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• Explain the limiting factors of data streaming & describe the different 
data stream models 

• Implement sampling approaches for data streams 

• RESERVOIR sampling 

• MIN-WISE sampling 

• Implement counter-based frequent item estimation approaches 

•MAJORITY 

•FREQUENT 

•SPACE-SAVING 

• Implement BLOOM filters

Learning objectives



Data streaming
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Streaming architecture

stream 
processor

standing 
queries

Archival 
storage

Data stream(s) entering
157.26.141.29, 16.173.193.108, 225.95.152.11

@jon, @cnnbreakingnews, @bbclondon, @walther

23.45, 34.23, 45.22, 66.7, 12.3, 34.56, 56.55

Output streams(s)

Maintain a summary 
(sketch) of the  
stream to answer  
queries.

Working 
storage

adhoc 
queries
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• Continuous and rapid input of data 

• Limited memory to store the data (less than linear 
in the input size) 

• Limited time to process each element 

• Sequential access (no random access) 

• Algorithms have one (p=1) or very few passes 
(p={2,3}) over the data

Data streaming scenario
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• Typically: simple functions of the stream are 
computed and used as input to other algorithms 
• Number of distinct items 
• Heavy hitters 
• …. 

• Closed form solutions are rare - approximation 
and randomisation are the norm

Data streaming scenario
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• Massively long input stream 

• Basic “vanilla” model: 

• Space complexity goal: s bits of random-access 
memory with 

Data stream models

� =< a1, a2, a3, .., am >
with elements drawn from [n] := 1, 2, ..., n

not a restriction: requires a 
single preprocessing step to 
convert symbols to integers

stream length m

s = O(logm+ log n)
“holy grail”

s = poly log(min(m,n))

“reality”

universe size n

s = o(min{m,n})
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• Frequency vectors: computing some statistical 
property from the multi-set of items in the input stream 

• Turnstile model: elements can “arrive” and “depart” 
from the multi-set by variable amounts 

• Cash register model: only positive updates are 
allowed

Data stream models

f = (f1, f2, ..., fn) where fj = |i : ai = j|
with f starting at 0

upon receiving ai = (j, c), update fj  fj + c
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Data stream models

“For instance, estimating cardinalities [number of 
distinct elements] … of a hundred million 
different records can be achieved with m=2048 
memory units of 5 bits each, which corresponds 
to 1.28 kilobytes of auxiliary storage in total, 
the error observed being typically less than 
2.5%.”

Durand, Marianne, and Philippe Flajolet. "Loglog counting of large cardinalities." 
Algorithms-ESA 2003. Springer Berlin Heidelberg, 2003. 605-617.
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storage in total, the error observed being 
typically less than 2.5%.”
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of memory, at rates of millions of 
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streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.
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There usually exist several alternative 
plans that all produce the same result, 
but they can differ in their efficiency 
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Gemulla, Rainer. "Sampling algorithms for evolving datasets." (2008).
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“consider the problem of deriving an 
execution plan for a query expressed 
in a declarative language such as SQL. 
There usually exist several alternative 
plans that all produce the same result, 
but they can differ in their efficiency 
by several orders of magnitude”

Gemulla, Rainer. "Sampling algorithms for evolving datasets." (2008).

“The main idea behind this processing 
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Gemulla, Rainer. "Sampling algorithms for evolving datasets." (2008).



Sampling
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• Sampling: selection of a subset of items from a 
large data set 

• Goal: sample retains the properties of the whole 
data set 

• Important for drawing the right conclusions from 
the data

Overview
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• Sampling: selection of a subset of items from a 
large data set 

• Goal: sample retains the properties of the whole 
data set 

• Important for drawing the right conclusions from 
the data

Overview

Google Trends
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• Algorithm A chooses every incoming element with a 
certain probability

• If the element is sampled, A puts it into memory, 
otherwise the element is discarded 

• Algorithm A may discard some items from memory 
after having added them 

• For every query, A computes some function          
only based on the in-memory sample 

Sampling framework

�(�)



one-time
or 

continuously

Single machine vs. 
distributed

sampler

sampler

sampler

sampler

coordinator

at any point in time, the 
sample should be valid



Reservoir sampling
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Task: Given a data stream of unknown length, randomly 
pick k elements from the stream so that each element has 
the same probability of being chosen.

m=2 replace      with probability 1/2 
m=1 keep it

m=3 replace    /    with probability 1/3 
keep    /    with probability 2/3

Toy example with k=1

a reservoir of valid random samples



Reservoir sampling
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Task: Given a data stream of unknown length, randomly 
pick k elements from the stream so that each element has 
the same probability of being chosen.

m=2 replace      with probability 1/2 
m=1 keep it

m=3 replace    /    with probability 1/3 
keep    /    with probability 2/3

P ( ) = 1⇥ 1

2
⇥ 2

3
=

1

3

P ( ) =
1

2
⇥ 2

3
=

1

3

P ( ) =
1

3Toy example with k=1

a reservoir of valid random samples



Reservoir sampling
(1) Sample the first k elements from the stream 
(2) Sample the ith element (i>k) with probability k/i  

(if sampled, randomly replace a previously 
sampled item) 

• Limitations: 
• Wanted sample has to fit into main memory 
• Distributed sampling is not trivial 

22

sampling without replacement



Reservoir sampling example
• Stream of numbers with a normal distribution 

N(0,1) 

• Samples are plotted in histogram form 

• Expectation: with larger k, the histograms become 
more similar to the full stream histogram

23

|S| = 100000

k = {100, 500, 1000, 10000}



Reservoir sampling example
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Histogram of entire stream 
(100,000 items)

1,000 samples

10,000 samples

100 samples

500 samples



Distributed reservoir sampling 
for one-time sampling
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length m1

Goal: sample sub-streams in parallel, combine 
with the same guarantee as the non-distributed version.

length m2

Sub-stream output: k samples and length of sub-stream

reservoir sampling sub-stream S1

reservoir sampling sub-stream S2
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Combining sub-stream pairs in 2. sampling phase
k iterations: 

• with probability                       pick a sample from S1, 
  

• with             pick a sample from S2

k=3

p =
m1

m1 +m2

(1� p)

length m1

length m2

Distributed reservoir sampling 
for one-time sampling
reservoir sampling sub-stream S1

reservoir sampling sub-stream S2
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Combining sub-stream pairs in 2. sampling phase
k iterations: 

• with probability                       pick a sample from S1, 
  

• with             pick a sample from S2

k=3

p =
m1

m1 +m2

(1� p)

length m1

length m2

Distributed reservoir sampling 
for one-time sampling not feasible for

continous maintenance
of distributed stream

reservoir sampling sub-stream S1

reservoir sampling sub-stream S2



Min-wise sampling
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1. For each element in the stream, tag it with a 
random number in the interval [0,1]. 

2. Keep the k elements with the smallest random 
tags.

Task: Given a data stream of unknown length, randomly 
pick k elements from the stream so that each element has 
the same probability of being chosen.



Min-wise sampling
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• Can easily be run in a distributed fashion with a 
merging stage (every subset has the same chance 
of having the smallest tags) 

• Disadvantage: more memory/CPU intensive than 
reservoir sampling (“tags” need to be stored as 
well)

Task: Given a data stream of unknown length, randomly 
pick k elements from the stream so that each element has 
the same probability of being chosen.



Sampling: summary
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• Advantages: 
• Low cost 
• Efficient data storage 
• Classic algorithms can be run on it (all samples should fit into 

main memory) 

• In practical applications, we have complicating factors: 
• Time-sensitive window: only the last x items of the stream are 

of interest (e.g. in anomaly detection) 
• Sampling from databases through their indices from non-

cooperative providers (e.g. Google, Bing) 
• How many car repairs does Google Places index? 
• How many documents does Google index?



Frequency counter 
algorithms

“Counter-based algorithms track a subset of items from 
the inputs, and monitor counts associated with these 
items.  
For each new arrival, the algorithms decide whether to 
store this item or not, and if so, what counts to 
associate with it.”



Examples

Packets on the Internet

Frequent items: most popular destinations or most 
heavy bandwidth users

Queries submitted to a search engine

Frequent items: most popular queries

32



MAJORITY algorithm
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no absolute majority

blue wins

Task: Given a list of elements - is there an absolute majority 
(an element occurring        times)?>

m

2



MAJORITY algorithm
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>
m

2

In this stream, the 
last item is kept. 

A second pass is needed to verify if the stored item is indeed 
the absolute majority item (count every occurrence of b).

Task: Given a list of elements - is there an absolute majority 
(an element occurring        times)?>

m

2

v b b b b b b b
c 0 1 0 1 2 1 0 1



MAJORITY algorithm
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>
m

2

Correctness based on pairing argument: 
• Every non-majority element can be paired with a majority one 
• After the pairing, there will still be majority elements left

Task: Given a list of elements - is there an absolute majority 
(an element occurring        times)?>

m

2

v g g g g y y b
c 0 1 0 1 0 1 0 1
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>
m

2

• Wanted: no false 
negatives, i.e. all elements 
with frequency       need to 
be reported 

• Deterministic approach

Task: Find all elements in a sequence whose frequency 
exceeds     fraction of the total count (i.e. frequency        )  1

k
>

m

k

FREQUENT algorithm 
(Misra-Gries)

>
m

k

(k-1) counter- 
value pairs



FREQUENT algorithm 
(Misra-Gries)
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v1 g g g g g g g g g g g g
c1 1 2 2 3 3 2 1 1 2 2 3 3
v2 - - b b b b - b b b b b
c2 0 0 1 1 2 1 0 1 1 2 2 3

k = 3

c = 0

Blue and green have been 
estimated to each occur 3 
times.

Stream with m = 12 elements; all elements with more than

m
k (i.e. 12/3 = 4) occurrences should be reported.



FREQUENT algorithm 
(Misra-Gries)
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v1 g g g g g g g g g g g g
c1 1 2 2 3 3 2 1 1 2 2 3 3
v2 - - b b b b - b b b b b
c2 0 0 1 1 2 1 0 1 1 2 2 3

k = 3

c = 0

Stream with m = 7 elements; all elements with more than

m
k (i.e. 7/3 = 2.333) occurrences should be reported.

Green is estimated to 
have occurred once.



FREQUENT algorithm 
(Misra-Gries)
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v1 g g g g g g g g g g g g
c1 1 2 2 3 3 2 1 1 2 2 3 3
v2 - - b b b b - b b b b b
c2 0 0 1 1 2 1 0 1 1 2 2 3

k = 3

c = 0

Stream with m = 4 elements; all elements with more than

m
k (i.e. 4/3 = 1.333) occurrences should be reported.

Recall: no false negatives wanted; 
blue is a false positive (possible, not 
as undesired as a false negative)

Streaming algorithms are 
approximations (estimates) of the 
correct answers!



FREQUENT algorithm 
(Misra-Gries)
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>
m

2

• Implementation: associative array using a 
balanced binary search tree 

• Each key has a max. value of n, each counter 
has a max. value of m 

• At most (k-1) key/counter pairs in memory at 
any time

space complexity



FREQUENT algorithm 
(Misra-Gries)
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>
m

2

answer quality of frequency estimates

Counter cj is incremented only when j occurs,

thus

ˆfj  fj

When cj is decremented, (k � 1) counters are

decremented overall (all distinct tokens); for a

stream of size m, there can be at most

m
k

decrements, thus:

fj � m
k  ˆfj  fj
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>
m

2

• Counters are not reset, the 
element with minimum count 
is simply replaced 

• Maximum overestimation 
can be tracked

Task: Find all elements in a sequence whose frequency 
exceeds     fraction of the total count (i.e. frequency        )  1

k
>

m

k

FREQUENT algorithm 
(SPACE-SAVING)



Experiments
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>
m

2

• Datasets 
• Synthetic data 
• 24 hours of HTTP/UDP traffic from a 

backbone router in a large network 

• Goal: track most frequent IP addresses

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data 
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.



Experiments
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FREQUENT
SPACESAVING- 

LinkedList
SPACESAVING- 

Heap

Heavy hitters threshold: 
0.01%                        0.1%                             1%



Experiments
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Total number of true 
heavy hitters over 
the total number of 
answers reported. 
Quantifies false 
positives.

Heavy hitters threshold: 
0.01%                        0.1%                             1%

FREQUENT
SPACESAVING- 

LinkedList
SPACESAVING- 

Heap



Experiments
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>
m

2

Cormode, Graham, and Marios Hadjieleftheriou. "Finding frequent items in data 
streams." Proceedings of the VLDB Endowment 1.2 (2008): 1530-1541.

“Overall, the SPACESAVING algorithm appears 
conclusively better than other counter-based algorithms, 
across a wide range of data types and parameters. Of 
the two implementations compared, SSH exhibits very 
good performance in practice. It yields very good 
estimates […] consumes very small space and is fairly 
fast to update.”



Filtering



Summarizing vs. filtering
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• So far: all data is useful, summarise for lack of space/time 

• Now: not all data is useful, some is harmful 

• Classic example: spam filtering 
• Mail servers can analyse the textual content 
• Mail servers have blacklists 
• Mail servers have whitelists (very effective!) 
• Incoming mails form a stream; quick decisions needed 

(delete or forward) 
• Applications in Web caching, packet routing …



Problem statement
• A set W containing m values (e.g. IP addresses, 

email addresses, etc.) 

• Working memory of size n bit

• Goal: data structure that allows fast checking 
whether the next element in the stream is in W 
• return TRUE with probability 1 if the element is 

indeed in W 
• return FALSE with high probability if the element 

is not in W
49



A reminder: hash functions
Each element is hashed into an integer (avoid hash 
collisions if possible)

50



Bloom filter
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Hash function maps each item in 
the universe to a random number 
uniform over the range.

Usually done 
once in bulk 
with few 
updates.

Operation on 
the data 
stream.



Bloom filter: a demo
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http://www.jasondavies.com/bloomfilter/

http://www.jasondavies.com/bloomfilter/


Bloom filter: element testing
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What is the probability of a false positive?

               → What is the probability of the jth bit being set to 1? 

      → What is the probability of k bits being set to 1?



Bloom filter: element testing
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Bloom filter: element testing
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Bloom filter: how many hash 
functions are useful?
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Example: m = 10

9
whitelisted IP addresses and

n = 8⇥ 10

9
bits in memory



Bloom filter tricks
• Union of two Bloom filters of the same type in terms 

of hash functions and bits 

• To half the size of a Bloom filter with a filter size the 
power of 2 

• Bloom filter deletions?

57

OR the two bit vectors.

OR first and second half together.
When hashing the higher order bit can be masked.

Not possible in the standard setup.
Solution: counting bloom filters (instead of bits 
use counters that increment/decrement).


