7

il

1127360-B
mY Big Data Processing

”""’M Claudia Hauff
QL et

mailto:ti2736b-ewi@tudelft.nl

$»{ Streams j~=-=-=g{ Streams }

_f Design e
, Patterns J ™

|_earning objectives

. basic problems (suitable for
MapReduce) into Pig Latin based on built-in
operators

. the iIdea and mechanisms of UDFs

lNtroauction

PIg vs. Pig Latin

* Pig: an engine for executing data flows in parallel
on Hadoop

* Pig Latin: the language for expressing data flows

* Pig Latin contains common data processing
operators (join, sort, filter, ...)

e User defined functions (UDFs): developers can
write their own functions to read/process/store the

data Pig 0.12 is part of the CDH

Pig 0.16 released 06/2016

PIg Latin

* A parallel . users describe
data is (1) read, (2) processed and (3) stored

* Dataflows can be simple (e.g. “counting words”) or
complex (multiple inputs are joined, data is split up
into streams and processed separately)

 Formally: a Pig Latin script describes a

directed graph, no directed cycles

Plg on Hadoop

Makes use of and the of
Hadoop

e By default, reads input from & writes output to HDFS

Pig Latin scripts are INto
Hadoop jobs which are executed in order

Pig Latin users need to be aware of the algorithmic
details in the map/shuffle/reduce phases

e Pig operations into the appropriate
map and/or map/reduce phases

Pig vs. 00 & SQL

OO programming languages describe control flow
with data flow as side effect, Pig Latin describes data
flow (no control constructs such as if)

Procedural: script describes
now to process the data

Descriptive: query describes
what the output should be

Worktlows can contain many
data processing operations

One query answers one
question (*subqueries)

Schemas may be unknown or
inconsistent

RDBMSs have defined
schemas

Reads files from HDFS (and
other sources)

Data is read from database
tables

https://cwiki.apache.org/confluence/display/PIG/PigMix

PigMix: Pig benchmarks

A set of to test Pig’'s performance: how well
does a Pig script perform compared to a direct Hadoop
implementation”?

Run date: August 27, 2009, run against top of trunk as of that day. Pig 0.12 (4/4/2013)

Test Pig run time Java runtime Multiplier Test Pig run time Java run time Multiplier

PigMix_1 218 133.33 1.635 PigMix_1 168 142 1.1830985915493
PigMix_2 99.333 48 2.07 PigMix_2 71 62 1.14516129032258
PigMix_3 272 127.67 213 PigMix_3 141 158 0.892405063291139
PigMix_4 142.33 76.333 1.87 PigMix_4 93 87 1.06896551724138
PigMix_5 127 33 107.33 119 PigMix_5 87 158 0.550632911392405
PigMix_6 135.67 73 186 PigMix_6 93 81 1.14814814814815
PigMix_7 124.67 78.333 1 59 PigMix_7 77 87 0.885057471264368
PigMix_8 117.33 68 173 PigMix_8 62 57 1.08771929824561

https://cwiki.apache.org/confluence/display/PIG/PigMix

https://cwiki.apache.org/confluence/display/PIG/PigMix

PigMix: Pig benchmarks

A set of queries to test Pig’s performance: how well

does a Pig script pe
implementatio

Run date: August 27, 2009, run ag

Test

PigMix_1
PigMix_2
PigMix_3
PigMix_4
PigMix_5
PigMix_6
PigMix_7
PigMix_8

Pig run time Ja

218

99.333
272

142.33
127.33
135.67
124.67
117.33

anti-join:

SELECT

*

FROM tablel tl
i LEFT JOIN table2 t2 ON tl.id

] WHERE t2.id IS NULL

127%
76.333
107.33
73
78.333
68

1.87
1.19
1.86
1.59
1.73

10

PigNRey 4
PigMix_5

PigMix_6
PigMix_7
PigMix_8

93
87
93
77
62

87
158
81
87
57

£2.1d

Itiplier
830985915493
4516129032258
892405063291139
1.06896551724138
0.550632911392405
1.14814814814815
0.885057471264368
1.08771929824561

https://cwiki.apache.org/confluence/display/PIG/PigMix

Pig Is useful for

. () data pipelines

 Example: web server logs that need to be cleaned before being
stored in a data warehouse

e Research on raw data

* Pig /corrupt entries gracefully
(cleaning step can be skipped)
* Schema can be Or missing

* Exploratory analysis can be performed

* Pig Latin scripts are internally (the
same advantages/disadvantages apply)

11

History of Pig

Research project at

Plg L ati
n A
NOL O-F Ora
Mistopy an Lan
i oo e Jton’ Uage
spent too much time - O Datg
o _ Bavie, »,,,{,2,"7,5355,9 ’ ro ess;
writing Hadoop jobs ng
. ggc«;w - r’”'omr«?ff;'?'_i’hava
and not enough time
>1800 citations
Most Hadoop users know well

since 2010

12

Plg pnilosopny

* Pig operates on any data (schema or not, files or not, nested
or not)

* Parallel data processing language; implemented on Hadoop
but not tied to it

e Easily controlled and modified

* Fast processing

13

http://pig.apache.org/philosophy.html
http://pig.apache.org/philosophy.html

-Irst code examples

Pig’s version of WordCount

-—- read file pgl00.txt line by line, call each record line
shakespeare = load ‘pgl00.txt’ as (line);

——- tokenize each line, each term is now a record called word
words = foreach shakespeare

generate flatten(TOKENIZE(line)) as word;

-- group all words together by word
grpd = group words by word;

-—- count the words
cntd = foreach grpd generate group, COUNT (words);

/ *
* start the Hadoop job and print results to screen
*/

dump cntd;

5 lines of code in Pig vs. 50 in plain Hadoop

https://www.youtube.com/watch?v=s4Y-Yv5HY A

https://www.youtube.com/watch?v=s4Y-Yv5HY_A

Another example:

Top clicked URL by users aged18-25

users: name & age

clicks: name & url

set io.sort.mb 5;

users = load ‘users’ as (name,age);

filtered = filter users by age>=18 and age<=25;
clicks = load ‘clicks’ as (user,url);

joined = join filtered by name, clicks by user;
grouped = group joined by url;

summarized = foreach grouped generate group, COUNT(joined)
as amount clicked;

sorted = order summarized by amount clicked desc;
topl = limit sorted 1;

Store topl into 'toplsite';

9 lines of code In Pig vs. ~150 in plain Hadoop

Another example:

Top clicked URL by users aged18-25

set io.

users =

users: name & age

sort.mb 5;

load ‘users’ as (name,age);

G EHNMEINENCUED G R =18 and age<=25;

clicks

joined
grouped

summari

sorted

topl =

load ‘clicks’ as (user,url);
= join filtered by name, clicks by user;

= group joined by url;

clicks: name & url

zed = foreach grouped generate group, COUNT(joined)

as amount clicked;
= order summarized by amount clicked desc;

limit sorted 1;

Store topl into 'toplsite';

9 lines of code In Pig vs. ~150 in plain Hadoop

https://www.youtube.com/watch?v=76GbK8REmMuo

https://www.youtube.com/watch?v=76GbK8REmuo

John urll
John url2
Tom urll
John url2

Ralf url4
Sara url3
Sara url2
Marge urll

Alternative script

Top clicked URL by users aged18-25

users: name & age

clicks: name & url

set io.sort.mb 5;

A = load ‘users’ as (name,age);

w
Il

filter A by age>=18 and age<=25;

B = load ‘clicks’ as (user,url);

join A by name, clicks by user;

group A by url;

foreach A generate group, COUNT(A);

order A by S$1 desc;

- N e
Il

aamRi kR AY W] positional reference, starts from $0

Store A into 'A';

This works too! Not recommended: hard to debug & lost relations!

PIg IS a bit quirky

Case Sensitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig
Latin functions are case sensitive. The names of parameters (see Parameter

Substitution) and all other Pig Latin keywords (see Reserved Keywords) are case

insensitive.

In the example below, note the following:

The names (aliases) of relations A, B, and C are case sensitive.
The names (aliases) of fields f1, f2, and f3 are case sensitive.
Function names PigStorage and COUNT are case sensitive.

Keywords LOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and

DUMP are case insensitive. They can also be written as load, using, as,
group, by, etc.

UDF names are also case-sensitive

ig.apache.org/docs/r0.12.1/basic.html#case-sensitivi

https://pig.apache.org/docs/r0.12.1/basic.html#case-sensitivity

Plg IS customisabple

* All parts of the processing path are customizable
* Loading
e Storing
o Filtering
o (Grouping
e Joining

 Can be altered by user-defined functions (UDFs)

* Not just restricted to Java, also possible In
and

22

Grunt: running Pig

* Pig's interactive shell

testing: local file system real analysis: HDFS

* GGrunt can be started in local and MapReduce mode

pig —x local pig

Errors do not kill the chain of commands

e Useful for sampling data (a pig feature)

* Useful for prototyping: scripts can be entered interactively
* Basic syntax and semantic checks

* Pig executes the commands (starts a chain of Hadoop jobs)
once dump Or store are encountered

23

Grunt: running Pig

* Pig’s interactive shell

testing: local file system real analysis: HDFS

* GGrunt can be started in local and MapReduce mode

pig —x local pig

Errors do not kill the chain of commands

* Useiul for sampling data (a pig oo R e i d IS I LT

* Useful for prototyping: scripts can

| | (1) pig script.pig
* Basic syntax and semantic chec

* Pig executes the commands (st pAN=aglelclole e RIaRNF-\z-Re](ololt=1agls
once dump Or store are eNCOUEEERe IS =S ail=SaNol EIish!

288 (3) In CDH from Hue

https://www.youtube.com/watch”?v=alLrlOzTHtil

Drawback: Hue does not run Pig scripts in local mode (takes time)

Advantage: Pig editor has Assist functionality

Data model & schema

Recall: PIg's data model

java.lang.String

e Scalartypes: int, long, float, double, chararray,
bytearray

DataByteArray, wraps byte[] null: value unknown

(SQL-like)

 Three complex types that can contain data of any type (nested)
e Maps: chararray to data element mapping (values can be of

different types) [name#John, phone#5551212]

 Tuples: ordered collection of Pig data elements; tuples are
divided into fields; analogous to rows (tuples) and columns

(fieds) in database tables

 Bags: unordered collection of tuples (tuples cannot be
referenced by position) {(bob,21), (tim,19), (marge,21)}

27

Extracting data from
complex types

[cloudera@localhost ~]$ pig —x local

grunt> bball = load 'baseball’' as (name:chararray,
team:chararray,
position:bag{t: (p:chararray)},
bat:map[]);

grunt> avg = foreach bball generate
bat#'batting average';

Extraction from maps: use # followed by the name

of the key as string.

[cloudera@localhost ~]$ pig —x local
grunt> A load ‘data’ as (t:tuple(x:int, y:int));
grunt> B foreach A generate t.x, t.$1;

Extraction from tuple: use the dot operator

28

Schemas

* Remember: pigs eat anything
. declaration of

e Available schemas used for and

[cloudera@localhost ~]$ pig —x local
grunt> records = load ‘tablel’ as (name:chararray,
syear:chararray, grade:float);

grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}

29

Schemas

* Remember: pigs eat anything
e Runtime declaration of schemas

* Available schemas used for error-checking and

optimization Pig reads three fields per line,

truncates the rest; adds null
values for missing fields

[cloudera@localhost ~]$ pig —x local
grunt> records = load ‘tablel’ as (name:chararray,

sye loat);

as Indicates the schema.

grunt> describe records;
records: {name: chararray,syear: chararray,grade: float}

30

Schemas

e \What about data with hundreds of columns of
known type?

* Painful to add by hand every time

e Solution: store schema in metadata repository
Apache HCatalog — Pig can communicate with it

table and storage management layer - offers a

relational view of data in HDFS.

 Schemas are not necessary (but useful)

31

A guessing game
[cloudera@localhost ~]$ pig —x local

grunt> records = load ‘tablel’ as (name,syear,grade);
grunt> describe records;
records: {name: bytearray,syear: bytearray,grade: bytearray}

* Pig makes based on data
usage (remember: we
use the dump/store commands)

e |fitis not possible to make a good guess, Pig uses
the bytearray type (type)

32

Default names

grunt> records2 = load ‘tablel’ as(chararray,chararray,float);
grunt> describe records?;
records2: {val O: chararray, val 1: chararray, val 2: float}

* Pig assigns If none are provided

e Saves typing effort, but it also makes complex
scripts difficult to understand & debug

33

NO need to work with
unwanted content

We can select which file content we want to process

Read only the first column

grunt> records3 = load ‘tablel’ as(name);
grunt> dump records3;
(bob)

(Jim)

34

More columns than data

grunt> records4 = load ‘tablel’ as

(name, syear,grade,city,bsn);
grunt> dump records4;
(bob,1st year,8.5,,)
(jim,2nd year,7.0,,)
(tom, 3rd year,5.5,,) — the remaining two columns

are set to null

 Pig does not throw an error if the schema does not
match the file content

The file contains 3 “columns”

 Necessary for large-scale data where corrupted and
incompatible entries are common

* Not so great for debugging purposes

35

P1g: loading & storing

[cloudera@localhost ~]$ pig —x local

grunt> records = load ‘tablel’ as (name:chararray,
syear:chararray, grade:float);

grunt> describe records;

records: {name: chararray,syear: chararray,grade: float}

grunt> dump records;

(bob,1st year,8.5)
(jim,2nd year,7.0)
(tom, 3rd year,5.5)

grunt> store records into ‘stored records’
using PigStorage(’,’);
grunt> store records into ‘stored records2’;

36

P1g: loading & storing

tab separated text file

[cloudera@localhos] —X 1O
grunt> records = load ‘tablel’ as (name:chararray,
A - Cchararrs grade:float);

grunt> describe records;
records: {name: chararray
grunt> dump records;

local file (URI)

ygrade: float}

dump runs a Hadoop job
and writes output to screen

grunt> store records into ‘stored records
using PigStorage(’,’);
grunt> store regcords into ‘stored records2’;

default output Is store runs a Hadoop |ob

tab delimited and writes output to file

P1g. loading and storing

bob,1st year,8.5
jim,2nd year,7.0
tom,3rd year,5.5
andy,2nd year,6.0
bob2,1st year,7.5
tim,2nd year,8.0
cindy,1lst year,8.5
arie,2nd year,6.5
jane,1lst year,9.5
tijs,1st year,8.0
claudia,2nd year,7.5
mary,3rd year,9.5
mark,3rd year,8.5
john,,

ralf,,
[cloudera@localhost ~]$ |

[cloudera@localhost ~]$ ls stored records/

[cldudera@localhost ~]% more stored records/part-m-00000

store IS a Hadoop job with

only a map phase: part-m-*****
(reducers output part-r-****)

38

Relational operations

Transform the data by sorting, grouping,
joining, projecting, and filtering.

39

foreach

* Applies a set of expressions

e (Generates

IN the pipeline

records

1st_year
2nd_year
3rd_year
2nd_year
1st_year
2nd_year
1st_year

2nd_year
1st_year
1st_year
2nd_year
3rd_year
3rd_year

* Equivalent to the projection operation in SQL

grunt>
grunt>
grunt>

grunt>

records

gradeless records

diff records

= foreach records generate $3-$2,name;

load ‘table2’ as (name,year,grade 1l,grade 2);
gradeless records = foreach records generate name,year;
foreach records generate

. .year;

2nd_year
3rd_year
2nd_year
1st_year
foreach e
1st_year
2nd_year
1st_year
. . 1st_year
* Applies a set of expressions to 2nd_year
1(0.5,bob) : : -
ever| ;75 the pipeline 3rd_year
(-2.0,tom)
(1.0,andy)
e (Gene(-3.0,b0b2) records
(1.0,tim)
(1.0,cindy)
W (,arie) ' ' -
. Equn('jane) > projection op |
E,t%js;_) range of fields (useful
,claudia : :
2d(mary) 'table2’ as (ns when #fields is large)
gz (,mark) rds = foreach records generate
gz (.John) rds = foreach records generate ..year;
(,ralf)
grunt> |
grunt> diff records = foreach records generate $3-$2,name;

1st_year

fields can be accessed by their position

ame , year,

bob 1st_year

jim 2nd_year
tom 3rd_year
andy 2nd_year

foreach bob2 15k year

cindy 1st_year

arie 2nd_year

LS 1st_year

. . tijs 1st_year
Evaluation function UDFs: take as claudia 2nd_year

mary 3rd_year

iINnput one record at a time and produce EESRETET

john

one OUtpUt, ralf

grunt> records = load ‘tablel’ as
(name:chararray,year:chararray,grade:float);
grunt> grpd= group records by year;
grunt> avgs = foreach grpd generate group, AVG(records.grade);
grunt> dump avgs;
(1st year,8.4)
(2nd_year,7.0) Average: a built-in UDF
(3¢ year,7.83333333)

(r)

42

filter

Select records to keep in the data pipeline

grunt> filtered records = FILTER records BY grade>6.5;
grunt> dump filtered records;

(bob,1st year,8.5)

(jim,2nd year,7.0)

grunt> filtered records = FILTER records BY grade>8 AND
(year=='1st year'’ OR year=='2nd year');
grunt> dump filtered records;

(bob,1st year,8.5) s d
(cindy, 1lst _year,8.5) conditions can be combined

grunt> notbob records = FILTER records
BY NOT name matches ‘bob.*’;

negation regular expression

43

filter
iInferred vs. defined data types

grunt> records = load ‘tablel’ as (name,year,grade);
grunt> filtered records = FILTER records BY

AND (year==’'1lst year’ OR year==‘2nd year');
grunt> dump filtered records;

inferred (int)

grunt> records = load ‘tablel’ as (name,year,grade);
grunt> filtered records = FILTER records BY

AND (year==’'1lst year’ OR year==‘2nd year');
grunt> dump filtered records;

inferred (float)

grunt> records = load ‘tablel’ as
(name:chararray,year:chararray,grade:float);
grunt> filtered records = FILTER records BY
AND (year==’'lst year'’ OR year==‘2nd year');
grunt> dump filtered records;

defined (float)

44

group

Collect records together that have the

grunt> grouped records = GROUP filtered records BY syear;
grunt> dump grouped records;

(1st year, {(bob,1lst year,8.5), (bob2,1st year,7.5), (cindy,
lst year,8.5), (Jjane,1lst year,9.5),(tijs,1lst year,8.0)})
/ (2nd_year,{(tim,2nd year,8.0), (claudia,2nd year,7.5)})

\ WO

, grouped together by the first field

bag of tuples,
iIndicated by {}

grunt> describe grouped records;

grunt> grouped records: {group: chararray,filtered records:
{(name: chararray, syear:Acharray,grade: float)}}

name of grouping field

group

 Thereis on to group
Dy
* All records with end up In the same group

grunt> grouped twice = GROUP records BY (year,grade);
grunt> dump grouped twice;

* |n the underlying the eftects depend
on phase:

. . a reduce phase is enforced
. - a map/shuffle/reduce is enforced

46

group

e Thereis
Dy
((1st year,7.
((1st year,8.
((1st year,8.
* Allrecor ((1st year,9.
((2nd year,6.
grunt> gr ((2nd year,6.
grunt> du ((2nd year,7.
((2nd year,7.
((2nd year,8.
((3rd year,5.
* Inthe un ((3rd year,8.
((3rd year,9.
On[DhaSE((){Uomh
gr

° unt> group

on to group

bob2,1st year,7.5
tijs,1st year,8.0
cindy,1lst year,8.
jane,1lst year,9.5
andy,2nd year,6.0
arie,2nd_year,6 5

)

)

5),(bob,1st year,8.5)})

)

)

)
jim,2nd year,7.0)}

7.

}

}

)

)

})
1)
) »
})
})
1)
)

claudia,2nd year,
tim,2nd year,8.0
tom,3rd_year,5.5
(mark,3rd year,8.
(mary,3rd year,9.
), (ralf,,)})

ed twice = group records by (year,grade);[}

(
(
(
(
(
(
(
(
(
(

e e e e e e T e T Y e S S,

L]‘IU‘IVV

- a map/shuffle/reduce is enforced

47

order by

* Jotal ordering of the output data (including across
partitions)

e Sorting according to the natural order of data types

e Sorting by maps, tuples or bags is not possible

grunt> records = load ‘tablel’ as (name,year,grade);
grunt> graded = ORDER records BY, grade,year;

grunt> dump graded;
(ralf,,)

(John,,)

The results are first ordered by
grade and within tuples of the

(tijs,1lst_year,8.0) same grade also by year.
(tim,2nd_year,8.0) Null values are ranked first
Pl (ascending sort).

order by

* Pig balances the output across reducers
1. Samples from the input of the order statement

2. Based on the sample of the key distribution a
“fair” partitioner is built

An additional Hadoop job for the sampling
procedure Is required.

Same key to different reducers!

 Example of sampled keysi(3 reducers available):

aaaacdzxyz {4, (a,c,d), (x,y,2)}
49

distinct

Removes duplicate records

grunt> year only = foreach records generate year;
grunt> uniq years = distinct year only;

(1st year)
(2nd year)

(3rd_year) Works on entire records only,
()

thus first a projection (line 1) is
necessary.

Always enforces a reduce phase

50

join

* [he workhorse of data processing

grunt> recordsl load ‘tablel’ as (name,year,grade);
grunt> records?2 load ‘table3’ as (name,year,country,km);
grunt> join up = joln recordsl by (name,year),

records2 by (name,year);
grunt> dump join up;
(jim,2nd year,7.0,Jim,2nd year,Canada,164)
(tim,2nd year,8.0,tim,2nd year,Netherlands,)

* Pig also supports (values that do not
nave a match on the other side are included):
eft/right/tull

grunt> join up = join recordsl by (name,year) left outer,
records2 by (name,year);

51

join

* [he workhorse of data processing

grunt> recordsl = load ‘tablel’ as (name,year,grade);
grunt> records?2 : bob,1st year,8.5,,,,)

grunt> join UP = (jim,2nd year,7.0,jim,2nd year,Canada,164)
tim,2nd year,8.0,tim,2nd year, Netherlands)
tom,3rd year,5.5,tom,3rd year,Australia, 6454)
d andy 2nd year,6.0, andy 2nd year,Germany,445)
*' (arie,2nd year,6. 5,,,,)

grunt> dump join
(jim,2nd year,7
(tim,2nd year, 8

-

(

(

(

(

(

(bob2,1st year,7.5,bob2,1st year,Belgium,12)
(jane,1lst year,9.5,,,,)

(John.,,,,,)

(mark,3rd year,8.5,,,,)

(mary,3rd year,9.5,,,,)

(ralfllllll)

(tijs,1st year,8.0,,,,)

(cindy,1lst year,8.5,cindy,1st year,Denmark,)
(claudia,2nd year,7.5,,,,)

grunt> |

* Pig also supg
nave a match
eft/right/tull

grunt> join up =

52

join

. are supported, though data needs to be
loaded twice - very useful for graph processing
problems

grunt> urlsl load ‘urls’ as (A,B);

grunt> urls2 load ‘urls’ as (C,D);

grunt> path 2 = join urlsl by B, urls2 by C;
grunt> dump path 2;

(url2,urll,urll,url2) .
(url2,url,urll,urld) attrlbUteS
(url2,urll,urll,url3) Iati urll url2
HRe at;.OI; tuples url2 url3
YPEInKS url3 urlS
* Pig that the part of the join Is the

data set o

limit

Returns a limited number of records

to count together the

number of records that need to be returned

load ‘urls’
load ‘urls’

grunt> urlsl
grunt> urls?

grunt> dump first;
(url2,urll,urll,url?2)

as (A,B);

as (C,D);

grunt> path 2 = join urlsl by B, urls2 by C;
grunt> first = limit path 2 1;

. every time limit is called

it may return a different ordering

o4

summary

e Simple database operations translated to Hadoop
jobs

* |Introduction to Pig

95

TRE END

