7

il

1127360-B
mY Big Data Processing

”""’M Claudia Hauff
QL et

mailto:ti2736b-ewi@tudelft.nl

|_earning objectives

. the limiting factors of data streaming & describe the different
data stream models

. sampling approaches for data streams

* RESERVOIR sampling
* MIN-WISE sampling

. counter-based frequent item estimation approaches

* MAJORITY
*FREQUENT
* SPACE-SAVING

. BLOOM filters

Data streaming

Streaming architecture

”adhoc”

™3 queries |

Data stream(s) entering

157.26.141.29, 16.173.193.108, 225.95.152.11 waws

Output streams(s)

stream

@jon, @cnnbreakingnews, @bbclondon, @walther = processor

23.45, 34.23, 45.22, 66.7, 12.3, 34.56, 56.55 m-'} standing
queries

Maintain @ summary o y y
(sketch) of the Working '~ Archival |
stream to answer _ storage __storage _
queries.

Data streaming scenario

. and rapid input of data

. to store the data (less than linear
in the input size)

. to process each element
. access (no random access)
* Algorithms have (p=1) or very

(p=¢2,3}) over the data

Data streaming scenario

e Typically: of the stream are
computed and used as input to other algorithms

e Number of distinct items
 Heavy hitters

e Closed form solutions are rare -
anad are the norm

Data stream models

Massively long input stream

stream length m

Basic “vanilla” model:

not a restriction: requires a

single preprocessing step to
convert symbols to integers

o=< a1,02,03, .., Ayy >

with elements drawn from |n|:=1,2,...,n

universe size n

o Space complexity goal: s bits of random-access
memory with g — O(min{m, n})

s = O(logm + logn)
“holy grail” 8

Data stream models

 Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

£ = (fi, fo,oes fn) where fj =i a; = j|
with £ starting at 0

. - elements can “arrive” and “depart”
from the multi-set by variable amounts '

upon recewving a; = (J,c), update f; < f; +c

. . only positive updates are

allowed ;

Data stream models

* Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

t = (f17f27"°7fn) where fj — ‘Z 7 :]|
with £ starting at 0

e Turnstile model: elements can "arrive” and “depart”
from the multi-set by variable amounts

upon recewving a; = (J,c), update f; < f; +c

A data streaming algorithm A takes the stream as input

and computes a function ¢(o)

Data stream models

“For instance, estimating cardinalities [number of
distinct elements] ... of a hundred million
different records can be achieved with m=2048
memory units of 5 bits each, which corresponds
to 1.28 kilobytes of auxiliary storage in total,

the error observed being typically less than
2.5%.

Durand, Marianne, and Philippe Flajolet. "Loglog counting of large cardinalities.”
Algorithms-ESA 2003. Springer Berlin Heidelberg, 2003. 605-617.

11

Data stream models

“The best methods can be implemented
to find frequent items with high
accuracy using only tens of kilobytes
of memory, at rates of millions of
items per second on cheap modern
hardware.”

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

Data stream models

“‘consider the problem of deriving an
execution plan for a query expressed
in a declarative language such as SQL.
There usually exist several alternative
plans that all produce the same result,
but they can differ in their efficiency

by several orders of magnitude’

Gemulla, Rainer. "Sampling algorithms for evolving datasets."” (2008).

Data stream models

“The main idea behind this processing
model [approximate query processing]
s that the computational cost of query
processing can be reduced when the
underlying application does not require
exact results but only a highly-accurate
estimate thereot”

Gemulla, Rainer. "Sampling algorithms for evolving datasets."” (2008).

Sampling

Overview

o Sampling: selection of a from a
large data set

 Goal: sample
data set

* Important for drawing the right conclusions from
the data

16

Overview

® christmas ® olympics weather ® new york ® lottery

Search term Search term Search term Search term Search term

Worldwide ¥ Past Syears ¥ All categories ¥ Web Search ¥ G Oog I e Tre n d S

Interest over time @

a N
A Al) . "
Maverad 4 NOV 4 é) 4

17

Sampling framework

* Algorithm A4 every incoming element

* |f the element is - A puts it into memory,
otherwise the element is

* Algorithm 4 may discard some items from memory
after having added them

* For every query, A computes some function ¢(o)

18

Single machine vs.
diStribUted at any point in time, the

sample should be valid

WO 90 PO @ WOPVWOD @ e ~fr VOO @

one-time
O
-~ . continuously

#3 coordinator

Reservolr sampling

a reservoir of valid random samples

Task: Given a data stream of , randomly

pick k elements from the stream so that each element has
the same probability of being chosen.

m=1 keep it
m= replace [with probability 1/2
m= replace i/ with probability 1/3

keep I/ with probability 2/3

Toy example with k=1 2

Reservolr sampling

a reservoir of valid random samples

Task: Given a data stream of , randomly
pick k elements from the stream so that each element has

the same probability of being chosen.

X

X |
JUN NI

FOCIN NG JCN T

~
|
u

Toy example with k=1 e e e eemem

Reservolr sampling

(1) Samp
(2) Samp

e the first k elements from the strea
e the i element (i>k) with probabi

T

ity k/1

(it sampled, randomly replace a previously
sampled item)

 Wanted samp

* Distributed sampling is not trivial

22

e has to fit into main memory

Reservoir sampling example

e Stream of numbers with a

N(O, 1
07 S| = 100000

k = {100, 500, 1000, 10000}

 Samples are plotted in histogram form

. - with larger k, the histograms become
more similar to the full stream histogram

23

Reservoir sampling example

+ 100 sampe5| | |
. | l |4 LT Jl [71500 sampes||
“4,_ ; | | _ — 1,000 samples | __ amma 1

24

10,000 samples

A

Jistributed reservolr sampling
for one-time sampling

reservoir sampling sub-stream S;
EEECEE EEEE oo

reservoir sampling sub-stream S:

HENNES ength m;

Goal: sample sub-streams in parallel, combine
with the same guarantee as the non-distributed version.

Sub-stream output: k samples and length of sub-stream

25

reservolr sampling
for

reservoir sampling sub-stream S,
length m;

reservoir sampling sub-stream S:

. length m:

Combining sub-stream pairs in 2. sampling phase

k iterations:
* with probabillity p =

mi

ick a sample from S
mi1 + Mo P P 4,

« with (1 —p) pick a sample from S-

20

reservolr sampling
fOr not feasible for

continous maintenance
k=3 of distributed stream

reservoir sampling sub-stream S,

reservoir sampling sub-stream S:

Combining sub-stream pairs in 2. sampling phase

k iterations:

. . mi
* with probabillity p =

ick a sample from S
mi1 + Mo P P 4,

« with (1 —p) pick a sample from S-

27

Min-wise sampling

Task: Given a data stream of , randomly

pick k elements from the stream so that each element has
the same probability of being chosen.

1. For each element in the stream, tag it with a
random number in the interval [0, 1].

2. Keep the k elements with the smallest random
tags.

28

Min-wise sampling

Task: Given a data stream of , randomly

pick k elements from the stream so that each element has
the same probability of being chosen.

 Can easily be run in a distributed fashion with a

merging stage (every subset has the same chance
of having the smallest tags)

* Disadvantage: more memory/CPU intensive than

reservoir sampling (“tags” need to be stored as
well)

29

Sampling: summary

e Low cost
 Efficient data storage

» Classic algorithms can be run on it (all samples should fit into
main memory)

* |In practical applications, we have complicating factors:

. . only the last x items of the stream are
of interest (e.g. in anomaly detection)
. through their indices from non-

cooperative providers (e.g. Google, Bing)
 How many car repairs does Google Places index?
« How many documents does Google index”

30

Frequency counter
algorithms

Examples

Frequent items: most popular destinations or most
heavy bandwidth users

Frequent items: most popular queries

32

MAJORITY algorithm

Task: Given a list of elements - is there an

(an element occurring > = times)?

L ¢ < 0; vunassigned;
no absolute majority

for each i:
RN
V&I
c«1;
blue wins elseif v=1i:
H BN B ot

else:
c«—c-1:

S — e ——

33

MAJORITY algorithm

Task: Given a list of elements - is there an

(an element occurring > = times)?

In this st , th
HEEEEYE oen e
\% b b b b b b b
c 0O 1 o0 1 2 1 0 1

A second pass Is needed to verity It the stored item Is indeed
the absolute majority item (count every occurrence of b).

34

MAJORITY algorithm

Task: Given a list of elements - is there an
(an element occurring > = times)?

0

Correctness based on pairing argument:
* Every non-majority element can be paired with a majority one
» After the pairing, there will still be majority elements left

35

FREQUENT algorithm
(Misra-Gries)

Task: Find all elements in a sequence whose frequency

exceeds 1 fraction of the total count (i.e. frequency > =)

k
 Wanted: no false lL,..(k=1)]=0.F @

I ' for each i: T ——
negatives, 1.e. all elements ey (k-1) counter-
with frequency > - need to c et value pairs
be repOrted elseif |T|<k—1:

L T «—Tu{i};
e Deterministic approach ¢, 1;
else forall jeT:
c,c;,—L
if ¢, =0:

36 T<T\{j}:

FREQUENT algorithm
(Misra-Gries)

estimated to each occur 3

Stream with m = 12 elements; all elements with more than

m

7 (i.e. 12/3 = 4) occurrences should be reported.

37

FREQUENT algorithm
(M |Sra'G I’IeS) Green is estimated to

have occurred once.

Stream with m = 7 elements; all elements with more than

7 (i.e. 7/3 = 2.333) occurrences should be reported.

38

FREQUENT algorithm
(Misra-Gries)

Recall: no tfalse negatives wanted,;
blue is a false positive (possible, not

as undesired as a false negative)

Streaming algorithms are
approximations (estimates) of the
correct answers!

Stream with m = 4 elements; all elements with more than

7 (i.e. 4/3 = 1.333) occurrences should be reported.

39

FREQUENT algorithm
(Misra-Gries)

space complexity

* Implementation: associative array using a
balanced binary search tree

* Each key has a max. value of n, each counter
has a max. value of m

* At most (k-1) key/counter pairs in memory at
any time

s =0(k(logm+logn))

40

FREQUENT algorithm
(Misra-Gries)

answer quality of frequency estimates

Counter c¢; is incremented only when 5 occurs,

thus fj < f;

c[l,.(k=1)]=0;T
~o— for each i:
e i, if P €T

—

When c; is decremented, (k — 1) counters are else‘;"f}f':kk_l:
decremented overall (all distinct tokens); for a TeTulik
stream of size m, there can be at most 7* else for all j €T
decrements, thus: R, g :0_1
fi—m< Aj < f; - T T\{j}:

41

S

FREQUENT algorithm
(SPACE-SAVING)

Task: Find all elements in a sequence whose frequency

exceeds % fraction of the total count (i.e. frequency > 7)

c[l,..(k—=1)]=0;T « O

for eachi:

« Counters are not reset, the el
element with minimum count elseif || < k—1:
IS simply replaced T T u{i};

. : i ¢, < 1;

e Maximum overestimation else -
can be tracked J ¢ argmin . c;;

¢, —c,+1

T—Tou{i}\{j};

| — E—

42

EXperiments

e Datasets
e Synthetic data

e 24 hours of HTTP/UDP traffic from a
backbone router in a large network

* Goal: track most frequent IP addresses

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

43

EXperiments

SPACESAVING- SPACESAVING-
LinkedList Heap

F—+— LC —— LCD —8— SSL —6— SSH —=—

FREQUENT

35000 ———rrrrr

30000

25000

20000

Updates/ms

15000 -

10000

Heavy hitters threshold:
0.1%

(d) UDP: Speed vs. o.

EXperiments

SPACESAVING- SPACESAVING-
LinkedList Heap

F —+— |LC ——LCD —8— SSL —e— SSH —=—

FREQUENT

100

80
Total number of true

heavy hitters over
the total number of

60

answers reported.
Quantifies false
positives.

40 ¥

Heavy hitters threshold:
0.1%

(e) UDP: Precision vs. .

EXperiments

“Overall, the SPACESAVING algorithm appears
conclusively better than other counter-based algorithms,
across a wide range of data types and parameters. Of
the two implementations compared, SSH exhibits very
good performance Iin practice. It yields very good
estimates [...] consumes very small space and is fairly

fast to update.”

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

46

~iltering

Summarizing vs. filtering

. : all data is useful, summarise for lack of space/time
. . not all data is useful, some is harmtul

e Classic example:
 Malil servers can analyse the textual content
 Mail servers have blacklists
* Mail servers have whitelists (very effective!)

* I[ncoming mails form a stream; quick decisions needed
(delete or forward)

e Applications in Web caching, packet routing ...

48

Proplem statement

* A set W containing m values (e.g. |IP addresses,
email addresses, etc.)

. - data structure that allows checking
whether the next element in the streamisin W
e return TRUE if the element Is
iNndeed iIn W
e return FALSE it the element

isnotin W

49

A reminder: hash functions

Each element is hashed into an integer (avoid hash
collisions if possible)

hash function

tom@tom.nl |- 2 001 jon@web.de

T | S e e

3 101 ab@linco.In

dantes@nu.nl

jon@web.de

: -
L
| I
| |
| I
|
I
K
o
-

-

I

| 1~
.
I

L
I
I

ab@linco.In §-

1-- 211 tom@tom.nl

albert@nu.nl

5

Hash function maps each item in

the universe to a random number
uniform over the range.

Bloom filter

* Given
+ A set of hash functions 1/ s/ s/ s b W — [1,n]

» A bit vector of size n (initialized to 0)
Usually done
» To add an element to W x bulk
» Compute ,(e),h,(e),....h, (e) e
INE/ 00 AE o e I AE S with few
» Set the corresponding bits in the bit vector to 1 updates.

» To test whether an element is in IV
» Compute h,(e),h,(e),....h, (e) Operation on
» Sum up the returned bits

the data
» Return TRUE if sum=k, FALSE otherwise stream.

51

Key: @ Add

http://www.jasondavies.com/bloomfilter/

Bloom filter: element testing

» Case 1: the element is in W
- h,(e),h,(e),...,h,(e) areall setto 1
* TRUE is returned with probability 1

o Case 2: the element is not in W
* TRUE is returned if due to some other element all hash values are set

What is the probability of a false positive?

— What is the probability of k£ bits being set to 1?

— What is the probability of the jt" bit being set to 1?

Bloom filter: element testing

» Case 1: the element is in W
* h(e),h,(e),....,h (e) areall set to 1
* TRUE is returned with probability 1

o Case 2: the element is notin W
» TRUE is returned if due to some other element all hash values are set

P(BVsetafter minserts) = 1 — P(BV; notset after m inserts)
=1- P(BVj not set after k£ X mhashes)

kxm
)
I

Bloom filter: element testing

» Case 1: the elementisin W
* h(e),h,(e),....,h (e) areall set to 1

* TRUE is returned with probability 1

o Case 2: the element is notin W
» TRUE is returned if due to some other element all hash values are set

P(BVsetafter minserts) = 1 — P(BV; notset after m inserts)
=]1- P(BVJ. notset after k X m hashes)

kxm
1 (1_1)

km
P(falseposztzve):[1__]

Bloom filter: how many hash
functions are useful?

Example: m = 10? whitelisted IP addresses and
n = 8 x 10” bits in memory

Bloom filter tricks

* Union of two Bloom filters of the same type in terms

of hash functions and bits

e [o half the size of a Bloom filter with a filter size the
power of 2

OR first and second half together.

When hashing the higher order bit can be masked.

 Bloom filter deletions?

Solution: (instead of bits
use counters that increment/decrement).

