TI2736-B
Big Data Processing
Claudia Hauff
ti2736b-ewi@tudelft.nl
Learning objectives

• **Explain** the limiting factors of data streaming & describe the different data stream models

• **Implement** sampling approaches for data streams
 • RESERVOIR sampling
 • MIN-WISE sampling

• **Implement** counter-based frequent item estimation approaches
 • MAJORITY
 • FREQUENT
 • SPACE-SAVING

• **Implement** BLOOM filters
Data streaming
Streaming architecture

Data stream(s) entering

@jon, @cnnbreakingnews, @bbclondon, @walther
23.45, 34.23, 45.22, 66.7, 12.3, 34.56, 56.55

Output streams(s)

Maintain a **summary** (**sketch**) of the stream to answer **queries**.
Data streaming scenario

- **Continuous** and rapid input of data
- **Limited memory** to store the data (less than linear in the input size)
- **Limited time** to process each element
- **Sequential** access (no random access)
- Algorithms have one \((p=1)\) or very few passes \((p=\{2,3\})\) over the data
Data streaming scenario

- Typically: *simple functions* of the stream are computed and used as input to other algorithms
 - Number of *distinct* items
 - Heavy hitters
 - ….

- Closed form solutions are rare - *approximation* and *randomisation* are the norm
Data stream models

- **Massively** long input stream

- **Basic “vanilla” model:**

 $$\sigma = \langle a_1, a_2, a_3, \ldots, a_m \rangle$$

 with elements drawn from $$[n] := 1, 2, \ldots, n$$

- **Space complexity goal:** $$s$$ bits of random-access memory with $$s = o(\min\{m, n\})$$

$$s = O(\log m + \log n)$$

“holy grail”

$$s = \text{poly log}(\min(m, n))$$

“reality”
Data stream models

- **Frequency vectors**: computing some statistical property from the multi-set of items in the input stream

 \[f = (f_1, f_2, \ldots, f_n) \text{ where } f_j = |i : a_i = j| \]

 with \(f \) starting at 0

- **Turnstile model**: elements can “arrive” and “depart” from the multi-set by variable amounts

 upon receiving \(a_i = (j, c) \), update \(f_j \leftarrow f_j + c \)

- **Cash register model**: only positive updates are allowed
Data stream models

- **Frequency vectors**: computing some statistical property from the multi-set of items in the input stream
 \[\mathbf{f} = (f_1, f_2, \ldots, f_n) \text{ where } f_j = |i : a_i = j| \]
 with \(\mathbf{f} \) starting at 0

- **Turnstile model**: elements can "arrive" and "depart" from the multi-set by variable amounts
 upon receiving \(a_i = (j, c) \), update \(f_j \leftarrow f_j + c \)

A data streaming algorithm A takes the stream as input and computes a function \(\phi(\sigma) \)
Data stream models

“For instance, estimating cardinalities [number of distinct elements] … of a hundred million different records can be achieved with m=2048 memory units of 5 bits each, which corresponds to 1.28 kilobytes of auxiliary storage in total, the error observed being typically less than 2.5%.”

Data stream models

- Frequency vectors: computing some statistical property from the multi-set of items in the input stream
- Turnstile model: elements can "arrive" and "depart" from the multi-set by variable amounts
- Cash register model: only positive updates are allowed

\[f = (f_1, f_2, \ldots, f_n) \]

where \(f_j = | \{ i : a_i = j \} | \) with \(f \) starting at 0 upon receiving \(a_i = (j, c) \), update \(f_j \leftarrow f_j + c \)

A data streaming algorithm \(A \) takes the stream as input and computes a function \(\phi(\sigma) \)

“The best methods can be implemented to find frequent items with high accuracy using only tens of kilobytes of memory, at rates of millions of items per second on cheap modern hardware.”

Data stream models

“consider the problem of deriving an **execution plan** for a **query** expressed in a declarative language such as SQL. There usually exist **several alternative plans** that all produce the same result, but they can differ in their efficiency by **several orders of magnitude**”

Data stream models

“The main idea behind this processing model [approximate query processing] is that the computational cost of query processing can be reduced when the underlying application does not require exact results but only a highly-accurate estimate thereof”

Sampling
Overview

• Sampling: selection of a subset of items from a large data set

• Goal: sample retains the properties of the whole data set

• Important for drawing the right conclusions from the data
Overview

Sampling: selection of a subset of items from a large data set.

Goal: sample retains the properties of the whole data set.

Important for drawing the right conclusions from the data.

Google Trends

Interest over time

Sampling framework

• Algorithm A chooses every incoming element with a certain probability

• If the element is sampled, A puts it into memory, otherwise the element is discarded

• Algorithm A may discard some items from memory after having added them

• For every query, A computes some function $\phi(\sigma)$ only based on the in-memory sample
Single machine vs. distributed

at any point in time, the sample should be valid
Task: Given a data stream of unknown length, randomly pick \(k \) elements from the stream so that each element has the same probability of being chosen.

Toy example with \(k=1 \)

- \(m=1 \): keep it
- \(m=2 \): replace blue with probability 1/2
- \(m=3 \): replace blue/blue with probability 1/3, keep blue/blue with probability 2/3
Reservoir sampling

a reservoir of valid random samples

Task: Given a data stream of **unknown length**, randomly pick \(k \) elements from the stream so that each element has the **same probability** of being chosen.

Toy example with \(k=1 \)

\[
P(\text{Blue}) = 1 \times \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}
\]

\[
P(\text{Green}) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}
\]

\[
P(\text{Yellow}) = \frac{1}{3}
\]
Reservoir sampling

sampling without replacement

(1) Sample the first \(k \) elements from the stream

(2) Sample the \(i^{th} \) element \((i>k)\) with probability \(k/i \)
 (if sampled, randomly replace a previously sampled item)

• **Limitations:**
 • Wanted sample has to fit into main memory
 • Distributed sampling is not trivial
Reservoir sampling example

• Stream of numbers with a **normal distribution** $N(0, 1)$

\[|S| = 100000 \]

\[k = \{100, 500, 1000, 10000\} \]

• Samples are plotted in histogram form

• **Expectation**: with larger k, the histograms become more similar to the full stream histogram
Reservoir sampling example

Histogram of entire stream (100,000 items)

100 samples

500 samples

1,000 samples

10,000 samples
Distributed reservoir sampling for one-time sampling

reservoir sampling sub-stream \(S_1 \)

length \(m_1 \)

reservoir sampling sub-stream \(S_2 \)

length \(m_2 \)

Goal: sample sub-streams in parallel, combine with the same guarantee as the non-distributed version.

Sub-stream output: \(k \) samples and length of sub-stream
Distributed reservoir sampling for one-time sampling

$k=3$

reservoir sampling sub-stream S_1

reservoir sampling sub-stream S_2

Combining sub-stream pairs in 2. sampling phase k iterations:

- with probability $p = \frac{m_1}{m_1 + m_2}$ pick a sample from S_1,

- with $(1 - p)$ pick a sample from S_2
Distributed reservoir sampling for one-time sampling

$k = 3$

reservoir sampling sub-stream S_1

reservoir sampling sub-stream S_2

Combining sub-stream pairs in 2. sampling phase

k iterations:
- with probability $p = \frac{m_1}{m_1 + m_2}$ pick a sample from S_1,
- with $(1 - p)$ pick a sample from S_2
Min-wise sampling

Task: Given a data stream of **unknown length**, randomly pick \(k \) elements from the stream so that each element has the **same probability** of being chosen.

1. For each element in the stream, tag it with a random number in the interval \([0, 1]\).

2. Keep the \(k \) elements with the smallest random tags.
Min-wise sampling

Task: Given a data stream of unknown length, randomly pick k elements from the stream so that each element has the same probability of being chosen.

- Can easily be run in a distributed fashion with a merging stage (every subset has the same chance of having the smallest tags)
- Disadvantage: more memory/CPU intensive than reservoir sampling ("tags" need to be stored as well)
Sampling: summary

- **Advantages:**
 - Low cost
 - Efficient data storage
 - Classic algorithms can be run on it (all samples should fit into main memory)

- In practical applications, we have complicating factors:
 - **Time-sensitive window:** only the last x items of the stream are of interest (e.g. in anomaly detection)
 - **Sampling from databases** through their indices from non-cooperative providers (e.g. Google, Bing)
 - How many car repairs does Google Places index?
 - How many documents does Google index?
“Counter-based algorithms track a **subset** of items from the inputs, and **monitor counts** associated with these items. For **each new arrival**, the algorithms decide whether to **store this item or not**, and if so, what counts to associate with it.”
Examples

Packets on the Internet

Frequent items: most popular destinations or most heavy bandwidth users

Queries submitted to a search engine

Frequent items: most popular queries
MAJORITY algorithm

Task: Given a list of elements - is there an absolute majority (an element occurring $> \frac{m}{2}$ times)?

no absolute majority

blue wins

```python

c ← 0; v unassigned;
for each i :
    if c = 0 :
        v ← i;
        c ← 1;
    else if v = i :
        c ← c+1;
    else:
        c ← c-1;
```
MAJORITY algorithm

Task: Given a list of elements - is there an absolute majority (an element occurring \(\geq \frac{m}{2} \) times)?

In this stream, the last item is kept.

\[
\begin{array}{cccccccc}
\text{v} & b & b & b & b & b & b & b \\
\text{c} & 0 & 1 & 0 & 1 & 2 & 1 & 0 & 1 \\
\end{array}
\]

A second pass is needed to verify if the stored item is indeed the absolute majority item (count every occurrence of \(b \)).
MAJORITY algorithm

Task: Given a list of elements - is there an absolute majority (an element occurring $> \frac{m}{2}$ times)?

Correctness based on pairing argument:
- Every non-majority element can be paired with a majority one
- After the pairing, there will still be majority elements left
FREQUENT algorithm (Misra-Gries)

Task: Find all elements in a sequence whose frequency exceeds $\frac{1}{k}$ fraction of the total count (i.e. frequency $> \frac{m}{k}$)

- **Wanted:** no false negatives, i.e. all elements with frequency $> \frac{m}{k}$ need to be reported
- **Deterministic** approach

```plaintext
c[1,..(k-1)] = 0; T ← ∅;
for each i :
    if i ∈ T :
        c_i ← c_i + 1;
    else if |T| < k - 1 :
        T ← T ∪ {i};
        c_i ← 1;
    else for all j ∈ T :
        c_j ← c_j - 1;
    if c_j = 0 :
        T ← T \{j};
```

(k-1) counter-value pairs
FREQUENT algorithm (Misra-Gries)

\(k = 3 \)

\(c = 0 \)

\[
\begin{array}{cccccccccccc}
\text{v}_1 & g & g & g & g & g & g & g & g & g & g & g & g \\
\text{c}_1 & 1 & 2 & 2 & 3 & 3 & 2 & 1 & 1 & 2 & 2 & 3 & 3 \\
\text{v}_2 & - & - & b & b & b & b & b & - & b & b & b & b \\
\text{c}_2 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 1 & 1 & 2 & 2 & 3 \\
\end{array}
\]

Blue and green have been estimated to each occur 3 times.

Stream with \(m = 12 \) elements; all elements with more than \(\frac{m}{k} \) (i.e. \(12/3 = 4 \)) occurrences should be reported.
FREQUENT algorithm

(Misra-Gries)

\[
\begin{align*}
\text{k} &= 3 \\
\text{c} &= 0 \\
\text{Green is estimated to have occurred once.}
\end{align*}
\]

\[
\begin{array}{cccccccc}
\text{v}_1 & g & g & g & g & g & g & g \\
\text{c}_1 & 1 & 2 & 2 & 3 & 3 & 2 & 1 \\
\text{v}_2 & \text{ } & \text{ } & \text{b} & \text{b} & \text{b} & \text{b} & \text{b} \\
\text{c}_2 & 0 & 0 & 1 & 1 & 2 & 1 & 0
\end{array}
\]

Stream with \(m = 7 \) elements; all elements with more than \(\frac{m}{k} \) (i.e. \(7/3 = 2.333 \)) occurrences should be reported.
FREQUENT algorithm (Misra-Gries)

\[k = 3 \]
\[c = 0 \]

\[
\begin{array}{cccc}
 v_1 & g & g & g & g \\
 c_1 & 1 & 2 & 2 & 3 \\
 v_2 & - & - & b & b \\
 c_2 & 0 & 0 & 1 & 1 \\
\end{array}
\]

Stream with \(m = 4 \) elements; all elements with more than \(\frac{m}{k} \) (i.e. \(4/3 = 1.333 \)) occurrences should be reported.

Recall: no false negatives wanted; blue is a false positive (possible, not as undesired as a false negative)

Streaming algorithms are approximations (estimates) of the correct answers!
FREQUENT algorithm (Misra-Gries)

space complexity

- Implementation: associative array using a balanced binary search tree
- Each key has a max. value of n, each counter has a max. value of m
- At most $(k-1)$ key/counter pairs in memory at any time

$$s = O(k(\log m + \log n))$$
FREQUENT algorithm (Misra-Gries)

Counter c_j is incremented only when j occurs, thus $\hat{f}_j \leq f_j$

When c_j is decremented, $(k - 1)$ counters are decremented overall (all distinct tokens); for a stream of size m, there can be at most $\frac{m}{k}$ decrements, thus:

$$f_j - \frac{m}{k} \leq \hat{f}_j \leq f_j$$
FREQUENT algorithm (SPACE-SAVING)

Task: Find all elements in a sequence whose frequency exceeds \(\frac{1}{k} \) fraction of the total count (i.e. frequency > \(\frac{m}{k} \))

- Counters are **not reset**, the element with minimum count is simply replaced
- Maximum **overestimation** can be tracked

```plaintext
\[
c[1,..(k-1)] = 0; T \leftarrow \emptyset; \\
\text{for each } i:\ \\
\quad \text{if } i \in T:\ \\
\quad \quad c_i \leftarrow c_i + 1; \\
\quad \text{else if } |T| < k - 1:\ \\
\quad \quad T \leftarrow T \cup \{i\}; \\
\quad \quad c_i \leftarrow 1; \\
\quad \text{else}:\ \\
\quad \quad j \leftarrow \arg \min_{j \in T} c_j; \\
\quad \quad c_i \leftarrow c_j + 1; \\
\quad \quad T \leftarrow T \cup \{i\} \setminus \{j\};
\]```
Experiments

- Datasets
  - Synthetic data
  - 24 hours of HTTP/UDP traffic from a backbone router in a large network

- Goal: track most frequent IP addresses

Experiments

FREQUENT

SPACESAVING-LinkedList

SPACESAVING-Heap

Heavy hitters threshold:

0.01% 0.1% 1%

(d) UDP: Speed vs. $\phi$. 
Experiments

Total number of true heavy hitters over the total number of answers reported. Quantifies false positives.

FREQUENT

SPACESAVING-LinkedList

SPACESAVING-Heap

Heavy hitters threshold:

0.01% 0.1% 1%
“Overall, the SPACESAVING algorithm appears conclusively better than other counter-based algorithms, across a wide range of data types and parameters. Of the two implementations compared, SSH exhibits very good performance in practice. It yields very good estimates […] consumes very small space and is fairly fast to update.”

Filtering
Summarizing vs. filtering

- **So far**: all data is useful, summarise for lack of space/time
- **Now**: not all data is useful, some is harmful

Classic example: **spam filtering**
- Mail servers can analyse the textual content
- Mail servers have blacklists
- Mail servers have whitelists (very effective!)
- Incoming mails form a stream; quick decisions needed (delete or forward)
- Applications in Web caching, packet routing …
Problem statement

- A set $W$ containing $m$ values (e.g. IP addresses, email addresses, etc.)

- **Working memory of size $n$ bit**

- **Goal**: data structure that allows fast checking whether the next element in the stream is in $W$
  - return **TRUE with probability 1** if the element is indeed in $W$
  - return **FALSE with high probability** if the element is not in $W$
A reminder: hash functions

Each element is hashed into an integer (avoid hash collisions if possible)
Bloom filter

- **Given**
  - A set of hash functions $\{h_1, h_2, \ldots, h_k\}$, $h_i: W \rightarrow [1,n]$
  - A bit vector of size $n$ (initialized to 0)

- **To add** an element to $W$:
  - Compute $h_1(e), h_2(e), \ldots, h_k(e)$
  - Set the corresponding bits in the bit vector to 1

- **To test** whether an element is in $W$:
  - Compute $h_1(e), h_2(e), \ldots, h_k(e)$
  - Sum up the returned bits
  - Return TRUE if sum=k, FALSE otherwise

Hash function maps each item in the universe to a **random** number **uniform** over the range.

Usually done once in bulk with few updates.

Operation on the data stream.
Bloom filter: a demo

http://www.jasondavies.com/bloomfilter/
Bloom filter: element testing

- **Case 1**: the element is in $W$
  - $h_1(e), h_2(e), \ldots, h_k(e)$ are all set to 1
  - TRUE is returned with probability 1

- **Case 2**: the element is not in $W$
  - TRUE is returned if due to some other element all hash values are set

What is the probability of a false positive?

→ What is the probability of $k$ bits being set to 1?

→ What is the probability of the $j$th bit being set to 1?
Bloom filter: element testing

- **Case 1:** the element is in $W$
  - $h_1(e), h_2(e), ..., h_k(e)$ are all set to 1
  - **TRUE** is returned with probability 1

- **Case 2:** the element is not in $W$
  - **TRUE** is returned if due to some other element all hash values are set

$$P(BV_j \text{ set after } m \text{ inserts}) = 1 - P(BV_j \text{ not set after } m \text{ inserts})$$

$$= 1 - P(BV_j \text{ not set after } k \times m \text{ hashes})$$

$$= 1 - \left(1 - \frac{1}{n}\right)^{k \times m}$$
Bloom filter: element testing

- **Case 1:** the element is in $W$
  - $h_1(e), h_2(e), \ldots, h_k(e)$ are all set to 1
  - TRUE is returned with probability 1

- **Case 2:** the element is not in $W$
  - TRUE is returned if due to some other element all hash values are set

\[
P(BV_j \text{ set after } m \text{ inserts}) = 1 - P(BV_j \text{ not set after } m \text{ inserts})
= 1 - P(BV_j \text{ not set after } k \times m \text{ hashes})
= 1 - \left(1 - \frac{1}{n}\right)^{k \times m}
\]

\[
P(\text{false positive}) = \left(1 - \left(1 - \frac{1}{n}\right)^{km}\right)^k
\]
Bloom filter: how many hash functions are useful?

Example: $m = 10^9$ whitelisted IP addresses and $n = 8 \times 10^9$ bits in memory
Bloom filter tricks

- Union of two Bloom filters of the same type in terms of hash functions and bits
  - OR the two bit vectors.
- To half the size of a Bloom filter with a filter size the power of 2
  - OR first and second half together.
  - When hashing the higher order bit can be masked.
- Bloom filter deletions?
  - Not possible in the standard setup.
  - Solution: counting bloom filters (instead of bits use counters that increment/decrement).