
1 Claudia Hauff, 2012

Index and document compression
IN4325 – Information Retrieval

2 Claudia Hauff, 2012

Last time

•  (Basic, positional) inverted index

• Biword index

• Hashes versus search trees for vocabulary lookup

•  Index structures for wildcard queries (permuterm index, etc.)

High-level view on …

3 Claudia Hauff, 2012

Today

•  Efficiency needed in the three stages
•  Construction of the index/indices

•  Web search engines need to scale up to billions of documents
•  Storage of indices
•  Storage of documents

•  Inverted file creation
• Dictionary compression techniques
•  Inverted file compression techniques
• Document compression techniques

index compression

4 Claudia Hauff, 2012

Text compression

encoder decoder text text

model model

compressed
text

Lossless!

5 Claudia Hauff, 2012

Inverted file creation

• How can the dictionary and posting lists be created from a
corpus of documents?
•  Posting lists file (on disk) is orders of magnitude larger than the

dictionary file (in memory for fast access)

•  Scalability challenge
•  Millions of words of documents, billions of term occurrences
•  Severely memory limited environments (mobile devices)

< t;dft ;(d1, ft1),(d2, ft2),...,(d ft
, fdft) >, di < dj !i < j

< t;dft ;(d1, ft1;(pos1, pos2,..., pos ft1)),...>, di < dj !i < j

6 Claudia Hauff, 2012

Hardware constraints [10]

• Major constraints due to hardware
•  Disks maximize input/output throughput if contiguously stored

data is accessed
•  Memory access is faster than disk access
•  Operating systems read/write blocks of fixed size from/to disk
•  reading compressed data from disk and decompressing it is

faster than reading uncompressed data from disk

7 Claudia Hauff, 2012

Index creation approaches

• Commonly employed computational model [4]
•  OS effects are ignored (caching, cost of memory allocation, etc.)
•  Values based on a Pentium III 700MHz machine (512MB memory)

How to compare their running time analytically?

Parameters value

Main memory size (MB) M 256

Average disk seek time (sec) ts 9x10-3

Disk transfer time (sec/byte) tt 5x10-8

Time to parse one term (sec) tp 8x10-7

Time to lookup a term in the lexicon (sec) tl 6x10-7

Time to compare and swap two 12 byte
records (sec)

tw 1x10-7

8 Claudia Hauff, 2012

Index creation approaches

• Commonly employed computational model [4]
•  TREC corpus (20GB Web documents)

How to compare their running time analytically?

Parameters value

Size (Mb) S 20,480
Distinct terms n 6,837,589

Term occurrences (x106) C 1,261.5

Documents N 3,560,951

Postings (d,fd,t) (x106) tl 6x10-7

Avg. number of terms / document Cavg 354

Avg. number of index terms /document Wavg 153

%words occuring once only H 44

Size of compressed doc-level inverted file (MB) I 697

Size of compressed word-level inverted file (MB) Iw 2,605

9 Claudia Hauff, 2012

Inverted file creation

①  First pass over the collection to determine the number of
unique terms (vocabulary) and the number of documents to be
indexed

②  Allocate the matrix and second pass over the collection to fill
the matrix

③  Traverse the matrix row by row and write posting lists to file
•  Prohibitively expensive [4]

•  Small corpus 2 bytes per df: 4.4MB corpus yields 800MB matrix
•  Larger corpus4 bytes per df: 20G corpus yields 89TB matrix

•  Alternative: list-based in-memory inversion (one list per term)
•  Each node represents (d,fd,t) and requires 12 bytes (posting+pointer)
•  The 20G corpus requires 6G main memory [4]

Simple in-memory inversion

Relying on the OS and
virtual memory is too slow
since list access (eq.
matrix rows) will be in
random order

10 Claudia Hauff, 2012

Disk-based inversion

• Requires a single pass
• Writes postings to temporary file, lexicon resides in memory

①  Initialize lexicon structure in memory (keeps track of the
last posting file adress p of term t in the temp. file)

②  Traverse the corpus (sequential disk access)
①  Fr each posting (t,d,fd,t), query the lexicon for t and retrieve p
②  Append temporary file: add (t,d,fd,t,p) & update lexicon (p’)

③  Post-process the temporary file to create an inverted file
①  Allocate a new file on disk
②  For each term (lexicographic order), traverse the posting list

in reverse order, compress the postings and write to inverted
file (random disk access)

Candela and Harman, 1990 [5]

Predicted indexing time for
the 20GB corpus: 28.3
days.

11 Claudia Hauff, 2012

Disk-based inversion

• Requires a single pass
• Writes postings to temporary file, lexicon resides in memory

①  Initialize lexicon structure in memory (keeps track of the
last posting file adress p of term t in the temp. file)

②  Traverse the corpus (sequential disk access)
①  Fr each posting (t,d,fd,t), query the lexicon for t and retrieve p
②  Append temporary file: add (t,d,fd,t,p) & update lexicon (p’)

③  Post-process the temporary file to create an inverted file
①  Allocate a new file on disk
②  For each term (lexicographic order), traverse the posting list

in reverse order, compress the postings and write to inverted
file (random disk access)

Candela and Harman, 1990 [5]

Predicted indexing time for
the 20GB corpus: 28.3
days.

Predicted inversion time (in seconds):

T = Stt +C(t p + tl)+10Ptt +
Pts / v +10Ptt +
I(tc + tt)

read, parse, lookup
lexicon, write postings

traverse lists

compress, write out to
inverted file

12 Claudia Hauff, 2012

Sort-based inversion

①  Create empty dictionary structure S and empty temporary file on disk
②  For each document d in the collection

①  Process d and then for each parsed index term t

①  If t is not in S, insert it (in memory)

②  Write <t,d,fd,t> to temporary file

③  Sort: assume k records can be held in memory; read file in blocks of k records

①  Read k records from temporary file

②  Sort into non-descending t order and then d order (e.g. Quicksort)

③  Write sorted-k-run back to temporary file

④  Pairwise merge runs in the temporary file until entire file is sorted (from R initial

runs merges are required)
⑤  Output inverted file: for each term t

①  Start a new inverted file entry

②  Read all <t,d,fd,t> from temporary file

③  Append this inverted list to the inverted file

log2 R!" #$

13 Claudia Hauff, 2012

d-gaps

• We store positive integers (document identifiers, term pos.)
•  If upper bound for x is known, x can be encoded in

bits
•  32-bit unsigned integers:

•  Inverted lists can also be considered as a sequence of run
length or document gaps between document numbers [7]

1 Dantes 3 4 18 20 21 60 …

2 1 14 2 1 39 d-gaps

log2 X!" #$

0 ! x < 232

Compressing the posting lists

14 Claudia Hauff, 2012

d-gaps

• d-gaps are
•  Small for frequent terms
•  Large for infrequent terms

• Basic idea: encode small value integers with short codes

• Unary code (global method): an integer x (gap) is encoded
as (x-1) one bits followed by a single zero bit
•  Assumed probability distribution of gaps:

1 0
2 10
221111111111111111111110

Compressing the posting lists: unary code

P(x) = 2! x

The binary code
assumes a uniform
probability distribution
of gaps.

15 Claudia Hauff, 2012

d-gaps

•  Elias’s γ code:

• Assumed probability distribution:

•  Example 1

x as unary code for 1+ log2 x!" #$
followed by a code of log2 x[]bits coding x % 2 log2 x!" #$ in binary

value x = 5
log2 x!" #$ = 2
coded in unary : 3= 1+ 2 (code110)
followed by1= 5 % 4 as a two% bit binary (code 01)
codeword :11001

Compressing the posting lists: Elias’s γ code (1975) [8]

#bits to encode x

codes x in that many bits

P(x) = 1
2x2

16 Claudia Hauff, 2012

d-gaps

•  Elias’s γ code example 2

• Unambiguous decoding
①  Extract unary code cu

②  Treat the next cu-1 bits as binary code to get cb

value x = 8
log2 x!" #$ = 3
coded in unary : 4 = 1+ 3 (code1110)
followed by 0 = 8 % 8 as a three% bit binary (code 000)
codeword :1110000

Compressing the posting lists: Elias’s γ code (1975) [8]

x = 2cu!1 + cb

17 Claudia Hauff, 2012

d-gaps

•  Elias’s δ code:

•  Example

• Number of bits required to encode x:

x as ! code for 1+ log2 x"# $%
followed by a code of log2 x[]bits coding x & 2 log2 x"# $% in binary

value x = 5
log2 x!" #$ = 2
coded in % & code : 3= 1+ 2 (code101)
followed by1= 5 & 4 as a two& bit binary (code 01)
codeword :10101

1+ 2 log2 log2 2x!" #$ + log2 x!" #$

Compressing the posting lists: Elias’s δ code (1975) [8]

18 Claudia Hauff, 2012

d-gaps

• Golomb code (local method):
•  Different inverted lists can be coded with different codes (change

in parameter b: dependent on corpus term frequency)
•  Obtains better compression than non-parameterized Elias’s codes

•  Example

parameter b = 0.69(N / ft)
x as (q +1) unary, where q = (x !1) /b"# $%
followed by r = (x !1)! q & b coded in binary
(requires log2 b"# $% or log2 b'" ($ bits)

value x = 5, assume b = 3
q = (5 !1) / 3"# $% = 1+1(code10)
r = (5 !1)!1& 3= 1(code10)
codeword :1010

Requires two
passes to generate!

Compressing the posting lists: Golomb code (1966) [9]

19 Claudia Hauff, 2012

Examples of encoded d-gaps

Gap x Unary Elias’s γ Elias’s δ Golomb
b=3

1 0 0 0 00

2 10 100 1000 010

3 110 101 1001 011

4 1110 11000 10100 100

5 11110 11001 10101 1010

6 111110 11010 10110 1011

7 1111110 11011 10111 1100

8 11111110 1110000 11000000 11010

9 111111110 1110001 11000001 11011

10 1111111110 1110010 11000010 11100

20 Claudia Hauff, 2012

d-gaps

•  So far, we considered the document gaps

•  In positional postings, we also have fd,t values
•  Often one, rarely large

method d-gaps fd,t

Unary 1.71

binary 21.00

Elias’s γ 6.76 1.79

Elias’s δ 6.45 2.01

Golomb 6.11

Inverted file compression for a 2G
TREC collection (2 million records,
1000 bytes each) [6].
Index contains 196 million pointers in
total and requires 185M disk space.

Results in bits per pointer.

Adding compression to positional posting lists

In practice compress [4]:
•  d-gaps with Golomb

codes
•  fd,t and word-position

gaps with Elias codes

21 Claudia Hauff, 2012

Sort-based inversion II
Moffat and Bell, 1995 [6]

t,d,fd,t

Index
term

Term
mum.

this 1

is 2

a 3

sample 4

1,1,1
2,1,1
3,1,1
4,1,1
5,1,1
3,2,1
6,2,1
1,3,1
5,3,1

…

t’,d,fd,t
(12 byte)

1,1,1
1,3,1
2,1,1
3,1,1
3,2,1
4,1,1
5,1,1
5,3,1
6,2,1

…

t’,d,fd,t

parse
documents

map terms to
term number

accumulate
postings

sort array
and write
compressed
run (memory
threshold
reached)

accumulate
runs on disk

Adapted from: [4]

lexicon

in-memory array

temp. file

22 Claudia Hauff, 2012

Sort-based inversion II

• Compress the temporary file (<t,d,fd,t> triples)
•  Elias’s δ code for d-gaps (Golomb would require 2 passes again)
•  Elias’s γ for fd,t components
•  Representation of the t component, e.g. unary

•  Remove the randomness in the unsorted temporary file by interleaving
the processing of the text and the sorting the postings in memory

•  t-gaps are thus 0 or higher (triples are sorted by t!)

• K-way merge
•  Merging in one pass
•  in-situ replacement of the temporary file

• The lexicon needs to be kept in memory

Moffat and Bell, 1995 [6]

Predicted indexing time for
the 20GB corpus: 105
minutes.

Storing the inverted list by
term ids is a problem for
range queries.
Storage according to
lexicographical order can
be done in a second pass.

23 Claudia Hauff, 2012

Efficient single pass index construction

•  Previous approaches required the vocabulary to remain in
main memory
•  Not feasible for very large coprora

Heinz and Sobel, 2004 [4]

24 Claudia Hauff, 2012

Formally

•  Zipf’s law: collection term frequency decreases rapidly with
rank

• Heap’s law: the vocabulary size V grows linearly with the size
N of the corpus

cfi !
1
i
, where cfi is the collection frequency

of the ith common term

V = kNb , where N is # tokens in the corpus
typically 30 ! k !100, b " 0.5

25 Claudia Hauff, 2012

Formally

•  Zipf’s law: collection term frequency decreases rapidly with
rank

• Heap’s law: the vocabulary size V grows linearly with the size
N of the corpus

cfi !
1
i
, where cfi is the collection frequency

of the ith common term

V = kNb , where N is # tokens in the corpus
typically 30 ! k !100, b " 0.5

0
2500
5000
7500

10000
12500
15000
17500
20000

Line count vs. vocabulary size

26 Claudia Hauff, 2012

Efficient single pass index construction

•  Previous approaches required the vocabulary to remain in
main memory
•  Not feasible for very large coprora
•  Heap’s law: vocabulary increases “endlessly”
•  Zipf’s law: many terms occur only once

•  i.e. inserted into the in-memory lexicon, but never accessed again

•  Efficient single pass indexing offers a solution
•  Does not require all of the vocabulary to remain in main memory
•  Can operate within limited volumes of memory
•  Does not need large amounts of temporary disk space
•  Faster than previous approaches

Heinz and Sobel, 2004 [4]

27 Claudia Hauff, 2012

Efficient single pass index construction II

• Based on the same ideas as sort-based inversion (in-memory
construction of runs that are saved to disk and stored)
•  Design is crucial to achieve better results

• Main idea: assign each index term in the lexicon a dynamic
in-memory vector that accumulates their corresponding
postings in compressed form (Elias codes)
•  Last inserted document number needs to be known (kept as

uncompressed integer)

Heinz and Sobel, 2004 [4]

28 Claudia Hauff, 2012

Efficient single pass index construction II

①  Allocate empty temporary file on disk
②  For each posting and as long as main memory is available,

search the lexicon
①  If not found, insert t into the lexicon, initialize bitvector
②  Add posting to bitvector and compress on the fly

③  If main memory is used up, index terms and bitvectors are
processed in lexicographic order
①  Each index term is appended to the temporary file on disk

(front-coding) together with the padded bitvector
②  Lexicon is freed

④  Repeat steps 2&3 until all documents have been processed
⑤  Compressed runs are merged to obtain the final inverted file

Heinz and Sobel, 2004 [4] Predicted indexing time for
the 20GB corpus: 91
minutes.

29 Claudia Hauff, 2012

Efficient single pass index construction II
Heinz and Sobel, 2004 [4]

Predicted running time
in minutes over the
20G corpus.
Taken from [4].

30 Claudia Hauff, 2012

Recall: dictionary

 jezebel 20
 jezer 3
 jezerit 1
 jeziah 1
 jeziel 1
 jezliah 1
 jezoar 1
 jezrahiah 39

 term t ft disk address
 of It

Adapted from: [3] (page 157)

31 Claudia Hauff, 2012

Dictionary compression
Dictionary-as-a-string

…jezebeljezerjezeritjeziahjezieljezliahjezoarjezrahiah…

20

3

1

1

1

1

ft disk adress
 address of
 of It term t

Adapted from: [3] (page 158)

32 Claudia Hauff, 2012

Dictionary compression
Dictionary-as-a-string with reduced term pointers

… 7jezebel5jezer7jezerit6jeziah 6jeziel7jezliah6jezoar…

20

3

1

1

1

1

ft disk adress
 address of
 of It term t

Adapted from: [3] (page 159)

4k
4k+1
4k+2
4k+3
4(k+1)

1 byte prefix
(instead of 4
byte pointers)

33 Claudia Hauff, 2012

Dictionary compression

• The efficient single pass indexing approach includes index
terms in the runs (not term identifiers)

•  Since the terms are processed in lexicographic order,

ajdacent terms are likely to have a common prefix
•  Adjacent terms typically share a prefix of 3-5 characters

•  Front-coding: instead of storing the term, two integers and a
suffix are stored
①  Number of prefix characters in common with the previous

terms
②  Number of remaining suffix characters when the prefix is

removed
③  Non-matching suffix between consecutive terms

34 Claudia Hauff, 2012

Dictionary compression

• Best explained with an example [3, page 160]:

Term Complete front
coding

 jezaniah

7,jezebel 3,4,ebel

5,jezer 4,1,r

7,jezerit 5,2,it

6,jeziah 3,3,iah

6,jeziel 4,2,el

7,jezliah 3,4,liah

96 bytes saves 2.5 bytes/word

Front-coding

35 Claudia Hauff, 2012

Dictionary compression

•  “Front coding yields a net saving of about 40 percent of the
space required for string storage in a typical lexicon of the
English language.” [3]

•  Problem of complete front-coding: binary search is no longer
possible
•  A pointer directly to 4,2,el will not yield a usable term for binary

search

•  In practice: every nth term is stored without front coding so
that binary search can proceed

Front-coding

36 Claudia Hauff, 2012

Dictionary compression

•  “Front coding yields a net saving of about 40 percent of the
space required for string storage in a typical lexicon of the
English language.” [3]

•  Problem of complete front-coding: binary search is no longer
possible
•  A pointer directly to 4,2,el will not yield a usable term for binary

search

•  In practice: every nth term is stored without front coding so
that binary search can proceed

Term Complete front
coding

Partial “3-in-4”
front coding

 jezaniah

7,jezebel 3,4,ebel ,7,jezebel

5,jezer 4,1,r 4,1,r

7,jezerit 5,2,it 5,2,it

6,jeziah 3,3,iah 3, ,iah

6,jeziel 4,2,el ,6,jeziel

7,jezliah 3,4,liah 3,4,liah

Front-coding

37 Claudia Hauff, 2012

Distributed indexing

•  So far: one machine with limited memory is used to create
the index

• Not feasible for very large collections (such as the Web)
•  Index is build by a cluster of machines
•  Several indexers must be coordinated for the final inversion

(MapReduce)

• The final index needs to be partitioned, it does not fit into a
single machine
•  Splitting the documents across different servers
•  Splitting the index terms across different servers

38 Claudia Hauff, 2012

Distributed indexing

• Also known as “distributed global indexing”

• Query processing:
•  Queries arrive at the broker which distributes the query and

returns the results
•  The broker is in charge of merging the posting lists and

producing the final document ranking

• The broker sends requests to the servers containing the
query terms; merging occurs in the broker

•  Load balancing depends on the distribution of query terms
and its co-occurrences
•  Query log analysis is useful, but difficult to get right

Term-based index partitioning

39 Claudia Hauff, 2012

Distributed indexing

• Also known as “distributed local indexing”

• The common approach for distributed indexing

• Query processing
•  Every server receives all query terms and performs a local

search
•  Result documents are sent to the broker, which sorts them

•  Issues: maintainance of global collection statistics inside each
server (needed for document ranking)

Document-based index partitioning

40 Claudia Hauff, 2012

Text compression

• Having looked at inverted file and dictionary compression,
lets turn to text compression (document compression)

•  2 classes: symbolwise and dictionary methods

encoder decoder text text

model model

compressed
text

Lossless!

41 Claudia Hauff, 2012

Symbolwise compression

• Modeling: estimation of symbol probabilities (statistical
methods)
•  Frequently occurring symbols are assigned shorter codewords
•  E.g. in English ‘e’ is a very common character, ‘the’ is a common

term in most texts, etc.
•  Methods differ in how they estimate the symbol probabilities

•  The more accurate the estimation, the greater the compression
•  Approaches: prediction by partial matching, block sorting, word-

based methods, etc.
•  No single best method

• Coding: conversion of probabilities into a bitstream
•  Usually based on either Huffman coding or arithmetic coding

42 Claudia Hauff, 2012

Dictionary-based compression

• Achieve compression by replacing words and other fragments
of text with an index to an entry in a ‘dictionary’
•  Several symbols are represented as one output codeword

• Most significant methods are based on Ziv-Lempel coding
•  Idea: replace strings of characters with a reference to a previous

occurrence of the string
•  Effective since most characters can be coded as part of a string

that has occurred earlier in the text
•  Compression is achieved if the pointer takes less space than the

string it replaces

43 Claudia Hauff, 2012

Models

• Alphabet: set of all symbols
•  Probability distribution provides an estimated probability for

each symbol in the alphabet

• Model provides the probability distribution to the encoder,
which uses it to encode the symbol that actually occurs

• The decoder uses an identical model together with the output
of the encoder

• Note: encoder cannot boost its probability estimates by
looking ahead at the next symbol
•  Decoder and encoder use the same distribution and the decoder

cannot look ahead!

44 Claudia Hauff, 2012

Models II

•  Information content: numer of bits in which s should be coded
(directly related to the predicted probability)

•  Examples: transmit fair coin toss: P(head)=0.5, -log2(0.5)=1
 transmit u with 2% occurrence: I(s)=5.6

• Average amount of information per symbol: entropy H of the
probability distribution

•  H offers a lower bound on compression (source coding theorem)

I(s) = ! log2 P(s)

H = P(s)! I(s) = "P(s)! log2 P(s)
s
#

s
#

Source coding theorem (Claude Shannon, 1948)

45 Claudia Hauff, 2012

Models III

• Models can also take preceding symbols into account
•  If ‘q’ was just encountered, the probability of ‘u’ goes up to

95%, based on how often ‘q’ is followed by ‘u’ in a sample text
I(u)=0.074 bits

•  Finite-context models of order m take m previous symbols
into account

• Static models: use the same probability distribution
regardless of the text to be compressed

• Semi-static models: model generated for each file
(requires an initial pass)
•  Model needs to be transmitted to the decoder

46 Claudia Hauff, 2012

Adaptive models

• Adaptive models start with a bland probability distribution
and gradually alters it as more symbols are encountered
•  Does not require model transmission to the decoder

•  Example: model that uses the previously encoded part of a
string as sample to estimate probabilities

• Advantages: robust, reliable and flexible
• Disadvantage: not suitable for random access to files, the

decoder needs to process the text from the beginning to
build up the correct model

47 Claudia Hauff, 2012

Huffman coding

• Coding: determine output representation of a symbol, based
on a probability distribution supplied by a model

•  Principle: common symbols are coded in few bits, rare
symbols are encoded with longer codewords

•  Faster than arithmetic coding, achieves less compression

Huffman 1952

48 Claudia Hauff, 2012

Huffman coding
Principle

Symbol Codeword P(s)

a 0000 0.05

b 0001 0.05

c 001 0.1

d 01 0.2

e 10 0.3

f 110 0.2

g 111 0.1 a b c d e f g

0 1

0

0

0

0

0

1

1

1

1

1

7 symbol alphabet
egg 10111111
deaf01100000110

code tree

prefix-free code Source: [3]

49 Claudia Hauff, 2012

Huffman coding
Code tree generation

0.05 0.05 0.1 0.2 0.3 0.2 0.1

a b c d e f g

0 1

0

0

0

0

0

1

1

1

1

1

0.1

0.2

0.3

0.4

0.6

1.0

Source: [3]

50 Claudia Hauff, 2012

Huffman coding

①  Set T as the set of n singleton sets, each containing one of
the n symbols and its probability

②  Repeat n-1 times
①  Set m1 and m2: the two subsets of least probability in T
②  Replace m1 and m2 with set {m1, m2} with p=P(m1)+P(m2)

③  T now contains only one entry: the root of the Huffman
tree

• Considered a good choice for word-based models (rather

than character-based)
• Random access is possible (starting points indexed)

Code assignment in pseudocode

Source: [3]

51 Claudia Hauff, 2012

Canonical Huffman code

Source: [3]

Code tree not needed for decoding
Symbol Length CW Codeword (CW) bits

yopur 17 00001101010100100

youmg 17 00001101010100101

youthful 17 00001101010100110

zeed 17 00001101010100111

zephyr 17 00001101010101000

zigzag 17 00001101010101001

11th 16 0000110101010101

120 16 0000110101010110

….

were 8 10100110

which 8 10100111

as 7 1010100

at 7 1010101

For 7 1010110

Had 7 1010111

he 7 1011000

her 7 1011001

His 7 1011010

It 7 1011011

s 7 1011100

…

•  Terms in decreasing order of codeword length
•  Within each block of codes of the same length

(same freq.), terms are ordered alphabetically

•  Fast encoding: CW determined from length of
CW, how far through the list it is and the CW

for the first word of that length
•  ‘had’ is the 4th seven bit codeword; we know the

first seven bit codeword, add 3 (binary) to

retrieve 1010111

•  Decoding without the code tree: list of
symbols ordered as described and array storing
the first codeword of each distinct length is
used instead.

alphabetically
sorted

52 Claudia Hauff, 2012

Arithmetic coding

•  It can code arbitrarily close to the entropy
•  It is known that it is not possible to code better than the entropy

on average
• Huffman coding becomes ineffective when some symbols are

highly probable
•  Binary alphabet: P(s1)=0.99 and P(s2)=0.01
•  I(s1)=0.015 bits, though the Huffman coder needs at least one

•  Slower than Huffman coding, no easy random access

• Message is encoded in a real number between 0 and 1
•  how much data can be encoded in one number depends on the precision

of the number

53 Claudia Hauff, 2012

Arithmetic coding

• Output of an arithmetic coder is a stream of bits
•  Image a “0.” in front of the stream and the output becomes a

fractional binary between 0 and 1
•  1010001111  0.1010001111  0.64 (decimal)

• Compress bccb from alphabet {a,b,c}
•  Before a part of the message is read: P(a)=P(b)=P(c)=1/3 and

stored interval boundaries low=0 and high=1
①  In each step, narrow the interval to the one corresponding to

the character to be encoded: b  low=0.33 and high=0.66
②  Adapt the probability distribution P(a)=P(c)=1/4, P(b)=2/4 and

redistribute values over reduced interval

Explained with an example

1.0

0.667

0.333

0.0

c

b

a

Source: [3]

54 Claudia Hauff, 2012

Arithmetic coding

• Compress bccb from alphabet {a,b,c}
•  ‘b’ encoded

•  P(a)=P(c)=1/4, P(b)=2/4 and low=0.33, high=0.66
•  ‘c’ encoded

•  P(a)=1/5, P(c)=2/5, P(b)=2/5 and low=0.583 and high=0.66
•  ‘c’ encoded

•  P(a)=1/6, P(c)=3/6, P(b)=2/6 and low=0.633 and high=0.667
•  ‘b’ encoded

Explained with an example 0.667
0.583

0.4167

0.333

c

b

a

Transmitting any number
in this interval yields bccb
(e.g. 0.64)

Source: [3]

0.667

0.633

0.600

0.583

c

b

a

0.667

0.650

0.639
0.633

c

b

a

55 Claudia Hauff, 2012

Arithmetic coding

• Decompress 0.64 given the alphabet {a,b,c}
•  Same uniform probability distribution as in the encoder
•  0.64 is in the b-interval, thus first codeword is `b’

•  P(a)=P(c)=1/4, P(b)=2/4 and low=0.33, high=0.66
•  …

• Compression is achieved because high probability events do
not decrease the low/high interval a lot, while low probability
events result in a much smaller next interval
•  A small final interval requires many digits (bits) to specify a

number that is guaranteed to be within the interval
•  A large interval requires few digits

Explained with an example

1.0

0.667

0.333

0.0

c

b

a

56 Claudia Hauff, 2012

Recommended reading material

•  Index compression for information retrieval systems. Roi
Blanco Gonzales. PhD thesis. 2008.
•  http://www.dc.fi.udc.es/~roi/publications/rblanco-phd.pdf

• Managing Gigabytes: Compressing and Indexing Documents
and Images. I.H. Witten, A. Moffat and T.C. Bell. Morgan
Kaufmann Publishers. 1999.

•  Introduction to Information Retrieval. Manning et al..
Chapters 4&5.

57 Claudia Hauff, 2012

Sources

①  Index compression for information retrieval systems. Roi Blanco Gonzales.

PhD thesis. 2008.
②  Efficient document retrieval in main memory. T. Strohman and W.B. Croft.

SIGIR 2007.
③  Managing gigabytes. Witten et al., 1999.
④  Efficient single pass indexing. Heinz and Sobel

⑤  Reviewing records from a gigabyte of text on a mini-computer using
statistical ranking.

⑥  In-situ generation of compressed inverted files. 1995
⑦  Bell et al. 1993 d-gaps
⑧  Elias 1975 (gamma/sigma code)
⑨  Golomb 1966 (golomb code)
⑩  Introduction to Information Retrieval. Manning et al. 2008

