
1 Claudia Hauff, 2012

Claudia Big Data
IN4325 – Information Retrieval

2 Claudia Hauff, 2012

Organization matters

• The deadline for the final assignment (“first week of Q4”)
•  Teaching week 4.1: April 23 to April 29
•  Thus, final (hard) deadline: April 29, 2012

•  SEPAM students can opt for less programming-intensive
assignments (though Hadoop is really fun!)

3 Claudia Hauff, 2012

Today: How to process big data!
information need: I am supposed to use Eclipse for the
assignments. Where can I download a version for Mac OS X?

1.

formulate query

eclipse download osx

2.
submit

WWW, library records,
medical reports,
unstructured documents…

4.

index

retrieval engine:
scoring & ranking
& presentation

crawling &
indexing

view & assess
relevance to
information need

user

retrieved results

3.

This class has two goals:
•  To expose you to

“classic” information
retrieval approaches
(lectures)

•  To expose you to

technology that is
currently in use by all
major search &
retrieval companies
(assignments)

4 Claudia Hauff, 2012

Reading material for the assignments

• Hadoop programming
•  Hadoop: The Definitive Guide by Tom White, O’Reilly Media, 2011.
•  Many tutorials exist online (e.g. by Yahoo!, Cloudera)

• MapReduce algorithm design
•  Data-Intensive Text Processing with MapReduce by Lin, Dyer and

Hirst, Morgan and Claypool Publishers, 2010
•  Available online: http://www.umiacs.umd.edu/~jimmylin/book.html
•  Take a look at the rest of Jimmy Lin’s website too (many Hadoop

examples, source code, lectures)
•  This lecture is largely based on the book.

5 Claudia Hauff, 2012

What is ‘Big data’?

•  “Big data refers to enormous amounts of unstructured data
produced by high-performance applications”
•  Scientific computing applications
•  Social networks
•  E-government applications
•  Medical information systems

•  Issues
•  Scalability
•  Heterogeneity
•  Data analysis

6 Claudia Hauff, 2012

How big is big?

•  YouTube: 4 billion views a day, one hour of video upload per

second
•  Facebook: 483 million daily active users (December 2011)
• Twitter: 140 million tweets on average per day (March 2011)
• Google: >1 billion searches per day (March 2011)

• Google processed 100 TB of data per day in 2004 and 20 PB

data per day in 2008
•  Large Hadron Collider at CERN: when fully functional, it will

generate 15 petabytes of data per year
•  Internet Archive: contains 2 petabytes of data, grows 20

terabytes per month (2011)

•  Data repositories will
only grow bigger with
time.

•  More data usually
translates into more
effective algorithms.

7 Claudia Hauff, 2012

The more data, the better

Confusion set disambiguation
•  then vs. than
•  to vs. two vs. too
•  ….

Scaling to very very large corpora for natural language
disambiguation. M. Banko and E. Brill, 2001.

The unreasonable effectiveness
of data. A. Halevy, P. Norvig and F.
Pereira, 2009.

“So, follow the data.”

8 Claudia Hauff, 2012

Cloud computing

•  “Anything running inside a browser that gathers and stores
user-generated content” (Jimmy Lin)

• Utility computing
•  A computing resource as a metered service
•  A “cloud user” buys any amount of computing power from a

“cloud provider” (pay-per-use)
•  Virtual machine instances

•  IaaS: infrastructure as a service
•  Amazon Web Services (EC2: elastic compute cloud, S3: simple

storage service) is the dominant provider

9 Claudia Hauff, 2012

MapReduce

①  Programming model for distributed computations on
large-scale data, inspired by the functional programming
paradigm

②  Execution framework for clusters of commodity hardware

• Developed by researchers at Google in 2003

•  Built on principles in parallel and distributed processing

•  “MapReduce is used for the generation of data for Google’s
production web search service, for sorting, for data mining,
for machine learning and many other systems” [12]

• Designed for batch processing over large data sets

Clear separation between
what to compute and how to
compute it on the cluster.

10 Claudia Hauff, 2012

Ideas behind MapReduce I

•  Scale “out”, not “up”
•  Many commodity servers are more cost effective than few high-

end servers
• Assume failures are common

•  A 10,000-server cluster with a mean-time between failures of
1000 days experiences on average 10 failures a day.

• Move processes to the data
•  Moving the data around is expensive
•  Data locality awareness

•  Process data sequentially and avoid random access
•  Data sets do not fit in memory, disk-based access (slow)
•  Sequential access is orders of magnitude faster

11 Claudia Hauff, 2012

Ideas behind MapReduce II

• Hide system-level details from the application developer
•  Frees the developer to think about the task at hand only (no

need to worry about deadlocks, …)
•  MapReduce takes care of the system-level details (separation of

what and how to compute)

•  Seamless scalability
•  Data scalability (given twice as much data, the ideal algorithm

runs twice as long)
•  Resource scalability (given a cluster twice the size, the ideal

algorithm runs in half the time)

12 Claudia Hauff, 2012

Ideas behind MapReduce II

• Hide system-level details from the application developer
•  Frees the developer to think about the task at hand only (no

need to worry about deadlocks, …)
•  MapReduce takes care of the system-level details (separation of

what and how to compute)

•  Seamless scalability
•  Data scalability (given twice as much data, the ideal algorithm

runs twice as long)
•  Resource scalability (given a cluster twice the size, the ideal

algorithm runs in half the time)

System-level details:
• Data partitioning
• Scheduling, load balancing
• Fault tolerance

• Machine failures are common in
clusters of thousands of commodity
machines

• Inter-machine communication

“… MapReduce is not the final word, but rather the first in a
new class of programming models that will allow us to more
effectively organize computations on a massive
scale.” (Jimmy Lin)

13 Claudia Hauff, 2012

Hadoop: an open-source implementation

• De facto MapReduce standard, employed by Amazon, Adobe,
Ebay, Facebook, IBM, Last.fm, LinkedIn, StumbleUpon,
Twitter, Yahoo!, … [13]

• An Apache project (originally developed by Doug Cutting)

which has quickly spawned additional Hadoop-related top-
level projects

•  You will be using it for your assignments
•  We focus on core Hadoop functionality

•  Important to know about, Hadoop is here to stay
•  “Swiss army knife of the 21st century” [14]

14 Claudia Hauff, 2012

Hadoop: an open-source implementation

• De facto MapReduce standard, employed by Amazon, Adobe,
Ebay, Facebook, IBM, Last.fm, LinkedIn, StumbleUpon,
Twitter, Yahoo!, … [13]

• An Apache project (originally developed by Doug Cutting)

which has quickly spawned additional Hadoop-related top-
level projects

•  You will be using it for your assignments
•  We focus on core Hadoop functionality

•  Important to know about, Hadoop is here to stay
•  “Swiss army knife of the 21st century” [14]

0

500

1000

1500

2000

2500

up to
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012

Hadoop at Google Scholar: year/publications

15 Claudia Hauff, 2012

MapReduce

• Divide & conquer: partition a large problem into smaller sub-
problems
•  Independent sub-problems can be executed in parallel by

workers (anything from threads to clusters)
•  Intermediate results from each worker are combined to get

the final result

•  Issues:
•  Problem sub-problems
•  Worker assignment & synchronization
•  How do the workers get the required data?
•  Sharing of intermediate results

16 Claudia Hauff, 2012

Map & fold

f f f f f f

g g g g g g

Adapted from Data-Intensive Text Processing with MapReduce, Figure 2.1 (page 20).

Two higher-order functions

map: applies function f to
every element in a list;
f is argument for map

fold: applies function g
iteratively to aggregate
the results;
g is argument of fold
plus an initial value

list

initial value

17 Claudia Hauff, 2012

Map & fold

a b c d e f

f f f f f f

g g g g g g

… … … …0

Adapted from Data-Intensive Text Processing with MapReduce, Figure 2.1 (page 20).

Example: sum of squares

a2 b2 c2 d2 e2 f2

a2 a2+b2

0+a2+b2+c2+d2+e2+f2

transformation

aggregation

can be done
in parallel

data must be
brought together

execution
framework

18 Claudia Hauff, 2012

Map & reduce

•  Apply a map operation to each record in the input to
compute a set of intermediate key/value pairs

 map (k1,v1) -> [(k2,v2)]

• Apply a reduce operation to all values that share the same

key
 reduce (k2,[v2]) -> [(k3,v3)]

• The user of a MapReduce library specifies only the map and

reduce functions

Key/value pairs form the basic data structure

19 Claudia Hauff, 2012

Example: word count I

the dog walks around

walking my dogs

running away

around the dog

D1

D2

D3

D4

map

(the,1), (dog,1), (walks,1), (around,1)

(around,1), (the,1), (dog,1) (walking,1), (my,1), (dogs,1)
(running,1), (away,1)

map

Hadoop: shuffle & sort (aggregate values by keys)

reduce
Σ

(the,1), (the,1)

(the,2)

reduce
Σ

(dog,1), (dog,1)

(dog,2)

reduce
Σ

(walking,1)

(walking,1)

….

….

Term #tf
the 2

dog 2

walks 1

around 2

walking 1

my 1

…. …

20 Claudia Hauff, 2012

Example: word count II

•  Problem: count the number of occurrenes of each word w in
a large corpus of documents

 map(String key, String value):
 foreach word w in value:
 EmitIntermediate(w,1);

 reduce(String key, Iterator values):
 int res = 0;
 foreach int v in values:
 res += v;
 Emit(key, res)

docid doc content

intermediate key/
value pairs

word
all values with the
same key

count of key
in the corpus

21 Claudia Hauff, 2012

Example: word count III

the dog walks around

around the dog

running away

walking my dogs

D1

D2

D3

D4

map

(the,1), (dog,1), (walks,1), (around,1)

(walking,1), (my,1), (dogs,1) (around,1), (the,1), (dog,1)
(running,1), (away,1)

map

Hadoop: shuffle & sort

reduce
Σ

(the,2)

(the,2)

reduce
Σ

(dog,2)

(dog,2)

reduce
Σ

(walking,1)

(walking,1)

….

….

Term #tf
the 2

dog 2

walks 1

around 2

walking 1

my 1

…. …

(the,2), (dog,2), (walks,1), (around,2)

22 Claudia Hauff, 2012

Example: inlink count I

the D2:dog walks
around

D4:walking my
D3:dogs

D4:running away

D1

D2

D3

D4

map

(D4,D3)
(D4,D2), (D3,D2)

(D2,D1)

map

Hadoop: shuffle & sort

reduce
Σ

(D2,D1)

(D2,1)

reduce
Σ

(D4,D3), (D4,D2)

(D4,2)

reduce
Σ

(D3,D2)

(D3,1)

….

….

D1

D2

D3

D4

around the dog

23 Claudia Hauff, 2012

Example: inlink count II

•  Problem: collect all Web pages (sources) that are pointing
to a Web page (target)

 map(String key, String value):
 foreach link target t in value:
 EmitIntermediate(t,key);

 reduce(String key, Iterator values):
 int res = 0;
 foreach source s in values:
 res++;
 Emit(key,res)

source doc content

intermediate key/
value pairs

target

all sources (pages
pointing to target)

Number of pages
linking to key

24 Claudia Hauff, 2012

Example: list doc categories (min. freq. 2)

the dog walks around
[cat:C1] [cat:C2]

running away
[cat:C1] [cat:C4] [cat:C5]

D1

D2

D3

D4

map

(C1,D3), (C1,*), (C4,D3), (C4,*), (C5,D3), (C5,*)

(C1,D2), (C1,*), (C3,D2), (C3,*)

(C1,D1), (C1,*), (C2,D1), (C2,*)

map

Hadoop: shuffle & sort

reduce

(C1,*), (C1,*),
(C1,*),(C1,D3),
(C1,D1),(C1,D2)

(D3,C1), (D1,C1),
(D2,C1)

reduce

(D4,C2), (D1,C1)

reduce
 ….

….

around the dog
[cat:C2] [cat:C6]

walking my dogs
[cat:C1] [cat:C3]

category #
C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

(C2,D4), (C2,*), (C6,D4), (C6,*)

(C2,*), (C2,*),
(C2,D4), (C2,D1)

(C3,*), (C3,D2)

25 Claudia Hauff, 2012

Example: list doc categories (min. freq. 2)

the dog walks around
[cat:C1] [cat:C2]

running away
[cat:C1] [cat:C4] [cat:C5]

D1

D2

D3

D4

map

(C1,D3), (C1,*), (C4,D3), (C4,*), (C5,D3), (C5,*)

(C1,D2), (C1,*), (C3,D2), (C3,*)

(C1,D1), (C1,*), (C2,D1), (C2,*)

map

Hadoop: shuffle & sort

reduce

(C1,*), (C1,*),
(C1,*),(C1,D3),
(C1,D1),(C1,D2)

(D3,C1), (D1,C1),
(D2,C1)

reduce

(D4,C2), (D1,C1)

reduce
 ….

….

around the dog
[cat:C2] [cat:C6]

walking my dogs
[cat:C1] [cat:C3]

category #
C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

(C2,D4), (C2,*), (C6,D4), (C6,*)

(C2,*), (C2,*),
(C2,D4), (C2,D1)

(C3,*), (C3,D2)

26 Claudia Hauff, 2012

Example: list doc categories (min. freq. 2) II

•  Problem: list all categories of a Wikipedia page that occur at
least 2 times in the corpus

 map(String key, String value):
 foreach category c in value:
 EmitIntermediate(c,key);
 EmitIntermediate(c,*);

 reduce(String key, Iterator values):
 int total = 0;
 foreach * in values:
 total++;
 foreach docid d in values:
 if total>1
 Emit(d,key)

docid doc content

intermediate key/
value pairs

category

*’s and docids

d’s category with min.
freq. 2 the corpus

We can emit
more than one
key/value pair!

Assumption: the
values are sorted

in a particular
order (*’s before

anything else)

The iterator can
only be used

once!

27 Claudia Hauff, 2012

Example: list doc categories (min. freq. 2) III

•  Problem: list all categories of a Wikipedia page that occur at
least 2 times in the corpus

 reduce(String key, Iterator values):
 List list = copyFromIterator(values);
 int total = 0;
 foreach l in list:
 if(l eq *)
 total++;

 foreach l in list:
 if(l neq * && total>1)
 Emit(d,key)

We don’t assume
a particular

sorting.
What if there are
10GB of values

for key? Do they
fit into memory?

28 Claudia Hauff, 2012

Zipf’s law

• Term frequencies: The Count of Monte Christo

Term #tf
1. the 28388

2. to 12841

3. of 12834

4. and 12447

5. a 9328

6. i 8174

7. you 8128

Term #tf
1001. arranged 46

1002. eat 46

1003. terms 46

1004. majesty 46

1005. rising 46

1006. satisfied 46

1007. useless 46

Term #tf
19001. calaseraigne 1

19002. jackals 1

19003. sorti 1

19004. meyes 1

19005. bets 1

19006. pistolshots 1

19007. francsah 1

29 Claudia Hauff, 2012

Zipf’s law

• Term frequencies: The Count of Monte Christo

Term #tf
1. the 28388

2. to 12841

3. of 12834

4. and 12447

5. a 9328

6. i 8174

7. you 8128

Term #tf
1001. arranged 46

1002. eat 46

1003. terms 46

1004. majesty 46

1005. rising 46

1006. satisfied 46

1007. useless 46

Term #tf
19001. calaseraigne 1

19002. jackals 1

19003. sorti 1

19004. meyes 1

19005. bets 1

19006. pistolshots 1

19007. francsah 1

1 10 100 1,000 10,000
1

10

100

1,000

10,000

Rank

T
er

m
Fr

eq
ue

nc
y

30 Claudia Hauff, 2012

Example: a simple inverted index I

the dog walks around

running away

D1

D2

D3

D4

map

(the,D1), (dog,D1), (walks,D1), (around,D1)

(around,D4), (the,D4), (dog,D4)

(running,D3), (away,D3)

map

Hadoop: shuffle & sort

reduce

(the,D1),
(the,D4)

reduce

reduce
 ….

….

around the dog

walking my dogs

(walking,D2), (my,D2), (dogs,D2)

(dog,D1),
(dog,D4)

(around,D1),
(around,D4) the

dog
walks

around
walking

my
dogs

running
away

1 0 0 1
1 0 0 1
1 0 0 0
1 0 0 1
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0

D1 D2 D3 D4
D1 D4
D1 D4
D1
D1 D4
D2
D2
D2
D3
D3 (the,D1),

(the,D4)
(dog,D1),
(dog,D4)

(around,D1),
(around,D4)

31 Claudia Hauff, 2012

Example: a simple inverted index II

•  Problem: create an inverted index, i.e. for each term, list the
document the term appears in

 map(String key, String value):
 foreach term t in value:
 EmitIntermediate(t,key);

 reduce(String key, Iterator values)
 foreach docid d in values:
 Emit(key,d)

docid doc content

term

All documents
with term key

Not much to
be done in
the reducer.

32 Claudia Hauff, 2012

Example: parsing

the dog walks around

running away

D1

D2

D3

D4

map

(D3,run|away)

(D2,walk|my|dog)

(D1,the|dog|walk|around)

map

Hadoop: shuffle & sort

reduce

reduce

reduce
 ….

….

around the dog

walking my dogs

(D4,around|the|dog)

Not needed!!

33 Claudia Hauff, 2012

There is more: combiner & partitioner I

•  Partitioner: responsible for dividing the intermediate key space and
assigning intermediate key/value pairs to reducers (within each
reducer, keys are processed in sorted order)
•  Default: hash(key)%NR (Number of reducers NR)

34 Claudia Hauff, 2012

Example: list doc categories (min. freq. 2)

the dog walks around
[cat:C1] [cat:C2]

running away
[cat:C1] [cat:C4] [cat:C5]

D1

D2

D3

D4

map

(C1,D3), (C1,*), (C4,D3), (C4,*), (C5,D3), (C5,*) (C1,D2), (C1,*), (C3,D2), (C3,*)

map

Partitioner: ignore ‘#X’ in the key
Sort by string (SortComparator)

Hadoop: shuffle & sort

reduce

(D3,C1), (D1,C1),
(D2,C1)

reduce

(D4,C2), (D1,C1)

reduce
 ….

….

around the dog
[cat:C2] [cat:C6]

walking my dogs
[cat:C1] [cat:C3]

category #
C1 3

C2 2

C3 1

C4 1

C5 1

C6 1

… … (C1#2,D3), (C1#1,1), (C4#2,D3), (C4#1,1), (C5#2,D3), (C5#1,1)

(C1#1,1),(C1#1,1),
(C1#1),(C1#2,D3),
(C1#2,D1),(C1#2,D2)

(C2#1,1), (C2#1,1),
(C2#2,D4), (C2#2,D1)

(C3#1,1), (C3#2,D2)

35 Claudia Hauff, 2012

There is more: combiner & partitioner I

•  Partitioner: responsible for dividing the intermediate key space and
assigning intermediate key/value pairs to reducers (within each
reducer, keys are processed in sorted order)
•  Default: hash(key)%NR (Number of reducers NR)
•  Custom: hash(key.substring(0,key.lastIndexOf(‘#’))%NR

• Combiner (“mini-reducer”): local aggregation before the shuffle &
sort phase
•  Instead of emitting 100 times (the,1), the combiner can emit (the,100)
•  Can lead to great speed-ups
•  Needs to be employed with care

•  If the reduce operation is associative & commutative (e.g. multiplication), the
reducer code can serve as combiner

36 Claudia Hauff, 2012

There is more: combiner & partitioner II

• Task: determine the term frequencies in a corpus
•  Assume a mapper that outputs (term,termFreqInDoc) pairs
•  Assume the combiner is a reducer ‘copy’ that aggregates the results for 2

map() calls

• Average frequency of terms in documents (combiner as reducer ‘copy’)

(the,2), (the,2), (the,1)

reduce

(the,5)

(the,2), (the,3)

reduce

(the,5)

without
combiner

with
combiner

(the,2), (the,2), (the,1)

reduce

(the,(2+2+1)/3=1.66)

(the,2), (the,1.5)

reduce

(the,(2+1.5)/2=1.75)

without
combiner

with
combiner

wrong!

(2+1)/2=1.5

37 Claudia Hauff, 2012

There is more: combiner & partitioner II

• Combiner cont.
•  Each combiner operates in isolation, has no access to other

mapper’s key/value pairs
•  A combiner cannot be assumed to process all values associated

with the same key
•  Emitted key/value pairs must be the same as those emitted by

the mapper
•  Most often, combiner code != reducer code

38 Claudia Hauff, 2012

Hadoop in practice I

•  Specified by the user
•  Mapper
•  Reducer
•  Combiner (optional)
•  Partitioner (optional)
•  Job configuration

39 Claudia Hauff, 2012

Hadoop in practice II

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

public class InlinkCount extends Mapper<Object,Text,Text,IntWritable> !
{!

!IntWritable one = new IntWritable(1);!
!Pattern linkPattern = Pattern.compile("\\[\\[.+?\\]\\]");!

!
!public void map(Object key, Text value, Context con) throws Exception !
!{!
! !String page = value.toString();!
! !Matcher m = linkPattern.matcher(page);!
! !while(m.find())!
! !{!
! ! !String match = m.group();!
! ! !con.write(new Text(match),one);!
! !}!
!}!

}!

Mapper (counting inlinks)

input key/value: sourceUrl, content
output key/value: targetUrl, 1

40 Claudia Hauff, 2012

Hadoop in practice III

import org.apache.hadoop.io.*;!
import org.apache.hadoop.mapred.*;!
!
public class SumReducer extends Reducer<Text,IntWritable,Text,IntWritable>!
{!

!public void reduce(Text key,Iterable<IntWritable> values,Context con)
! !throws Exception!
!{!
! !int sum = 0;!
! !for(IntWritable iw : values)!
! ! !sum += iw.get();!

!
! !con.write(key, new IntWritable(sum));!
!}!

}!

Reducer (counting inlinks)

input key/value: targetUrl, 1
output key/value: targetUrl, count

41 Claudia Hauff, 2012

Hadoop in practice IV

import org.apache.hadoop.io.*;!
import org.apache.hadoop.mapred.*;!
…!
public class InlinkCountDriver !
{!

!public static void main(String[] args) throws Exception!
!{!
! !Configuration conf = new Configuration(); !!
! !String[] otherArgs = new GenericOptionsParser
! ! !(conf,args).getRemainingArgs();!
! !Job job = new Job(conf, “InlinkAccumulator");!
! !job.setMapperClass(InlinkCountMapper.class);!
! !job.setCombinerClass(SumUpReducer.class);!
! !job.setReducerClass(SumUpReducer.class);!
! !job.setOutputKeyClass(Text.class);!
! !job.setOutputValueClass(IntWritable.class);!
! !!
! !FileInputFormat.addInputPath(job,new Path("/user/in/"));!
! !FileOutputFormat.setOutputPath(job,new Path("/user/out/"));!
! !job.waitForCompletion(true); !!
!}!

}!

Driver (counting inlinks)

42 Claudia Hauff, 2012

Hadoop in practice V

import …!
public class InlinkCountDriver !
{!

!public static void main(String[] args) throws Exception!
!{!
! !Configuration conf = new Configuration(); !!
! !Job job1 = new Job(conf, “Categories Per Page");!
! !job1.setMapperClass(CategoryPerPageMapper.class);!
! !job1.setReducerClass(AggregateAndPruningReducer.class);!
! !…!
! !FileInputFormat.addInputPath(job1,new Path("/user/in/"));!
! !FileOutputFormat.setOutputPath(job1,new Path("/user/out1/"));!
! !job.waitForCompletion(true); !!
!!
! !Job job2 = new Job(conf, “Reformatter”);!
! !job2.setMapperClass(LineToRecordStringStringMapper.class);!
! !job2.setReducerClass(WritePairsReducer.class);!
! !…!
! !FileInputFormat.addInputPath(job2, new Path(“/user/out1/”));!
! !FileInputFormat.setOutputPath(job2, new Path(“/user/out2/”));!
! !!
! !job.waitForCompletion(true);!
! !job2.waitForCompletion(true);!
!}!

}!

Driver (job chaining)

43 Claudia Hauff, 2012

Hadoop in practice VI

import org.apache.hadoop.io.*;!
import org.apache.hadoop.mapred.*;!
…!
public class CustomPartitioner extends Partitioner!
{!

!public int getPartition(Object key, Object value, int numPartitions) !
!{!
! !String s = ((Text)key).toString();!
! !String newKey = s.substring(0,s.lastIndexOf('#'));!

!
! !return newKey.hashCode() % numPartitions;!
!}!
!!

}!

Partitioner (Wikipedia category example)

44 Claudia Hauff, 2012

Hadoop in practice VII

//create a directory with content on the hadoop distributed file system
$ hadoop dfs -copyFromLocal /Users/ch/gutenbergBooks gutenbergBooks!

!

//deploy the created jar
$ hadoop jar wordcount.jar wordcount /user/ch/gutenbergBooks /user/ch/out!

!

//have a look at the reducer’s output
$ hadoop dfs -cat /user/claudiahauff/gutenbergBooks-output/part-r-00000!

45 Claudia Hauff, 2012

Hadoop’s architecture

• NameNode
•  SecondaryNamenode
• DataNode
•  JobTracker
• TaskTracker

46 Claudia Hauff, 2012

Hadoop’s architecture

• NameNode
•  Master of HDFS, directs the slave DataNode daemons to perform

low-level I/O tasks
•  Keeps track of file splitting into blocks (usually 64M), replication,

which nodes store which blocks, etc.
•  Keeps track of the health of the distributed file system
•  Memory and I/O intensive task

•  SecondaryNameNode: takes snapshots of the NameNode

•  DataNode
•  Each slave machine hosts a DataNode daemon

47 Claudia Hauff, 2012

NameNode and DataNodes

File meta-data:
/user/ch/dat1 1,2,3
/user/ch/dat2 4,5

NameNode

3
5

4

2
3

5

1

4
3

5 1

2

2

1 4

replication factor 3

DataNode DataNode DataNode DataNode

poll

Adapted from Hadoop In Action by Chuck Lam, 2011, Figure 2.1 (page 23).

48 Claudia Hauff, 2012

JobTracker and TaskTracker

•  JobTracker
•  One JobTracker per hadoop cluster
•  Middleman between your application and hadoop
•  Determines the execution plan for the application (files to

process, assignment of nodes to tasks, task monitoring)
•  Takes care of task failures

• TaskTracker
•  One TaskTracker per slave node
•  Manages individual tasks
•  Keeps in touch with the JobTracker (heartbeat)

49 Claudia Hauff, 2012

JobTracker and TaskTracker

Application

Adapted from Hadoop In Action by Chuck Lam, 2011, Figure 2.2 (page 24).

TaskTracker

JobTracker

map

reduce

TaskTracker

map

reduce

TaskTracker

map

reduce

50 Claudia Hauff, 2012

Hadoop cluster topology

Adapted from Hadoop In Action by Chuck Lam, 2011, Figure 2.3 (page 25).

Secondary NameNode

NameNode

JobTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

51 Claudia Hauff, 2012

Hadoop related projects

•  Initially developed by Yahoo! research in 2006, incubation at
Apache in 2007 [16]

• High-level platform for large-scale data set analysis
• Contains a compiler that produces MapReduce programs

•  Ease of use, quick prototyping is possible

• Relational data-flow language: Pig Latin [17]

Users = load 'users' as (name, age, ipaddr);!
Clicks = load 'clicks' as (user, url, value);!
ValuableClicks = filter Clicks by value > 0;!
UserClicks = join Users by name, ValuableClicks by user;!

Apache Pig

52 Claudia Hauff, 2012

Hadoop related projects

• Hadoop database for random, realtime read/write access to
big data

•  Similar to Google’s Bigtable [18]

• ……

HBase

53 Claudia Hauff, 2012

Assignment O

•  Install Hadoop
•  Many versions, newest one is 1.0.0 (December 2011)
•  Mine is 0.20.2 if you think you will need a lot of practical

help, please install this one (installation README on blackboard)
•  Hadoop can be installed from source/binaries or as a virtual

machine (Cloudera, Yahoo!)

• Run the ubiquitous WordCount example provided by Hadoop
•  Learn how to upload/download/view data on the HDFS

•  Learn how to compile your own map/reduce code

• Read chapters 1 & 2 of Data-Intensive Text Processing ….
• Have a look at Amazon EC2

If you search for answers on
the Web, always include
your Hadoop version! Code
changes are very frequent!

54 Claudia Hauff, 2012

Sources

①  Data-Intensive Text Processing with MapReduce (manuscript). Jimmy Lin and Chris Dyer. 2010.
②  http://youtube-global.blogspot.com/2012/01/holy-nyans-60-hours-per-minute-and-4.html
③  http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
④  http://blog.twitter.com/2011/03/numbers.html
⑤  http://public.web.cern.ch/public/en/LHC/Computing-en.html
⑥  Analytics over Large-Scale Multidimensional Data: The Big Data Revolution! A. Cuzzocrea, I.Y. song and K.C. Davis, 2011
⑦  http://www.nytimes.com/2011/03/06/weekinreview/06lohr.html
⑧  MapReduce: Simplified Data Processing on Large Clusters http://research.google.com/archive/mapreduce.htmll
⑨  http://www.archive.org/about/faqs.php
⑩  http://www.archive.org/web/petabox.php
11  http://www.cs.nott.ac.uk/~gmh/book.html
12  xxxx
13  http://wiki.apache.org/hadoop/PoweredBy
14  http://www.guardian.co.uk/technology/2011/mar/25/media-guardian-innovation-awards-apache-hadoop
15  Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris Dyer, 2010.
16  http://developer.yahoo.com/blogs/hadoop/posts/2008/10/pig_-_the_road_to_an_efficient_high-level_language_for_hadoop/
17  http://developer.yahoo.com/blogs/hadoop/posts/2010/01/comparing_pig_latin_and_sql_fo/
18  http://research.google.com/archive/bigtable.html

