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• Translate basic problems (suitable for 
MapReduce) into Pig Latin based on built-in 
operators 

• Explain the idea and mechanisms of UDFs 

Learning objectives



Introduction



Pig vs. Pig Latin
• Pig: an engine for executing data flows in parallel 

on Hadoop 

• Pig Latin: the language for expressing data flows 

• Pig Latin contains common data processing 
operators (join, sort, filter, …) 

• User defined functions (UDFs): developers can 
write their own functions to read/process/store the 
data

5

Pig 0.12 is part of the CDH  
Pig 0.16 released 06/2016  



Pig Latin
• A parallel dataflow language: users describe how 

data is (1) read, (2) processed and (3) stored 

• Dataflows can be simple (e.g. “counting words”) or 
complex (multiple inputs are joined, data is split up 
into streams and processed separately) 

• Formally: a Pig Latin script describes a Directed 
Acyclic Graph (DAG)
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directed graph, no directed cycles



Pig on Hadoop
• Makes use of HDFS and the MapReduce core of 

Hadoop 
• By default, reads input from & writes output to HDFS 

• Pig Latin scripts are compiled into one or more 
Hadoop jobs which are executed in order 

• Pig Latin users need not to be aware of the algorithmic 
details in the map/shuffle/reduce phases 
• Pig decomposes operations into the appropriate 

map and/or map/reduce phases automatically
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Pig vs. OO & SQL
OO programming languages describe control flow 
with data flow as side effect, Pig Latin describes data 
flow (no control constructs such as if)
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Pig SQL

Procedural: script describes 
how to process the data

Descriptive: query describes 
what the output should be

Workflows can contain many 
data processing operations

One query answers one 
question (*subqueries)

Schemas may be unknown or 
inconsistent

RDBMSs have defined 
schemas

Reads files from HDFS (and 
other sources)

Data is read from database 
tables



PigMix: Pig benchmarks

9

https://cwiki.apache.org/confluence/display/PIG/PigMix

A set of queries to test Pig’s performance: how well 
does a Pig script perform compared to a direct Hadoop 
implementation?

https://cwiki.apache.org/confluence/display/PIG/PigMix


PigMix: Pig benchmarks
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https://cwiki.apache.org/confluence/display/PIG/PigMix

A set of queries to test Pig’s performance: how well 
does a Pig script perform compared to a direct Hadoop 
implementation?anti-join:

SELECT
*
FROM table1 t1
LEFT JOIN table2 t2 ON t1.id = t2.id
WHERE t2.id IS NULL

https://cwiki.apache.org/confluence/display/PIG/PigMix


Pig is useful for 
• ETL (Extract Transform Load) data pipelines 

• Example: web server logs that need to be cleaned before being 
stored in a data warehouse 

• Research on raw data 
• Pig handles erroneous/corrupt data entries gracefully 

(cleaning step can be skipped) 
• Schema can be inconsistent or missing 
• Exploratory analysis can be performed quickly 

• Batch processing 
• Pig Latin scripts are internally converted to Hadoop jobs (the 

same advantages/disadvantages apply)
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History of Pig
• Research project at Yahoo! Research

• Paper about Pig prototype published in 2008 

• Data scientists  
spent too much time  
writing Hadoop jobs  
and not enough time analysing data 

• Most Hadoop users know SQL well 

• Apache top-level project since 2010
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>1800 citations



Pig philosophy
• Pigs eat anything

• Pig operates on any data (schema or not, files or not, nested 
or not) 

• Pigs live anywhere
• Parallel data processing language; implemented on Hadoop 

but not tied to it 

• Pigs are domestic animals 
• Easily controlled and modified 

• Pigs fly 
• Fast processing
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http://pig.apache.org/philosophy.html

http://pig.apache.org/philosophy.html
http://pig.apache.org/philosophy.html


First code examples
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Pig’s version of WordCount
-- read file pg100.txt line by line, call each record line
shakespeare = load ‘pg100.txt’ as (line);

-- tokenize each line, each term is now a record called word
words = foreach shakespeare

generate flatten(TOKENIZE(line)) as word;

-- group all words together by word
grpd  = group words by word;

-- count the words
cntd  = foreach grpd generate group, COUNT(words);

/*
 * start the Hadoop job and print results to screen
 */
dump cntd;

5 lines of code in Pig vs. 50 in plain Hadoop
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https://www.youtube.com/watch?v=s4Y-Yv5HY_A

https://www.youtube.com/watch?v=s4Y-Yv5HY_A


Another example: 
Top clicked URL by users aged18-25

John  18
Tom   24
Alfie 45
Ralf  56
Sara  19
Marge 27

John  url1
John  url2
Tom   url1
John  url2
Ralf  url4
Sara  url3
Sara  url2
Marge url1users: name & age

clicks: name & url

set io.sort.mb 5;

users = load ‘users’ as (name,age);

filtered = filter users by age>=18 and age<=25;

clicks = load ‘clicks’ as (user,url);

joined = join filtered by name, clicks by user;

grouped = group joined by url;

summarized = foreach grouped generate group, COUNT(joined) 
         as amount_clicked;

sorted = order summarized by amount_clicked desc;

top1 = limit sorted 1;

Store top1 into 'top1site';

9 lines of code in Pig vs. ~150 in plain Hadoop



Another example: 
Top clicked URL by users aged18-25

John  18
Tom   24
Alfie 45
Ralf  56
Sara  19
Marge 27

John  url1
John  url2
Tom   url1
John  url2
Ralf  url4
Sara  url3
Sara  url2
Marge url1users: name & age

clicks: name & url

set io.sort.mb 5;

users = load ‘users’ as (name,age);

filtered = filter users by age>=18 and age<=25;

clicks = load ‘clicks’ as (user,url);

joined = join filtered by name, clicks by user;

grouped = group joined by url;

summarized = foreach grouped generate group, COUNT(joined) 
         as amount_clicked;

sorted = order summarized by amount_clicked desc;

top1 = limit sorted 1;

Store top1 into 'top1site';

9 lines of code in Pig vs. ~150 in plain Hadoop

relation name (alias); not a variable

field name
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https://www.youtube.com/watch?v=76GbK8REmuo

https://www.youtube.com/watch?v=76GbK8REmuo


Alternative script 
Top clicked URL by users aged18-25

John  18
Tom   24
Alfie 45
Ralf  56
Sara  19
Marge 27

John  url1
John  url2
Tom   url1
John  url2
Ralf  url4
Sara  url3
Sara  url2
Marge url1users: name & age

clicks: name & url

set io.sort.mb 5;

A = load ‘users’ as (name,age);

A = filter A by age>=18 and age<=25;

B = load ‘clicks’ as (user,url);

A = join A by name, clicks by user;

A = group A by url;

A = foreach A generate group, COUNT(A);

A = order A by $1 desc;

A = limit A 1;

Store A into 'A';

This works too! Not recommended: hard to debug & lost relations!

positional reference, starts from $0



Pig is a bit quirky

https://pig.apache.org/docs/r0.12.1/basic.html#case-sensitivity

• UDF names are also case-sensitive

https://pig.apache.org/docs/r0.12.1/basic.html#case-sensitivity


Pig is customisable
• All parts of the processing path are customizable 

• Loading 
• Storing 
• Filtering 
• Grouping 
• Joining 

• Can be altered by user-defined functions (UDFs) 
• Not just restricted to Java, also possible in 

Python, Jython, Ruby, JavaScript and Groovy
22



• Pig’s interactive shell 

• Grunt can be started in local and MapReduce mode

• Useful for sampling data (a pig feature) 

• Useful for prototyping: scripts can be entered interactively 
• Basic syntax and semantic checks 
• Pig executes the commands (starts a chain of Hadoop jobs) 

once dump or store are encountered

23

Grunt: running Pig

pig –x local pig

testing: local file system real analysis: HDFS

Errors do not kill the chain of commands



• Pig’s interactive shell 

• Grunt can be started in local and MapReduce mode

• Useful for sampling data (a pig feature) 

• Useful for prototyping: scripts can be entered interactively 
• Basic syntax and semantic checks 
• Pig executes the commands (starts a chain of Hadoop jobs) 

once dump or store are encountered
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Grunt: running Pig

pig –x local pig

testing: local file system real analysis: HDFS

Other ways of running Pig Latin: 

(1) pig script.pig

(2) Embedded in Java programs   
(PigServer class) 

(3) In CDH from Hue  

Errors do not kill the chain of commands
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Drawback: Hue does not run Pig scripts in local mode (takes time)

Advantage: Pig editor has Assist functionality

https://www.youtube.com/watch?v=aLrlOzTHtiI



Data model & schema



Recall: Pig’s data model
• Scalar types: int, long, float, double, chararray, 
bytearray

• Three complex types that can contain data of any type (nested) 
• Maps: chararray to data element mapping (values can be of 

different types) 
• Tuples: ordered collection of Pig data elements; tuples are 

divided into fields; analogous to rows (tuples) and columns 
(fields) in database tables 

• Bags: unordered collection of tuples (tuples cannot be 
referenced by position)
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null: value unknown
(SQL-like)

java.lang.String

DataByteArray, wraps byte[]

[name#John,phone#5551212]

(John,18,4.0F)

{(bob,21),(tim,19),(marge,21)}



Extracting data from 
complex types
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[cloudera@localhost ~]$ pig –x local
grunt> bball = load 'baseball' as (name:chararray,
               team:chararray, 
               position:bag{t:(p:chararray)}, 
               bat:map[]);
grunt> avg = foreach bball generate
               bat#'batting_average';

Extraction from maps: use # followed by the name 
of the key as string.

[cloudera@localhost ~]$ pig –x local
grunt> A = load ‘data’ as (t:tuple(x:int, y:int));
grunt> B = foreach A generate t.x, t.$1;

Extraction from tuple: use the dot operator



Schemas
• Remember: pigs eat anything 

• Runtime declaration of schemas

• Available schemas used for error-checking and 
optimization

29

[cloudera@localhost ~]$ pig –x local
grunt> records = load ‘table1’ as (name:chararray,

                     syear:chararray, grade:float);

grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}



Schemas
• Remember: pigs eat anything 

• Runtime declaration of schemas

• Available schemas used for error-checking and 
optimization
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[cloudera@localhost ~]$ pig –x local
grunt> records = load ‘table1’ as (name:chararray,

                     syear:chararray, grade:float);

grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}

as indicates the schema.

Pig reads three fields per line, 
truncates the rest; adds null 
values for missing fields



Schemas
• What about data with hundreds of columns of 

known type? 
• Painful to add by hand every time 
• Solution: store schema in metadata repository 

Apache HCatalog – Pig can communicate with it 

• Schemas are not necessary (but useful)

31

table and storage management layer - offers a 
relational view of data in HDFS.



A guessing game

• Pig makes intelligent type guesses based on data 
usage (remember: nothing happens before we 
use the dump/store commands) 

• If it is not possible to make a good guess, Pig uses 
the bytearray type (default type)

32

[cloudera@localhost ~]$ pig –x local
grunt> records = load ‘table1’ as (name,syear,grade);
grunt> describe records;
records: {name: bytearray,syear: bytearray,grade: bytearray}

column names, no types



Default names

• Pig assigns default names if none are provided 

• Saves typing effort, but it also makes complex 
scripts difficult to understand & debug
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grunt> records2 = load ‘table1’ as(chararray,chararray,float);
grunt> describe records2;
records2: {val_0: chararray, val_1: chararray, val_2: float}

column types, no names



No need to work with 
unwanted content

We can select which file content we want to process

34

grunt> records3 = load ‘table1’ as(name);
grunt> dump records3;
(bob)
(jim)
. . .

Read only the first column



More columns than data

• Pig does not throw an error if the schema does not 
match the file content 

• Necessary for large-scale data where corrupted and 
incompatible entries are common 

• Not so great for debugging purposes
35

grunt> records4 = load ‘table1’ as  
                     (name,syear,grade,city,bsn);
grunt> dump records4;
(bob,1st_year,8.5,,)
(jim,2nd_year,7.0,,)
(tom,3rd_year,5.5,,)
..

The file contains 3 “columns” 
– the remaining two columns 
are set to null



[cloudera@localhost ~]$ pig –x local
grunt> records = load ‘table1’ as (name:chararray,
                          syear:chararray, grade:float);
grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}
grunt> dump records;

Pig: loading & storing

36

(bob,1st_year,8.5)
(jim,2nd_year,7.0)
(tom,3rd_year,5.5)
…

grunt> store records into ‘stored_records’ 
                              using PigStorage(‘,’);
grunt> store records into ‘stored_records2’;



[cloudera@localhost ~]$ pig –x local
grunt> records = load ‘table1’ as (name:chararray,
                          syear:chararray, grade:float);
grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}
grunt> dump records;

Pig: loading & storing

37

tab separated text file

local file (URI)

dump runs a Hadoop job 
and writes output to screen

(bob,1st_year,8.5)
(jim,2nd_year,7.0)
(tom,3rd_year,5.5)
…

grunt> store records into ‘stored_records’ 
                              using PigStorage(‘,’);
grunt> store records into ‘stored_records2’;

delimiter

store runs a Hadoop job 
and writes output to file

default output is 
tab delimited



Pig: loading and storing
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store is a Hadoop job with 
only a map phase: part-m-*****
(reducers output part-r-****)



Relational operations

39

Transform the data by sorting, grouping, 
joining, projecting, and filtering.



foreach
• Applies a set of expressions to  

every record in the pipeline 

• Generates new records 

• Equivalent to the projection operation in SQL

40

grunt> records = load ‘table2’ as (name,year,grade_1,grade_2);
grunt> gradeless_records = foreach records generate name,year;
grunt> gradeless_records = foreach records generate ..year;

grunt> diff_records = foreach records generate $3-$2,name;

bob 1st_year 8.5 9.0 
jim 2nd_year 7.0 5.5 
tom 3rd_year 5.5 3.5 
andy 2nd_year 6.0 7.0 
bob2 1st_year 7.5 4.5 
tim 2nd_year 8.0 9.0 
cindy 1st_year 8.5 9.5 
arie 2nd_year 6.5 
jane 1st_year 9.5 
tijs 1st_year 8.0 
claudia 2nd_year 7.5 
mary 3rd_year 9.5 
mark 3rd_year 8.5 
john   9.5 
ralf   2.5



foreach
• Applies a set of expressions to  

every record in the pipeline 

• Generates new records 

• Equivalent to the projection operation in SQL

41

grunt> records = load ‘table2’ as (name,year,grade_1,grade_2);
grunt> gradeless_records = foreach records generate name,year;
grunt> gradeless_records = foreach records generate ..year;

grunt> diff_records = foreach records generate $3-$2,name;

range of fields (useful 
when #fields is large)

fields can be accessed by their position

bob 1st_year 8.5 9.0 
jim 2nd_year 7.0 5.5 
tom 3rd_year 5.5 3.5 
andy 2nd_year 6.0 7.0 
bob2 1st_year 7.5 4.5 
tim 2nd_year 8.0 9.0 
cindy 1st_year 8.5 9.5 
arie 2nd_year 6.5 
jane 1st_year 9.5 
tijs 1st_year 8.0 
claudia 2nd_year 7.5 
mary 3rd_year 9.5 
mark 3rd_year 8.5 
john   9.5 
ralf   2.5



foreach
Evaluation function UDFs: take as  
input one record at a time and produce  
one output; 

42

grunt> records = load ‘table1’ as 
(name:chararray,year:chararray,grade:float);

grunt> grpd= group records by year;
grunt> avgs = foreach grpd generate group, AVG(records.grade);
grunt> dump avgs;
(1st_year,8.4)
(2nd_year,7.0)
(3rd_year,7.83333333)
(,)

Average: a built-in UDF

bob 1st_year 8.5 
jim 2nd_year 7.0 
tom 3rd_year 5.5 
andy 2nd_year 6.0 
bob2 1st_year 7.5 
tim 2nd_year 8.0 
cindy 1st_year 8.5 
arie 2nd_year 6.5 
jane 1st_year 9.5 
tijs 1st_year 8.0 
claudia 2nd_year 7.5 
mary 3rd_year 9.5 
mark 3rd_year 8.5 
john   9.5 
ralf   2.5



filter
Select records to keep in the data pipeline
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grunt> filtered_records = FILTER records BY grade>6.5;
grunt> dump filtered_records;
(bob,1st_year,8.5)
(jim,2nd_year,7.0)
…
grunt> filtered_records = FILTER records BY grade>8 AND 

(year==‘1st_year’ OR year==‘2nd_year’); 
grunt> dump filtered_records;
(bob,1st_year,8.5)
(cindy,1st_year,8.5)
…
grunt> notbob_records = FILTER records 

BY NOT name matches ‘bob.*’;

conditions can be combined

negation regular expression



filter
inferred vs. defined data types

44

grunt> records = load ‘table1’ as (name,year,grade);
grunt> filtered_records = FILTER records BY grade>8

AND (year==‘1st_year’ OR year==‘2nd_year’); 
grunt> dump filtered_records;

grunt> records = load ‘table1’ as (name,year,grade);
grunt> filtered_records = FILTER records BY grade>8.0 

AND (year==‘1st_year’ OR year==‘2nd_year’); 
grunt> dump filtered_records; 

grunt> records = load ‘table1’ as 
(name:chararray,year:chararray,grade:float);

grunt> filtered_records = FILTER records BY grade>8 
AND (year==‘1st_year’ OR year==‘2nd_year’); 

grunt> dump filtered_records;

defined (float)

inferred (float)

inferred (int)



grunt> describe grouped_records;
grunt> grouped_records: {group: chararray,filtered_records:  
{(name: chararray, syear: charray,grade: float)}} 

grunt> grouped_records = GROUP filtered_records BY syear;
grunt> dump grouped_records;
(1st_year,{(bob,1st_year,8.5),(bob2,1st_year,7.5),(cindy,
1st_year,8.5),(jane,1st_year,9.5),(tijs,1st_year,8.0)})
(2nd_year,{(tim,2nd_year,8.0),(claudia,2nd_year,7.5)})

group
Collect records together that have the same key

45

two tuples, grouped together by the first field
bag of tuples,  
indicated by {}

name of grouping field



group
• There is no restriction on how many keys to group 

by 

• All records with null keys end up in the same group 

• In the underlying Hadoop job the effects depend 
on phase: 
• Map phase: a reduce phase is enforced 
• Reduce phase: a map/shuffle/reduce is enforced

46

grunt> grouped_twice = GROUP records BY (year,grade);
grunt> dump grouped_twice; 



group
• There is no restriction on how many keys to group 

by 

• All records with null keys end up in the same group 

• In the underlying Hadoop job the effects depend 
on phase: 
• Map phase: a reduce phase is enforced 
• Reduce phase: a map/shuffle/reduce is enforced

47

grunt> grouped_twice = GROUP records BY (year,grade);
grunt> dump grouped_twice; 



order by
• Total ordering of the output data (including across 

partitions) 

• Sorting according to the natural order of data types 

• Sorting by maps, tuples or bags is not possible

48

grunt> records = load ‘table1’ as (name,year,grade);
grunt> graded = ORDER records BY grade,year;
grunt> dump graded;
(ralf,,)
(john,,)
. . 
(tijs,1st_year,8.0)
(tim,2nd_year,8.0)
. .

The results are first ordered by 
grade and within tuples of the 
same grade also by year.  
Null values are ranked first 
(ascending sort).



order by
• Pig balances the output across reducers

1. Samples from the input of the order statement 
2. Based on the sample of the key distribution a 

“fair” partitioner is built

• Example of sampled keys (3 reducers available):

49

An additional Hadoop job for the sampling 
procedure is required.

a a a a c d x y z {a, (a,c,d), (x,y,z)}

Same key to different reducers!



distinct
Removes duplicate records

Always enforces a reduce phase

50

grunt> year_only = foreach records generate year;
grunt> uniq_years = distinct year_only;
(1st_year)
(2nd_year)
(3rd_year)
()

Works on entire records only, 
thus first a projection (line 1) is 
necessary.



join
• The workhorse of data processing 

• Pig also supports outer joins (values that do not 
have a match on the other side are included):  
left/right/full

51

grunt> records1 = load ‘table1’ as (name,year,grade);
grunt> records2 = load ‘table3’ as (name,year,country,km);
grunt> join_up = join records1 by (name,year), 

  records2 by (name,year);
grunt> dump join_up;
(jim,2nd_year,7.0,jim,2nd_year,Canada,164)
(tim,2nd_year,8.0,tim,2nd_year,Netherlands,)
…

grunt> join_up = join records1 by (name,year) left outer, 
       records2 by (name,year);



join
• The workhorse of data processing 

• Pig also supports outer joins (values that do not 
have a match on the other side are included):  
left/right/full

52

grunt> records1 = load ‘table1’ as (name,year,grade);
grunt> records2 = load ‘table3’ as (name,year,country,km);
grunt> join_up = join records1 by (name,year), 

  records2 by (name,year);
grunt> dump join_up;
(jim,2nd_year,7.0,jim,2nd_year,Canada,164)
(tim,2nd_year,8.0,tim,2nd_year,Netherlands,)
…

grunt> join_up = join records1 by (name,year) left outer, 
       records2 by (name,year);



join
• Self-joins are supported, though data needs to be 

loaded twice - very useful for graph processing 
problems 

• Pig assumes that the left part of the join is the 
smaller data set 53

grunt> urls1 = load ‘urls’ as (A,B);
grunt> urls2 = load ‘urls’ as (C,D);
grunt> path_2 = join urls1 by B, urls2 by C;
grunt> dump path_2;
(url2,url1,url1,url2)
(url2,url,url1,url4)
(url2,url1,url1,url3)
. . .



limit
• Returns a limited number of records 

• Requires a reduce phase to count together the 
number of records that need to be returned 

• No ordering guarantees: every time limit is called 
it may return a different ordering

54

grunt> urls1 = load ‘urls’ as (A,B);
grunt> urls2 = load ‘urls’ as (C,D);
grunt> path_2 = join urls1 by B, urls2 by C;
grunt> first = limit path_2 1;
grunt> dump first;
(url2,url1,url1,url2)



Summary
• Simple database operations translated to Hadoop 

jobs 

• Introduction to Pig

55



THE END


