
1 Claudia Hauff, 2012

Claudia Indexing and boolean retrieval
IN4325 – Information Retrieval

2 Claudia Hauff, 2012

Organizational matters

•  So far only 17 people emailed me about group enrollment

• A few students have reported problems with the Hadoop
installation
•  If you are still struggling please have a chat with me in the

break or email me providing:
•  A link to the instructions you are using to install Hadoop
•  The specific step at which you are struggling
•  The error message(s) you get
•  Your operating system and Hadoop version

3 Claudia Hauff, 2012

Today …
information need: I am supposed to use Eclipse for the
assignments. Where can I download a version for Mac OS X?

1.

formulate query

eclipse download osx

2.
submit

WWW, library records,
medical reports,
unstructured documents…

4.

index

retrieval engine:
scoring & ranking
& presentation

crawling &
indexing

view & assess
relevance to
information need




user

retrieved results

3.



Today’s lecture is
mostly based on
Chapters 1-3 of the
course book [1].

4 Claudia Hauff, 2012

Why so complicated? (from lecture #1)

•  Searching for the lines in the book Count of Monte Christo
that contain the terms Dantes AND prison but NOT Albert

• Naïve solution
•  Grep all lines that contain Dantes, then grep those containing

prison and finally strip out lines containing Albert

•  Problems
•  Proximity operations not easy to implement (e.g. Dantes within

max. 3 terms of prison)
•  Set of matching results (yes/no decision)
•  What about approximate/semantic matches (Edmond instead of

Dantes, cell instead of prison. etc.)

more countOfMonteChristo.txt|grep Dantes|grep prison|grep -v Villefort

5 Claudia Hauff, 2012

Why so complicated? (from lecture #1)

•  Searching for the lines in the book Count of Monte Christo
that contain the terms Dantes AND prison but NOT Albert

• Naïve solution
•  Grep all lines that contain Dantes, then grep those containing

prison and finally strip out lines containing Albert

•  Problems
•  Proximity operations not easy to implement (e.g. Dantes within

max. 3 terms of prison)
•  Set of matching results (yes/no decision)
•  What about approximate/semantic matches (Edmond instead of

Dantes, cell instead of prison. etc.)

more countOfMonteChristo.txt|grep Dantes|grep prison|grep -v Villefort
Elaborate queries require the user to anticipate
possibly used terms:
(Edmond OR Dantes) AND (prison OR cell OR
imprisoned) NOT Albert

6 Claudia Hauff, 2012

Why so complicated? II (from lecture #1)

• What about using a term-document (incidence) matrix?
•  Here: a line is a document

Edmond
Dantes
Cristo
prison

cell
imprisoned

Albert

0 0 0 1 1 0 1 0 1
1 0 1 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 1 1 0
0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0
1 1 0 0 1 0 0 1 0

L1 L2 L3 L4 L5 L6 L7 L8 L9 1 if Edmond occurs in
line L9; 0 otherwise

Dantes AND prison bitwise AND
1 0 1 0 1 0 1 0 0
1 0 0 1 0 0 1 1 0

1 0 0 0 0 0 1 0 0

L1 L7

Dantes NOT Albert bitwise AND
 complement

1 0 1 0 1 0 1 0 0
0 0 1 1 0 1 1 0 1

0 0 1 0 0 0 1 0 0

L3 L7

Only feasible for extremely
small corpora. The matrix
gets too large too quickly.

54,544 lines (#docs) and
19,236 unique terms: more
than 1 billion matrix entries;
If 1 bit per entry: 125MB
memory needed

Boolean retrieval

7 Claudia Hauff, 2012

Inverted index

• Maps terms back to the parts of the documents they occur in

albert 1|2|5|8
cell 2|3|7
dantes 1|3|5|7
edmond 4|5|7|9
imprisoned 1|7
cristo 2|6
prison 1|4|7|8

dictionary posting list

docID
(document identifier)

•  Dictionary
alphabetically sorted

•  Postings ordered by
docid

8 Claudia Hauff, 2012

How to build an inverted index

1.  Collect the documents to index

2.  Tokenize the content: from string to tokens

3.  Normalize the tokens (preprocessing)

4.  Index the documents

"I am not going there to be
imprisoned," said Dantes.

“I am not going

to be Imprisoned,” said

there

Dantes.

“I am not going

to be Imprisoned,” said

there

Dantes.

i am not go

to be imprison said

there

dantes

L3

(imprison,L3)
(term,docid) pair

9 Claudia Hauff, 2012

Tokenization & normalization I

• Tokenization is not always straight-forward
•  E-mail: email or {e,mail}?
•  It’s: its or {it,s}?
•  What about O-β-D-galactopyranosyl-(1→4)-D-glucopyranose?
•  What about documents containing many floats

2.43254534234323234324325…. ?
•  “The sun is shining.” in simplified Chinese: 阳光普照。

• Case folding [2]
•  {the,The,THE,tHE} are all matched to the
•  General AND Motors should not retrieve “general repairs to all

kinds of motors” (exception can be handled by a postretrieval
scan)

10 Claudia Hauff, 2012

Tokenization & normalization II

•  Stopword removal
•  Term frequencies: The Count of Monte Cristo
•  Stopwords occur with very high frequencies often not

adding any value
•  What about the query “to be or not to be”?
•  Standard stopword list vs. corpus-dependent

(domain-dependent) lists

•  Stemming
•  Reduce terms to their root form (strip suffixes), e.g.

 {compressed,compression}  compress
 {walking,walked,walks}  walk

Term #tf
1. the 28388

2. to 12841

3. of 12834

4. and 12447

5. a 9328

6. i 8174

7. you 8128

11 Claudia Hauff, 2012

Tokenization & normalization III

•  Stemming cont.
•  It is not appropriate for all types of documents or parts of

documents
•  Author names in scientific papers or book catalogues, etc.

•  Two standard stemmers (for English): Krovetz (1993) and
Porter stemmer (1979) [3,4]

 Clear sky, swift-flitting boats, and brilliant sunshine disappeared; the

heavens were hung with black, and the gigantic structure of the
Chateau d'If seemed like the phantom of a mortal enemy.

Clear sky swift flit boat and brilliant sunshin disappear the heaven
were hung with black and the gigant structur of the Chateau d If
seem like the phantom of a mortal enemi

Porter stemmed

12 Claudia Hauff, 2012

Let’s focus on step 4
Doc 1: "I am not going there to

be imprisoned," said Dantes.
Doc 2: "You are Edmond Dantes," cried Villefort,
seizing the count by the wrist; "then come here!”

i 1
am 1
not 1
go 1
there 1
to 1
be 1
imprison 1
said 1
dantes 1
you 2
are 2
edmon 2
dantes 2
cri 2
villefort 2
seiz 2
the 2
count 2
by 2
the 2
wrist 2
then 2
come 2
here 2

am 1
are 2
be 1
by 2
come 2
count 2
cri 2
dantes 1
dantes 2
edmond 2
go 1
here 2
i 1
imprison 1
not 1
said 1
seiz 2
the 2
the 2
then 2
there 1
to 1
villefort 2
wrist 2
you 2

am 1 1
are 1 2
be 1 1
by 1 2
come 1 2
count 1 2
cri 1 2
dantes 2 1 2
edmond 1 2
go 1 1
here 1 2
i 1 1
imprison 1 1
not 1 1
said 1 1
seiz 1 2
the 2 2
then 1 2
there 1 1
to 1 1
villefort1 2
wrist 1 2
you 1 2

term docID term docID term doc.freq.

dictionary posting list

13 Claudia Hauff, 2012

Boolean retrieval over posting lists
Dantes AND Albert

1 Dantes 7 17 18 33 43 60 …

4 Albert 7 54 60 61 82 96 …

1)  Process the query in the same manner as the corpus
2)  Determine whether both query terms exist
3)  Locate pointers to the respective posting lists

14 Claudia Hauff, 2012

Boolean retrieval over posting lists
Dantes AND Albert

1 Dantes 7 17 18 33 43 60 …

4 Albert 7 54 60 61 82 96 …

7 60 result

15 Claudia Hauff, 2012

Boolean retrieval over posting lists
posting lists

common docID
found in both lists

increase the posting
list counters

Source: [1]

16 Claudia Hauff, 2012

Posting lists data structures

•  Index needs to be optimized for
•  Storage & access efficiency
•  Today: fast CPUs and slow disk-access (reducing posting list

sizes has priority)

• How to implement posting lists?
•  Fixed length array: easy, wastes a lot of space
•  Singly linked list: cheap insertion
•  Variable length arrays

•  Require less space than linked lists (no pointers)
•  Allow faster access (contiguous memory increases)
•  Good if few updates are required

1 3 7

6

Implementation

17 Claudia Hauff, 2012

Posting list data structures
Skip pointers

1 Dantes 7 17 18 33 43 60 …

4 Albert 7 54 60 61 82 96 …

List intersection without skip pointers: O(n+m)

AND

18 Claudia Hauff, 2012

Posting list data structures I
Skip pointers

1 Dantes 7 17 18 33 43 60

17 43 75

…

4 Albert 7 54 60 61 82 96

11 82 111

…

List intersection without skip pointers: O(n+m)

AND

19 Claudia Hauff, 2012

Posting list data structures II
Skip pointers

1 Dantes 7 17 18 33 43 60

17 43 75

…

4 Albert 7 54 60 61 82 96

11 82 111

…

List intersection without skip pointers: O(n+m)
List intersection with skip pointers: sub-linear

AND

Question: What about OR queries?

20 Claudia Hauff, 2012

Posting list data structures III
Skip pointers

Source: [1]

posting lists

common docID
found in both lists

increase the posting
list counters, skip if
possible

21 Claudia Hauff, 2012

Posting list data structures IV
Skip pointers: where to place them

• Tradeoff
•  More skips yield shorter skip spans; more skips are likely

•  Requires many skip pointer comparisons and pointer storage
•  Fewer skips yield larger skip spans; few skips are likely

•  Requires less comparisons, fewer space

• Heuristic: for posting lists of length l, use sqrt(l) evenly
spaced skip pointers
•  Ignores particularities of the query terms distribution

•  Effective skip pointers are easy to create in static indices,
harder when the posting lists are frequently updated

22 Claudia Hauff, 2012

Positional postings

• Concepts and names may be multiword compounds, e.g.
“Edmond Dantes”
•  If treated as a phrase, it should not return the sentence:

“Edmond went to the town of Dantes.”
•  Web search engines introduced the “….” syntax for phrase

queries (~10% of posed queries are explicit phrase queries [1])

•  Posting lists of the form term d1|d2|d3|.. do not provide

sufficient granularity
•  Would require a lot of postretrieval filtering

23 Claudia Hauff, 2012

Biword indices

• Biword = every pair of consecutive words

I am not going there to be imprisoned …

I am

am not

not going

going there

there to

to be

be imprisoned

•  Each biword is one vocabulary
term

• Two-word phrase queries can be
handled immediately

•  Longer phrase queries are
broken down, e.g. “Count of
Monte Cristo”
•  “Count of” AND “of Monte”

AND “Monte Cristo”
•  Not 100% correct

vo
ca

bu
la

ry

24 Claudia Hauff, 2012

Biword indices II

• Not all phrases are proper nouns (“Edmond Dantes”)
•  negotiation of the treaty
•  the year of the rabbit

•  Part-of-speech tagging labels words according to their lexical
categories The negotiation of the treaty took many years.

DT/ The NN/ negotiation IN/ of DT/ the NN/ treaty VBD/ took JJ/ many NNS/ years ./ .

singular noun verb

Try it yourself (demo): http://cogcomp.cs.illinois.edu/demo/pos/

Stanford POS Tagger http://nlp.stanford.edu/software/tagger.shtml

25 Claudia Hauff, 2012

Biword indices III

The negotiation of the treaty took many years.

DT/ The NN/ negotiation IN/ of DT/ the NN/ treaty VBD/ took JJ/ many NNS/ years ./ .

DT/ The NN/ negotiation IN/ of DT/ the NN/ treaty VBD/ took JJ/ many NNS/ years ./ .

negotiation of the treaty

N X X N

Extended biword: any string
of the form NX*N is a
vocabulary term

Query: needs to be POS-tagged & converted to extended biwords!

cost overruns on a power plant
“cost overruns” AND “overruns
power” AND “power plant”

26 Claudia Hauff, 2012

Biword indices IV

• This concept can be extended to longer sequences (phrase
indices)

•  Single term queries are not handled naturally in biword
indices (entire index scan is necessary)

•  Add a single-term index

• Arbitrary phrases are usually not indexed
•  Vocabulary sizes increases greatly

Vocabulary size

Single term index 19,236

Biword index 866,914

Triword index 6,425,444

The Count of Monte Cristo
~50,000 lines of text

27 Claudia Hauff, 2012

Positional indices

• Most common index type
•  For each term postings are stored with frequency values

Source: [1]

to occurs 993,427 times in the corpus

to occurs 6 times in document 1

to occurs at positions 7, 18, 33 …

28 Claudia Hauff, 2012

Positional indices

• To process a phrase query: “to be or not to be”
•  Access the inverted list for each term
•  When merging (intersecting) the result list, check if the positions of

the terms match the phrase query
•  Calculate offsets between words
•  Start with the least frequent query term

•  Index size increases (positions need to be stored)

•  Between 2-4 times larger than a non-positional index

Querying the inverted index

29 Claudia Hauff, 2012

Combining biword and positional indices

•  For common biword queries (e.g. “Britney Spears”) it is
inefficient to keep merging positional lists

•  Idea: use a biword index for certain queries and a positional
index for all others
•  Most expensive are those queries where the individual words are

common (“The Who”); having those in a biword index yields
considerable speed-ups

•  What queries to execute on the biword index can be learned
from looking at the query log

Query time userID query itemRank clickURL
02.03.2010 04:15:03 23543535 chess software 5 http://www.chessbase.com/
02.03.2010 04:15:15 23543535 9 http://en.wikipedia.org/wiki/Computer_chess
02.03.2010 04:23:15 1243232 britney spears 1 http://www.britneyspears.com/
02.03.2010 05:06:15 53443223 hadoop cygwin 4 http://wiki.apache.org/hadoop/FAQ

30 Claudia Hauff, 2012

Vocabulary lookup I

1 Dantes 7 17 18 33 43 60 …

4 Albert 7 54 60 61 82 96 …

1)  Determine whether both query terms exist
2)  Locate pointers to the respective posting lists

•  Implementation options: hashes and search trees
•  Choice depends on

•  Number of terms (keys)
•  Frequency of and type of changes (key insert/delete) in the index
•  Frequency of key accesses

31 Claudia Hauff, 2012

Vocabulary lookup II

•  Each vocabulary term is hashed into an integer (avoid hash
collisions if possible)

• Querying: hash each query term separately, follow pointer to
corresponding postings list

Hashing

edmond
dantes
prison

cell
albert

001

005

101

211

…

…

…

…
edmond

dantes

prison

cell

albert

hash function

•  Unable to react to
slight differences in
query terms (e.g.
Dantes vs. Dantès)

•  Unable to seek for all
terms with a
particular prefix
(e.g. Dant)

32 Claudia Hauff, 2012

Vocabulary lookup III
Binary search trees overcome many of the hashing disadvantages

root
a-m n-z

a-hu hv-m

a-de df-hu

n-sh si-z

……. ……. …….

aardvark zygot

•  For efficient search, the tree
needs to be balanced
(log(|V|) comparisons)

•  When terms are added/deleted
from the tree, rebalancing is
required

Introduction to Algorithms.
Cormen et al., 2009.

33 Claudia Hauff, 2012

Vocabulary lookup IV

• Commonly used for dictionaries
• Number of sub-trees in an internal node varies in a fixed

interval (e.g. [2,4]), leading to less frequent rebalancing
• All leaf nodes are at the same depth

B-trees

a-h q-z

a-b g-h
q-t u-z

i-p

c-d d-f
m-p i-l

……. ……. …….

Introduction to Algorithms.
Cormen et al., 2009.

34 Claudia Hauff, 2012

Wildcard queries I

• Commonly employed when
•  There is uncertainty about the spelling of a term (Dantes vs. Dantès)
•  Multiple spelling variants of a term exist (labour vs. labor)
•  All terms with the same stem are sought (restoration and restore)

• Trailing wildcard query: restor*
•  Search trees are perfect in such situations: walk along the edges and

enumerate the W terms with prefix restor; followed by |W| lookups of
the respective posting lists to retrieve all docIDs

35 Claudia Hauff, 2012

Wildcard queries II

•  Leading wildcard query: *building (building vs. rebuilding)
•  Reverse dictionary B-tree: constructed by reading each term in the

vocabulary backwards
•  Solved analogously to the trailing wildcard query on a b-tree

•  reverse b-tree is traversed with *building backwards: g-n-i-d-l-i-u-b

•  Single wildcard query: analy*ed (analysed vs. analyzed)
•  Traverse the regular b-tree to find the W terms with prefix analy
•  Traverse the reverse b-tree to find the R terms with suffix ed
•  Final result:intersect W and R	

36 Claudia Hauff, 2012

General wildcard queries I
Permuterm index

prison$

rison$p

ison$pr

son$pri

prison

…….

• Query pr*sonpr*son$
•  Move * to the end: son$pr*
•  Look up the term in the

permuterm index (search tree)
•  Look up the found terms in the

standard inverted index

• Query pr*s*n
•  Start with n$pr*
•  Filter out all results not containing

‘s’ in the middle (exhaustive)
•  Look up the found terms in the

standard inverted index

Dictionary increases
substantially in size!!

37 Claudia Hauff, 2012

General wildcard queries II

• N-gram: sequence of N characters
•  3-grams of prison: $pr, pri, ris, iso, son, on$
•  4-grams of prison: $pri, pris, riso, ison, son$

• N-gram index: contains all N-grams that occur in any of the terms

N-gram index
Beginning/end of
term character

Vocabulary size
3-gram index 5,885

Single term index (term) 19,236

4-gram index 22,264

Biword index (term) 866,914

Triword index (term) 6,425,444

The Count of Monte Cristo
~50,000 lines of text

38 Claudia Hauff, 2012

General wildcard queries II

•  each N-gram in the dictionary points to all terms containing the
N-gram

• Wildcard query: pr*on

•  Boolean query $pr AND on$
•  Look up in a 3-gram index yields a list of matching terms
•  Look up the matching terms in a standard inverted index

• Wildcard query: red*
•  Boolean query $re AND red (also retrieves retired)
•  Post-filtering step to ensure enumerated terms match red*

N-gram index

prison rise grisly pristine ris

lexicographical ordering

39 Claudia Hauff, 2012

General wildcard queries III

•  Processing of wildcard queries is expensive
• Added lookup in the special index, filtering and finally the

lookup in the standard inverted index

40 Claudia Hauff, 2012

Spelling correction I

488941 britney spears
 40134 brittany spears
 36315 brittney spears
 24342 britany spears
 7331 britny spears
 6633 briteny spears
 2696 britteny spears
 1807 briney spears
 1635 brittny spears
 1479 brintey spears
 1479 britanny spears
 1338 britiny spears
 1211 britnet spears
 1096 britiney spears

http://www.google.com/jobs/britney.html

•  Isolated-term correction considers each
query term individually

•  Context-sensitive correction

•  animals form Australia is corrected to
animals from Australia

41 Claudia Hauff, 2012

Spelling correction

•  Levenshtein distance between strings s1 and s2: number
of operations to transform s1 into s2
•  Insert a character (hod  hood)
•  Delete a character (brittney  britney)
•  Replace a character (analyzis  analysis)

Edit distance

rise prison
0. rise
1.  prise [insertion]
2.  priso [substitution]
3.  prison [insertion]

footfast
0. foot
1.  faot [substitution]
2.  fast [substitution]

42 Claudia Hauff, 2012

Spelling correction

•  Levenshtein distance between strings s1 and s2: number
of operations to transform s1 into s2
•  Insert a character (hod  hood)
•  Delete a character (brittney  britney)
•  Replace a character (analyzis  analysis)

Edit distance

p r i s o n

0 1 2 3 4 5 6

r 1

i 2

s 3

e 4

(i,j) contains the edit
distance of the first i
chars of s1 and the
first j chars of s2

43 Claudia Hauff, 2012

Spelling correction

•  Levenshtein distance between strings s1 and s2: number
of operations to transform s1 into s2
•  Insert a character (hod  hood)
•  Delete a character (brittney  britney)
•  Replace a character (analyzis  analysis)

Edit distance

p r i s o n

0 1 2 3 4 5 6

r 1 1 1

i 2 2

s 3 3

e 4 4

d(i,j)=d(i-1,j-1) if s1[i]==s2[j]

44 Claudia Hauff, 2012

Spelling correction

•  Levenshtein distance between strings s1 and s2: number
of operations to transform s1 into s2
•  Insert a character (hod  hood)
•  Delete a character (brittney  britney)
•  Replace a character (analyzis  analysis)

Edit distance

p r i s o n

0 1 2 3 4 5 6

r 1 1 1

i 2 2 2

s 3 3

e 4 4

Minimum of
(i-1,j)+1,
(i-1,j-1)+1,
(i,j-1)+1

45 Claudia Hauff, 2012

Spelling correction

•  Levenshtein distance between strings s1 and s2: number
of operations to transform s1 into s2
•  Insert a character (hod  hood)
•  Delete a character (brittney  britney)
•  Replace a character (analyzis  analysis)

Edit distance

p r i s o n

0 1 2 3 4 5 6

r 1 1 1 2 3 4 5

i 2 2 2 1 2 3 4

s 3 3 3 2 1 2 3

e 4 4 4 3 2 2 3

edit distance

46 Claudia Hauff, 2012

Spelling correction III

• Naïve approach
•  Edit distance between query terms and all terms in the

dictionary (vocabulary) are calculated
•  The most similar (smallest distance) terms are considered as

spelling correction
•  Computationally too expensive

• Heuristics
•  Restrict search to vocabulary terms with the same starting letter

Edit distance: how to apply in practice

47 Claudia Hauff, 2012

Spelling correction IV

•  If a query phrase yields a small set of retrieved documents,
search engines often offer potential corrections

•  animals form Australia is corrected to animals from Australia

•  Approach
•  Enumerate all possible corrections of each query term

•  Substitute each correction into the phrase
•  Run a query against the index, find number of matching documents
•  Offer most common phrasings

Context sensitive spelling correction

 8 animals form australia
 6 animal form australia
 0 animal form austria
 155 animal from austria
 3850 animals from austria
55500 animals from australia

#Google hits

48 Claudia Hauff, 2012

Spelling correction V

•  Approach
•  Enumerate all possible corrections of each query term
•  Substitute each correction into the phrase
•  Run a query against the index, find number of matching documents
•  Offer most common phrasings
•  Can be very expensive!

• Heuristics

•  Retain only the most common combinations in the documents or
query log (query reformulations)

Context sensitive spelling correction

49 Claudia Hauff, 2012

Phonetic correction I

•  Misspelled queries that sound like the target term
•  Mostly applicable to proper nouns, in particular people’s names (may be

spelled differently in different countries)

•  Idea: phonetic hashing
•  Similar sounding terms hash to the same value

•  Soundex algorithm
1.  Turn every term to be indexed into a reduced form with 4 characters; build

an inverted index from these reduced terms (soundex index)
2.  Apply the same to the query terms before searching the index
(when a query contains a term from the soundex index, expand the query to
include all variations an search in the standard inverted index)

Soundex algorithm

50 Claudia Hauff, 2012

Phonetic correction II

•  Reducing terms to 4 characters
1.  Keep the first letter of the term
2.  Change letters to digits as follows (vowels are ignored)

a.  b,v,p,v  1
b.  c,g,j,k,q,s,x,z  2
c.  d,t  3
d.  l  4
e.  m,n  5
f.  r  6

3.  Consecutive identical digits are reduced to one
4.  If there are less than three digits after the conversion, pad with ‘0’ values

(e.g. last name “Lee” is reduced to L000)

•  Based on phonetic observations (language dependent)
•  Vowels are interchangeably

•  Consonants with similar sounds are in equivalence classes

Soundex algorithm
Levenshtein
L 1 52 3 5
L152

Levensjtejn
L 1 5223 25
L152

51 Claudia Hauff, 2012

Summary

•  Indexing is not a trivial task

• Many data structures and algorithms exist

•  A lot depends on the type of queries that should be supported
by the search system

• This high-level overview is followed by a bit more
implementation-oriented lecture on Wednesday

52 Claudia Hauff, 2012

Sources

①  Introduction to Information Retrieval. Manning et al., 2008.

②  Managing gigabytes. Witten et al., 1999.
③  http://tartarus.org/~martin/PorterStemmer/
④  http://tartarus.org/martin/PorterStemmer/def.txt

