
Claudia Hauff
ti2736b-ewi@tudelft.nl

TI2736-B
Big Data Processing

mailto:ti2736b-ewi@tudelft.nl

Pig Pig

Map
ReduceStreams

HDFS

Intro Streams

Hadoop
Mix

Design
Pattern

SparkGraphs Giraph SparkZoo
Keeper

3

• Explain the limiting factors of data streaming & describe the different
data stream models

• Implement sampling approaches for data streams

• RESERVOIR sampling

• MIN-WISE sampling

• Implement counter-based frequent item estimation approaches

•MAJORITY

•FREQUENT

•SPACE-SAVING

• Implement BLOOM filters

Learning objectives

Data streaming

5

Streaming architecture

stream
processor

standing
queries

Archival
storage

Data stream(s) entering
157.26.141.29, 16.173.193.108, 225.95.152.11

@jon, @cnnbreakingnews, @bbclondon, @walther

23.45, 34.23, 45.22, 66.7, 12.3, 34.56, 56.55

Output streams(s)

Maintain a summary
(sketch) of the
stream to answer
queries.

Working
storage

adhoc
queries

6

• Continuous and rapid input of data

• Limited memory to store the data (less than linear
in the input size)

• Limited time to process each element

• Sequential access (no random access)

• Algorithms have one (p=1) or very few passes
(p={2,3}) over the data

Data streaming scenario

7

• Typically: simple functions of the stream are
computed and used as input to other algorithms
• Number of distinct items
• Heavy hitters
• ….

• Closed form solutions are rare - approximation
and randomisation are the norm

Data streaming scenario

8

• Massively long input stream

• Basic “vanilla” model:

• Space complexity goal: s bits of random-access
memory with

Data stream models

� =< a1, a2, a3, .., am >
with elements drawn from [n] := 1, 2, ..., n

not a restriction: requires a
single preprocessing step to
convert symbols to integers

stream length m

s = O(logm+ log n)
“holy grail”

s = poly log(min(m,n))

“reality”

universe size n

s = o(min{m,n})

9

• Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

• Turnstile model: elements can “arrive” and “depart”
from the multi-set by variable amounts

• Cash register model: only positive updates are
allowed

Data stream models

f = (f1, f2, ..., fn) where fj = |i : ai = j|
with f starting at 0

upon receiving ai = (j, c), update fj fj + c

10

• Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

• Turnstile model: elements can “arrive” and “depart”
from the multi-set by variable amounts

• Cash register model: only positive updates are
allowed

Data stream models

f = (f1, f2, ..., fn) where fj = |i : ai = j|
with f starting at 0

upon receiving ai = (j, c), update fj fj + c

A data streaming algorithm A takes the stream as input
and computes a function �(�)

11

Data stream models

“For instance, estimating cardinalities [number of
distinct elements] … of a hundred million
different records can be achieved with m=2048
memory units of 5 bits each, which corresponds
to 1.28 kilobytes of auxiliary storage in total,
the error observed being typically less than
2.5%.”

Durand, Marianne, and Philippe Flajolet. "Loglog counting of large cardinalities."
Algorithms-ESA 2003. Springer Berlin Heidelberg, 2003. 605-617.

12

• Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

• Turnstile model: elements can “arrive” and “depart”
from the multi-set by variable amounts

• Cash register model: only positive updates are
allowed

Data stream models

f = (f1, f2, ..., fn) where fj = |i : ai = j|
with f starting at 0

upon receiving ai = (j, c), update fj fj + c

A data streaming algorithm A takes the stream as input
and computes a function �(�)

“For instance, estimating cardinalities [number
of distinct elements] … of a hundred million
different records can be achieved with
m=2048 memory units of 5 bits each, which
corresponds to 1.28 kilobytes of auxiliary
storage in total, the error observed being
typically less than 2.5%.”

Durand, Marianne, and Philippe Flajolet. "Loglog counting of large cardinalities."
Algorithms-ESA 2003. Springer Berlin Heidelberg, 2003. 605-617.

“The best methods can be implemented
to find frequent items with high
accuracy using only tens of kilobytes
of memory, at rates of millions of
items per second on cheap modern
hardware.”

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

13

• Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

• Turnstile model: elements can “arrive” and “depart”
from the multi-set by variable amounts

• Cash register model: only positive updates are
allowed

Data stream models

f = (f1, f2, ..., fn) where fj = |i : ai = j|
with f starting at 0

upon receiving ai = (j, c), update fj fj + c

A data streaming algorithm A takes the stream as input
and computes a function �(�)

“For instance, estimating cardinalities [number
of distinct elements] … of a hundred million
different records can be achieved with
m=2048 memory units of 5 bits each, which
corresponds to 1.28 kilobytes of auxiliary
storage in total, the error observed being
typically less than 2.5%.”

Durand, Marianne, and Philippe Flajolet. "Loglog counting of large cardinalities."
Algorithms-ESA 2003. Springer Berlin Heidelberg, 2003. 605-617.

“The best methods can be implemented
to find frequent items with high
accuracy using only tens of kilobytes
of memory, at rates of millions of
items per second on cheap modern
hardware.”

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

“consider the problem of deriving an
execution plan for a query expressed
in a declarative language such as SQL.
There usually exist several alternative
plans that all produce the same result,
but they can differ in their efficiency
by several orders of magnitude”

Gemulla, Rainer. "Sampling algorithms for evolving datasets." (2008).

14

• Frequency vectors: computing some statistical
property from the multi-set of items in the input stream

• Turnstile model: elements can “arrive” and “depart”
from the multi-set by variable amounts

• Cash register model: only positive updates are
allowed

Data stream models

f = (f1, f2, ..., fn) where fj = |i : ai = j|
with f starting at 0

upon receiving ai = (j, c), update fj fj + c

A data streaming algorithm A takes the stream as input
and computes a function �(�)

“For instance, estimating cardinalities [number
of distinct elements] … of a hundred million
different records can be achieved with
m=2048 memory units of 5 bits each, which
corresponds to 1.28 kilobytes of auxiliary
storage in total, the error observed being
typically less than 2.5%.”

Durand, Marianne, and Philippe Flajolet. "Loglog counting of large cardinalities."
Algorithms-ESA 2003. Springer Berlin Heidelberg, 2003. 605-617.

“The best methods can be implemented
to find frequent items with high
accuracy using only tens of kilobytes
of memory, at rates of millions of
items per second on cheap modern
hardware.”

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

“consider the problem of deriving an
execution plan for a query expressed
in a declarative language such as SQL.
There usually exist several alternative
plans that all produce the same result,
but they can differ in their efficiency
by several orders of magnitude”

Gemulla, Rainer. "Sampling algorithms for evolving datasets." (2008).

“The main idea behind this processing
model [approximate query processing]
is that the computational cost of query
processing can be reduced when the
underlying application does not require
exact results but only a highly-accurate
estimate thereof”

Gemulla, Rainer. "Sampling algorithms for evolving datasets." (2008).

Sampling

16

• Sampling: selection of a subset of items from a
large data set

• Goal: sample retains the properties of the whole
data set

• Important for drawing the right conclusions from
the data

Overview

17

• Sampling: selection of a subset of items from a
large data set

• Goal: sample retains the properties of the whole
data set

• Important for drawing the right conclusions from
the data

Overview

Google Trends

18

• Algorithm A chooses every incoming element with a
certain probability

• If the element is sampled, A puts it into memory,
otherwise the element is discarded

• Algorithm A may discard some items from memory
after having added them

• For every query, A computes some function
only based on the in-memory sample

Sampling framework

�(�)

one-time
or

continuously

Single machine vs.
distributed

sampler

sampler

sampler

sampler

coordinator

at any point in time, the
sample should be valid

Reservoir sampling

20

Task: Given a data stream of unknown length, randomly
pick k elements from the stream so that each element has
the same probability of being chosen.

m=2 replace with probability 1/2
m=1 keep it

m=3 replace / with probability 1/3
keep / with probability 2/3

Toy example with k=1

a reservoir of valid random samples

Reservoir sampling

21

Task: Given a data stream of unknown length, randomly
pick k elements from the stream so that each element has
the same probability of being chosen.

m=2 replace with probability 1/2
m=1 keep it

m=3 replace / with probability 1/3
keep / with probability 2/3

P () = 1⇥ 1

2
⇥ 2

3
=

1

3

P () =
1

2
⇥ 2

3
=

1

3

P () =
1

3Toy example with k=1

a reservoir of valid random samples

Reservoir sampling
(1) Sample the first k elements from the stream
(2) Sample the ith element (i>k) with probability k/i  

(if sampled, randomly replace a previously
sampled item)

• Limitations:
• Wanted sample has to fit into main memory
• Distributed sampling is not trivial 

22

sampling without replacement

Reservoir sampling example
• Stream of numbers with a normal distribution

N(0,1)

• Samples are plotted in histogram form

• Expectation: with larger k, the histograms become
more similar to the full stream histogram

23

|S| = 100000

k = {100, 500, 1000, 10000}

Reservoir sampling example

24

Histogram of entire stream
(100,000 items)

1,000 samples

10,000 samples

100 samples

500 samples

Distributed reservoir sampling
for one-time sampling

25

length m1

Goal: sample sub-streams in parallel, combine
with the same guarantee as the non-distributed version.

length m2

Sub-stream output: k samples and length of sub-stream

reservoir sampling sub-stream S1

reservoir sampling sub-stream S2

26

Combining sub-stream pairs in 2. sampling phase
k iterations:

• with probability pick a sample from S1,

• with pick a sample from S2

k=3

p =
m1

m1 +m2

(1� p)

length m1

length m2

Distributed reservoir sampling
for one-time sampling
reservoir sampling sub-stream S1

reservoir sampling sub-stream S2

27

Combining sub-stream pairs in 2. sampling phase
k iterations:

• with probability pick a sample from S1,

• with pick a sample from S2

k=3

p =
m1

m1 +m2

(1� p)

length m1

length m2

Distributed reservoir sampling
for one-time sampling not feasible for

continous maintenance
of distributed stream

reservoir sampling sub-stream S1

reservoir sampling sub-stream S2

Min-wise sampling

28

1. For each element in the stream, tag it with a
random number in the interval [0,1].

2. Keep the k elements with the smallest random
tags.

Task: Given a data stream of unknown length, randomly
pick k elements from the stream so that each element has
the same probability of being chosen.

Min-wise sampling

29

• Can easily be run in a distributed fashion with a
merging stage (every subset has the same chance
of having the smallest tags)

• Disadvantage: more memory/CPU intensive than
reservoir sampling (“tags” need to be stored as
well)

Task: Given a data stream of unknown length, randomly
pick k elements from the stream so that each element has
the same probability of being chosen.

Sampling: summary

30

• Advantages:
• Low cost
• Efficient data storage
• Classic algorithms can be run on it (all samples should fit into

main memory)

• In practical applications, we have complicating factors:
• Time-sensitive window: only the last x items of the stream are

of interest (e.g. in anomaly detection)
• Sampling from databases through their indices from non-

cooperative providers (e.g. Google, Bing)
• How many car repairs does Google Places index?
• How many documents does Google index?

Frequency counter
algorithms

“Counter-based algorithms track a subset of items from
the inputs, and monitor counts associated with these
items.
For each new arrival, the algorithms decide whether to
store this item or not, and if so, what counts to
associate with it.”

Examples

Packets on the Internet

Frequent items: most popular destinations or most
heavy bandwidth users

Queries submitted to a search engine

Frequent items: most popular queries

32

MAJORITY algorithm

33

no absolute majority

blue wins

Task: Given a list of elements - is there an absolute majority
(an element occurring times)?>

m

2

MAJORITY algorithm

34

>
m

2

In this stream, the
last item is kept.

A second pass is needed to verify if the stored item is indeed
the absolute majority item (count every occurrence of b).

Task: Given a list of elements - is there an absolute majority
(an element occurring times)?>

m

2

v b b b b b b b
c 0 1 0 1 2 1 0 1

MAJORITY algorithm

35

>
m

2

Correctness based on pairing argument:
• Every non-majority element can be paired with a majority one
• After the pairing, there will still be majority elements left

Task: Given a list of elements - is there an absolute majority
(an element occurring times)?>

m

2

v g g g g y y b
c 0 1 0 1 0 1 0 1

36

>
m

2

• Wanted: no false
negatives, i.e. all elements
with frequency need to
be reported

• Deterministic approach

Task: Find all elements in a sequence whose frequency
exceeds fraction of the total count (i.e. frequency) 1

k
>

m

k

FREQUENT algorithm
(Misra-Gries)

>
m

k

(k-1) counter-
value pairs

FREQUENT algorithm
(Misra-Gries)

37

v1 g g g g g g g g g g g g
c1 1 2 2 3 3 2 1 1 2 2 3 3
v2 - - b b b b - b b b b b
c2 0 0 1 1 2 1 0 1 1 2 2 3

k = 3

c = 0

Blue and green have been
estimated to each occur 3
times.

Stream with m = 12 elements; all elements with more than

m
k (i.e. 12/3 = 4) occurrences should be reported.

FREQUENT algorithm
(Misra-Gries)

38

v1 g g g g g g g g g g g g
c1 1 2 2 3 3 2 1 1 2 2 3 3
v2 - - b b b b - b b b b b
c2 0 0 1 1 2 1 0 1 1 2 2 3

k = 3

c = 0

Stream with m = 7 elements; all elements with more than

m
k (i.e. 7/3 = 2.333) occurrences should be reported.

Green is estimated to
have occurred once.

FREQUENT algorithm
(Misra-Gries)

39

v1 g g g g g g g g g g g g
c1 1 2 2 3 3 2 1 1 2 2 3 3
v2 - - b b b b - b b b b b
c2 0 0 1 1 2 1 0 1 1 2 2 3

k = 3

c = 0

Stream with m = 4 elements; all elements with more than

m
k (i.e. 4/3 = 1.333) occurrences should be reported.

Recall: no false negatives wanted;
blue is a false positive (possible, not
as undesired as a false negative)

Streaming algorithms are
approximations (estimates) of the
correct answers!

FREQUENT algorithm
(Misra-Gries)

40

>
m

2

• Implementation: associative array using a
balanced binary search tree

• Each key has a max. value of n, each counter
has a max. value of m

• At most (k-1) key/counter pairs in memory at
any time

space complexity

FREQUENT algorithm
(Misra-Gries)

41

>
m

2

answer quality of frequency estimates

Counter cj is incremented only when j occurs,

thus

ˆfj  fj

When cj is decremented, (k � 1) counters are

decremented overall (all distinct tokens); for a

stream of size m, there can be at most

m
k

decrements, thus:

fj � m
k  ˆfj  fj

42

>
m

2

• Counters are not reset, the
element with minimum count
is simply replaced

• Maximum overestimation
can be tracked

Task: Find all elements in a sequence whose frequency
exceeds fraction of the total count (i.e. frequency) 1

k
>

m

k

FREQUENT algorithm
(SPACE-SAVING)

Experiments

43

>
m

2

• Datasets
• Synthetic data
• 24 hours of HTTP/UDP traffic from a

backbone router in a large network

• Goal: track most frequent IP addresses

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

Experiments

44

FREQUENT
SPACESAVING-

LinkedList
SPACESAVING-

Heap

Heavy hitters threshold:
0.01% 0.1% 1%

Experiments

45

Total number of true
heavy hitters over
the total number of
answers reported.
Quantifies false
positives.

Heavy hitters threshold:
0.01% 0.1% 1%

FREQUENT
SPACESAVING-

LinkedList
SPACESAVING-

Heap

Experiments

46

>
m

2

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

“Overall, the SPACESAVING algorithm appears
conclusively better than other counter-based algorithms,
across a wide range of data types and parameters. Of
the two implementations compared, SSH exhibits very
good performance in practice. It yields very good
estimates […] consumes very small space and is fairly
fast to update.”

Filtering

Summarizing vs. filtering

48

• So far: all data is useful, summarise for lack of space/time

• Now: not all data is useful, some is harmful

• Classic example: spam filtering
• Mail servers can analyse the textual content
• Mail servers have blacklists
• Mail servers have whitelists (very effective!)
• Incoming mails form a stream; quick decisions needed

(delete or forward)
• Applications in Web caching, packet routing …

Problem statement
• A set W containing m values (e.g. IP addresses,

email addresses, etc.)

• Working memory of size n bit

• Goal: data structure that allows fast checking
whether the next element in the stream is in W
• return TRUE with probability 1 if the element is

indeed in W
• return FALSE with high probability if the element

is not in W
49

A reminder: hash functions
Each element is hashed into an integer (avoid hash
collisions if possible)

50

Bloom filter

51

Hash function maps each item in
the universe to a random number
uniform over the range.

Usually done
once in bulk
with few
updates.

Operation on
the data
stream.

Bloom filter: a demo

52

http://www.jasondavies.com/bloomfilter/

http://www.jasondavies.com/bloomfilter/

Bloom filter: element testing

53

What is the probability of a false positive?

 → What is the probability of the jth bit being set to 1?

 → What is the probability of k bits being set to 1?

Bloom filter: element testing

54

Bloom filter: element testing

55

Bloom filter: how many hash
functions are useful?

56

Example: m = 10

9
whitelisted IP addresses and

n = 8⇥ 10

9
bits in memory

Bloom filter tricks
• Union of two Bloom filters of the same type in terms

of hash functions and bits

• To half the size of a Bloom filter with a filter size the
power of 2

• Bloom filter deletions?

57

OR the two bit vectors.

OR first and second half together.
When hashing the higher order bit can be masked.

Not possible in the standard setup.
Solution: counting bloom filters (instead of bits
use counters that increment/decrement).

