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• Give examples of real-world problems that can 
be solved with graph algorithms 

• Explain the major differences between BFS on a 
single machine (Dijkstra) and in a MapReduce 
framework 

• Explain the main ideas behind PageRank 

• Implement iterative graph algorithms in Hadoop

Learning objectives



Graphs
• Ubiquitous in modern society 

• Hyperlink structure of the Web 
• Social networks 

• Email flow 
• Friend patterns 

• Transportation networks 

• Nodes and links can be annotated with metadata 
• Social network nodes: age, gender, interests 
• Social network edges: relationship type (friend, spouse, 

foe, etc.), relationship importance (weights)
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Real-world problems to 
solve
• Graph search

• Friend recommend. in social networks 
• Expert finding in social networks 

• Path planning 
• Route of network packets 
• Route of delivery trucks 

• Graph clustering 
• Sub-communities in large graphs
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Real-world problems to 
solve
• Minimum spanning tree: a tree that contains all 

vertices of a graph and the cheapest edges 
• Laying optical fibre to span a number of 

destinations at the lowest possible cost 

• Bipartite graph matching: match two disjoint  
vertex sets 
• Job seekers looking for employment 
• Singles looking for dates
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Real-world problems to 
solve
• Identification of special nodes

• Special based on various metrics (in-degree, 
average distance to other nodes, relationship to 
the cluster structure, …) 

• Maximum flow 
• Compute traffic that can be sent          

from source to sink given various                                        
flow capacity constraints

7



Real-world problems to 
solve
• Identification of special nodes

• Special based on various metrics (in-degree, 
average distance to other nodes, relationship to 
the cluster structure, …) 

• Maximum flow 
• Compute traffic that can be sent          

from source to sink given various                                        
flow capacity constraints

8

A common feature: millions or billions of nodes & 
millions or billions of edges.

Real-world graphs are often sparse: the number of 
actual edges is far smaller than the number of 
possible edges.



A bit of graph theory



Connected components
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• Strongly connected component (SCC): directed 
graph with a path from each node to every other 
node 

• Weakly connected component (WCC): directed 
graph with a path in the underlying undirected 
graph from each node to every other node

A

C

B

D
A cannot reach C 
B cannot reach A 
…..

strongly connected

A

C

B

D
G

H

2 weakly connected components



Graph notation

11

A

C

B

D

G = (V,E)
V = {A,B,C,D}
E = {(A,D), (B,C), (C,A), (C,B), (C,D), (D,B)}
d(A,B) = 2, d(C,B) = 1, d(A,C) = 3

nodes

directed edges

shortest distance  
between 2 nodes

graph



Graph notation
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A

C

B

D
G

H

undirected  
edges

infinite distance

G = (V,E)
V = {A,B,C,D,G,H}
E = {{A,C}, {A,D}, {B,C}, {B,D}, {C,D}, {G,H}}
d(A,B) = 2, d(C,B) = 1, d(A,C) = 1, d(A,G) = 1



Graph diameter
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Definition: longest shortest path in the graph
max

x,y2V

d(x, y)

A B C D G diameter: 4

A B C D G

A B C D G

diameter: 3

diameter: 2



Breadth-first search

Source: http://joseph-harrington.com/
2012/02/breadth-first-search-visual/ 14

find the shortest path  
between two nodes  
in a graph

http://joseph-harrington.com/2012/02/breadth-first-search-visual/


Graph representations



Adjacency matrices

• Edges in unweighted graphs: 1 (edge exists), 0 (no edge exists) 

• Edges in weighted graphs: matrix contains edge weights 

• Undirected graphs use half 
 the matrix 

• Advantage: mathematically  
easy manipulation  

• Disadvantage: space  
requirements
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A graph with n nodes can be represented by

an n⇥ n square matrix M .

Matrix element cij > 0 indicates an edge from

node ni to nj .

Source: Data-Intensive Text Processing with MapReduce



Adjacency list
• A much more compressed representation (for sparse graphs) 

• Only edges that exist are encoded in adjacency lists 

• Two options to encode undirected edges: 
• Encode each edge twice (the nodes appear in each other’s 

adjacency list) 
• Impose an order on nodes and encode edges only on the 

adjacency list of the  
node that comes first  
in the ordering 

• Disadvantage: some graph  
operations are more difficult  
compared to the adj. matrix
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outlinks

inlinks

Source: Data-Intensive Text Processing with MapReduce



n1

n2

n3

n4

n5

Adjacency list
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each edge twice



Adjacency list
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node ordering

n1

n2

n3

n4

n5



Adjacency matrices vs. lists
• A less compressed representation (matrix) makes some 

computations easier 

• Counting inlinks 
• Matrix: scan the column and count 
• List: difficult, worst case all data needs to be scanned 

• Counting outlinks 
• Matrix: scan the rows and count 
• List: outlinks are natural
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Breadth-first search 
(in detail)



Single-source shortest path 
Standard solution: Dijkstra’s algorithm I

Task: find the shortest path from a source node to 
all other nodes in the graph

In each step, find 
the minimum edge 
of a node not 
yet visited.

Source: Data-Intensive Text Processing with MapReduce



Single-source shortest path 
Standard solution: Dijkstra’s algorithm II
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Task: find the shortest path from a source node to 
all other nodes in the graph

Input: 
- directed connected graph  
in adjacency list format 
- edge distances in w 
- source s

source node

starting distance: infinite for all nodes

Q is a global priority queue 
sorted by current distance

adapt distances

Source: Data-Intensive Text Processing with MapReduce



Single-source shortest path 
In the MapReduce world: parallel BFS I
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Task: find the shortest path from a source node to 
all other nodes in the graph. Edges have unit weight.

x

j

k

i

d
x

= min(d
i

+ 1, d
j

+ 1, d
k

+ 1)

didj

dk

Intuition: 
• Distance of nodes N directly  

connected to the source is 1 
• Distance of nodes directly  

connected to nodes in N is 2 
• Multiple path to x: the  shortest  

path must  go through one  
of the  nodes with an  
outlink to x;  
use the minimum

1 Hadoop job per iteration.



Single-source shortest path 
In the MapReduce world: parallel BFS II

Edges have unit weight.
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Mapper: emit all distances, 
and the graph structure itself

Reducer: update distances 
and emit the graph structure

Source: Data-Intensive Text Processing with MapReduce

Node {
   distance
   adjacencyList
}

Overloading of value type: distance 
(int) or complex data structure. 

In practice: wrapper class with 
indicator variable.



Single-source shortest path 
In the MapReduce world: parallel BFS III

• Each iteration of the algorithm is one Hadoop job
• A map phase to compute the distances 
• A reduce phase to find the current minimum distance 

• Iterations: 
1. All nodes connected to the source are discovered 
2. All nodes connected to those discovered in 1. are found 
3. … 

• Between iterations (jobs) the graph structure needs to be 
passed along; reducer output is input for the next iteration

26 Edges have unit weight.



Single-source shortest path 
In the MapReduce world: parallel BFS IV

• How many iterations are necessary to compute the shortest 
path to all nodes? 
• Diameter of the graph (greatest distance between a pair of 

nodes) 
• Diameter is usually small (“six degrees of separation”) 

• In practice: iterate until all node distances are less than 
+infinity 
• Assumption: connected graph 

•  Termination condition checked “outside” of MapReduce job 
• Use Counter to count number of nodes with infinite 

distance
27 Edges have unit weight.



Single-source shortest path 
In the MapReduce world: parallel BFS V
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MAP

REDUCE

HDFS

Local disk

Nodes (adjacency lists) 

Updated nodes 

Driver

Counter updates

(Re)start job

Problem: a lot of reading and 
writing to/from HDFS

Local disk

Edges have unit weight.



Beyond unit weight edges 
In the MapReduce world: parallel BFS+

• Two changes required wrt. the parallel BFS 
• Update rule, instead of d+1 use d+w 
• Termination criterion: no more distance 

changes (via Counter) 

• Num. iterations in the worst case: #nodes-1
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Task: find the shortest path from a source node to all 
other nodes when edges have positive distances >1

1
11

1

1

1

1

1

10

source



Single-source shortest path 
Dijkstra vs. parallel BFS

• Dijkstra 
• Single processor (global data structure) 
• Efficient (no recompilation of finalised states) 

• Parallel BFS(+)
• Brute force approach 
• A lot of unnecessary computations (distances to 

all nodes recomputed at each iteration) 
• No global data structure
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in general …



Prototypical approach to graph 
algorithms in MapReduce/Hadoop
• Node datastructure which contains 

• Adjacency list 
• Additional node [and possibly edge] information (type, features, 

distances, weights, etc.) 

• Job maps over the node data structures 
• Computation involves a node’s internal state and local graph structure 
• Result of map phase emitted as values, keyed with node ids of the 

neighbours; reducer aggregates a node’s results 

• Graph itself is passed from Mapper to Reducer

• Algorithms are iterative, requiring several Hadoop jobs controlled by the 
driver code

32



The Web graph



The Web’s graph structure
• Insights important for: 

• Crawling strategies 
• Analyzing the behaviour of algorithms that rely 

on link information (such as PageRank) 
• Predicting the evolution of Web structures 
• … 

• Data: Altavista crawl from 1999 with 200 million 
pages and 1.5 billion links

34

Broder et al., 1999



The Web as a “bow tie” 
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Broder et al., 1999

OUT 

43M

IN 

43M

SCC: 
strongly 

connected 
component 

56M

tubes
disconnected 
components (17M)

tendrils (44M) 
(cannot reach SCC)

• ~200M nodes in total 
• >90% in a single WCC 
• Av. connected distance SCC: 28 
• Av. connected distance graph: >500 
• Av. Path length: 16 between any 

two nodes with existing path 

nodes that can 
reach the SCC;  
cannot be 
reached from it 
(e.g. new nodes)

nodes that can reach 
be reached from the 
SCC but do not link 
back (e.g. corporate 
nodes)



PageRank
• A topic independent approach to page importance 

• Computed once per crawl 

• Every document of the corpus is assigned an importance score 
• In search: re-rank (or filter) results with a low PageRank score 

• Simple idea: number of in-link indicates importance 
• Page p1 has 10 in-links and one of those is from yahoo.com, 

page p2 has 50 in-links from obscure pages 

• PageRank takes the importance of the page where the link 
originates into account

36

Page et al., 1998

“To test the utility of PageRank for search, we 
built a web search engine called Google.”



PageRank
• Idea: if page px links to page py, then the creator of 
px implicitly transfers some importance to page py 
• yahoo.com is an important page, many pages 

point to it 
• Pages linked to from yahoo.com are also likely 

to be important 

• Pages distributes “importance” through outlinks 

• Simple PageRank (iteratively):
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Page et al., 1998

PageRanki+1(v) =
X

u!v

PageRanki(u)

Nu
all nodes linking to v

out-degree of node u



PageRank
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Simplified formula

PageRank vector converges eventually
Random surfer model:
• Probability that a random 
 surfer starts at a random  
 page and ends at page px

• A random surfer at a page  
 with 3 outlinks randomly  
 picks one (1/3 prob.)



PageRank
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Reality

PageRanki+1(v) = ↵

✓
1

|G|

◆
+ (1� ↵)

X

u!v

PageRanki(u)

Nu

Include a decay (“damping”) factor

probability that the random surfer  
“teleports” and not uses the outlinks



PageRank in MapReduce

• At each iteration:  
• [MAPPER] a node passes its PageRank 

“contributions” to the nodes it is connected to 
• [REDUCER] each node sums up all PageRank 

contributions that have been passed to it and 
updates its PageRank score

40

An informal sketch



PageRank in MapReduce
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An informal sketch ↵ = 0,
5X

i=1

ni = 1

Source: Data-Intensive Text Processing with MapReduce



PageRank in MapReduce
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Pseudocode: simplified PageRank

Source: Data-Intensive Text Processing with MapReduce



PageRank in MapReduce

• Dangling nodes: nodes without outgoing edges  
• Simplified PR cannot conserve total PageRank mass  

(black holes for PR scores) 
• Solution: “lost” PR scores are redistributed evenly across 

all nodes in the graph 
• Use Counters to keep track of lost mass  
• Reserve a special key for PR mass from dangling nodes 

• Redistribution of lost mass and jump factor after each PR 
iteration in another job (MAP phase only job)

43

Jump factor and “dangling” nodes

One iteration of PageRank requires two MR jobs!



PageRank in MapReduce

• PageRank is iterated until convergence (scores at 
nodes no longer change) 

• PageRank is run for a fixed number of iterations

• PageRank is run until the ranking of the nodes 
according to their PR score no longer changes 

• Original PageRank paper: 52 iterations until 
convergence on a graph with more than 300M edges

44

Possible stopping criteria

Warning: on today’s Web, PageRank requires additional modifications (spam, spam, spam)



Issues and Solutions



Efficient large-scale graph 
processing is challenging
• Poor locality of memory access 

• Little work per node (vertex) 

• Changing degree of parallelism over the course of execution 

• Distribution over many commodity machines due to poor 
locality is error-prone (failure likely) 

• Needed: “scalable general-purpose system for 
implementing arbitrary graph algorithms [in batch mode] 
over arbitrary graph representations in a large-scale 
distributed environment”
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Existing graph processing 
options (until 2010)
• Custom distributed infrastructure

• Problem: each algorithm requires new implementation effort 

• Relying on the MapReduce framework
• Problem: performance and usability issues 
• Remember: the whole graph is read/written in every job 

• Single-processor graph algorithm library (e.g. LEDA) 
• Problem: does not scale 

• Existing parallel graph systems
• Problem: do not address fault tolerance & related issues 

appearing in large distributed setups
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Enter Pregel (2010)

• “We built a scalable and fault-tolerant  platform with 
an API that is sufficiently flexible to express 
arbitrary graph algorithms” 

• Pregel river runs through Königsberg                           
(Euler’s seven bridges problem)

48



Graph processing in 
Hadoop
• Disadvantage: iterative algorithms are slow 

• Lots of reading/writing to and from disk 

• Advantage: no additional libraries needed 

• Enter Giraph: an open-source implementation of 
yet another Google framework (Pregel) 
• Specifically created for iterative graph 

computations

49
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“Many distributed graph computing systems have 
been proposed to conduct all kinds of data 
processing and data analytics in massive graphs, 
including Pregel, Giraph, GraphLab, PowerGraph, 
GraphX, Mizan, GPS, Giraph++, Pregelix, Pregel+, 
and Blogel.”



A bit of theory:  
Bulk Synchronous Parallel 

or BSP



Bulk Synchronous Parallel
• General model for the design of 

parallel algorithms 

• Developed by Leslie Valiant in 
the 1980s/90s 

• BSP computer: processors with 
fast local memory are 
connected by a communication 
network 

• BSP computation is a series of 
“supersteps”
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• No message passing in MR 
• Avoids MR’s costly disk and 

network operations

local 
computation

communication

barrier 
synchronisation

processors

one superstep



Bulk Synchronous Parallel
Supersteps consist of three phases
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Local computation: every processor performs computations using 
data stored in local memory - independent of what happens at other 
processors; a processor can contain several processes (threads)

Communication: exchange of data between processes (put and 
get); one-sided communication

Barrier synchronisation: all processes wait until everyone has 
finished the communication step

Local computation and communication phases are 
not strictly ordered in time



THE END


