …mutual exclusion!

does
 not w

ork!

ZooKeeper’s design
principles
• API is wait-free

• No blocking primitives in ZooKeeper
• Blocking can be implemented by a client
• No deadlocks

• Guarantees
• Client requests are processed in FIFO order
• Writes to ZooKeeper are linearisable

• Clients receive notifications of changes before the
changed data becomes visible

25

ZooKeeper’s strategy to be
fast and reliable
• ZooKeeper service is an ensemble of servers that

use replication (high availability)

26

Server

Server

Server

Server

Client Client

Client

Client Client Client

Client

Client

ZooKeeper service

Leader

ZooKeeper’s strategy to be
fast and reliable
• ZooKeeper service is an ensemble of servers that

use replication (high availability)

• Data is cached on the client side

• What if a new leader is elected?
• Potential solution: polling (not optimal)
• Watch mechanism: clients can watch for an

update of a given data object

27

Example: a client caches the ID of the current leader
instead of probing ZooKeeper every time.

ZooKeeper is optimised for
read-dominant operations!

ZooKeeper terminology
• Client: user of the ZooKeeper service

• Server: process providing the ZooKeeper service

• znode: in-memory data node in ZooKeeper,
organised in a hierarchical namespace (the data tree)

• Update/write: any operation which modifies the state
of the data tree

• Clients establish a session when connecting to
ZooKeeper

28

ZooKeeper’s data model:
filesystem
• znodes organise in a hierarchical namespace

• znodes can be manipulated by clients through the
ZooKeeper API

• znodes are referred to by UNIX style file system
paths

29

/

/app2/app1

/app1/p_3/app1/p_1 /app1/p_2
All znodes store data (file like) & can have
children (directory like).

znodes
• znodes are not designed for general data storage;

usually require storage in the order of kilobytes

• znodes map to abstractions of the client
application

30

Group membership protocol:
Client process pi creates znode p_i
under /app1.
/app1 persists as long as the process
is running.

/

/app2/app1

/app1/p_3/app1/p_1 /app1/p_2

znode flags
• Clients manipulate znodes by creating and

deleting them

• EPHEMERAL flag: clients create znodes which
are deleted at the end of the client’s session

• SEQUENTIAL flag: monotonically increasing
counter appended to a znode’s path;  
counter value of a new znode under a parent is
always larger than value of existing children

ephemeral (Greek): passing, short-lived

/app1_5

/app1_5/p_3/app1_5/p_1 /app1_5/p_2

create(/app1_5/p_, data, SEQUENTIAL)
No flag: regular znode  
(needs to be deleted explicitly)

znodes & watch flag
• Clients can issue read operations on znodes with a

watch flag

• Server notifies the client when the information on the
znode has changed

• Watches are one-time triggers associated with a
session (unregistered once triggered or session closes)

• Watch notifications indicate the change, not the new
data

32

Sessions
• A client connects to ZooKeeper and initiates a

session

• Sessions have an associated timeout

• ZooKeeper considers a client faulty if it does not
receive anything from its session for more than that
timeout

• Session ends: faulty client or explicitly ended by
client

33

Versioning

• znodes have associated version counters

• Allow clients to execute conditional updates based
on the version of the znode

34

A few implementation details

35

ZooKeeper data is replicated on each server that
makes up the service

replicated across
all servers
(in-memory)

write request requires
coordination between
ZooKeeper servers (leader coordinates)

updates first
logged to disk;
write-ahead log
and snapshot
for recovery

Source: http://bit.ly/13VFohW

read requests served from
individual server

http://bit.ly/13VFohW

A few implementation details
• ZooKeeper server services clients

• Clients connect to exactly one server to submit
requests
• read requests served from the local replica
• write requests are processed by an agreement

protocol (an elected server leader initiates
processing of the write request)

36

Lets work through
some examples

ZooKeeper API
• String create(path, data, flags)

• creates a znode with path name path, stores data in it  
and sets flags (ephemeral, sequential)

• returns the name of the new znode

• void delete(path, version)
• deletes the anode if it is at the expected version

• Stat exists(path, watch)
• watch flag enables the client to set a watch on the znode

• (data, Stat) getData(path, watch)
• returns the data and meta-data of the znode

• Stat setData(path, data, version)
• writes data if the version number is the current version of the znode

• String[] getChildren(path, watch)

38

No partial read/writes
(no open, seek or
close methods).
Absolute path names
expected.

No createLock() or
similar methods.

All methods exist as
synchronous and as
asynchronous
versions.

version set to -1:
execute method
independent of  
current version

Example: configuration

39

Questions:
1. How does a new worker query ZK
for a configuration?
2. How does an administrator change
the configuration on the fly?
3. How do the workers read the new
configuration? /

/app2/app1

/app1/config /app1/progress

[configuration stored in /app1/config]
1. getData(/app1/config,true)
2. setData(/app1/config/config_data,-1)
[notify watching clients]
3. getData(/app1/config,true)

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)

app configuration

Example: group
membership

40

/

/app1

/app1/workers/worker1

/app1/workers

/app1/workers/worker2

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)Questions:

1. How can all workers (slaves) of an
application register themselves on ZK?
2. How can a process find out about all
active workers of an application?

[a znode is designated to store workers]
1. create(/app1/workers/worker,data,EPHEMERAL)
2. getChildren(/app1/workers,true)

Example:  
simple locks

41

/
/app1

/app1/workers/worker1

/app1/workers

/app1/workers/worker2

/app1/lock1

all processes compete at all times for the lock

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)

ok? use locked resource

create(/app1/lock1,…,EPHE.)

getData(/app1/lock1,true)

yes

Question:
How can all workers of an application use a single resource through a lock?

a database, ….

Example:  
locking without herd effect

42

exists(max_id<id,true)

id=min(ids)? exit (use lock)

id=create(/app1/locks/lock_,SEQ.|EPHE.)

yes

ids = getChildren(/app1/locks/,false)

no

wait for notification

Question:
How can all workers of an application use a single resource through a lock?

/

/app1

/app1/locks/lock_1

/app1/locks

/app1/locks/lock_2

Example:  
leader election

43

/

/app1

/app1/workers/leader

/app1/workers

/app1/workers/worker1
yes

ok? follow

create(/app1/workers/leader,IP,EPHE.)

ok?

yes

lead

getData(/app1/workers/leader,true)

no

if the leader dies, elect again (“herd effect”)

• String create(path, data, flags)
• void delete(path, version)
• Stat exists(path, watch)
• (data, Stat) getData(path, watch)
• Stat setData(path, data, version)
• String[] getChildren(path, watch)

Question:
How can all workers of an application elect a leader among
themselves?

yes

ok?

getChildren(/app1/workers/leader1,false)
getChildren(/app1/workers/leader2,false)

ok?

yes

lead

getData(/app1/workers/leader1,true)

no

getData(/app1/workers/leader2,true)

ok? yes

no

yes

create(/app1/workers/leader2,IP,EPHE.)

ok? lead
no

no

create(/app1/workers/leader1,IP,EPHE.)

min. size leader L

create(/app1/workers/workerL_,IP,EPHE.|SEQ.

Exam question example

Example: rendezvous
• Scenario: a client wants to start a master and some

worker processes

• Processes are started by a scheduler, the client does
not know the IP addresses of the processes in advance

• Rendezvous znode z is created by the client

• Full pathname of z is passed as startup parameter of
the master/worker processes

• Master starts and updates z with its IP/port information

45

ZooKeeper
applications

The Yahoo! fetching service
• Fetching Service is part of Yahoo!’s crawler infrastructure

• Setup: master commands page-fetching processes
• Master provides the fetchers with configuration
• Fetchers write back information of their status and health

• Main advantage of ZooKeeper:
• Recovery from master failures
• Guaranteed availability despite failures

• Used primitives of ZK: configuration metadata, leader
election

47

Yahoo! message broker
• A distributed publish-subscribe system

• The system manages thousands of topics that clients
can publish messages to and receive messages from

• The topics are distributed among a set of servers to
provide scalability

• Used primitives of ZK: configuration metadata (to
distribute topics), failure detection and group
membership

48

Yahoo! message broker

49

ephemeral nodes

monitored by
all servers

primary and backup
server per topic;
topic subscribers

Source: http://bit.ly/13VFohW

ZooKeeper filesystem setup

http://bit.ly/13VFohW

Throughput

50

only read
requests

only write
requests

Setup: 250 clients, each client has at least 100  
outstanding requests (read/write of 1K data)

Source: http://bit.ly/13VFohW

http://bit.ly/13VFohW

Recovery from failure

51

Setup: 250 clients, each client has at least 100  
outstanding requests (read/write of 1K data);  
5 ZK machines (1 leader, 4 followers), 30% writes

(1) failure & recovery of
a follower

(2) failure & recovery of
a different follower

(3) failure of the leader
(4) failure of followers

(a,b), recovery at (c)
(5) failure of the leader
(6) recovery of the

leader

Source: http://bit.ly/13VFohW

http://bit.ly/13VFohW

References
• [book] ZooKeeper by Junqueira & Reed, 2013  

(available on the TUD campus network)

• [paper] ZooKeeper: Wait-free coordination for Internet-
scale systems by Hunt et al., 2010; http://bit.ly/
13VFohW

52

http://bit.ly/13VFohW

Summary

• Whirlwind tour of ZooKeeper

• Why do we need it?

• Data model of ZooKeeper: znodes

• Example implementations of different coordination
tasks

53

