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Last time 

•  (Basic, positional) inverted index 
 

• Biword index 
 
• Hashes versus search trees for vocabulary lookup 
 
•  Index structures for wildcard queries (permuterm index, etc.) 

High-level view on … 
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Today 

•  Efficiency needed in the three stages 
•  Construction of the index/indices 

•  Web search engines need to scale up to billions of documents 
•  Storage of indices 
•  Storage of documents 

•  Inverted file creation 
• Dictionary compression techniques 
•  Inverted file compression techniques 
• Document compression techniques 

index compression 
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Text compression 

encoder decoder text text 

model model 

compressed 
text 

Lossless! 
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Inverted file creation 

• How can the dictionary and posting lists be created from a 
corpus of documents? 
•  Posting lists file (on disk) is orders of magnitude larger than the 

dictionary file (in memory for fast access) 

•  Scalability challenge 
•  Millions of words of documents, billions of term occurrences 
•  Severely memory limited environments (mobile devices) 

< t;dft ;(d1, ft1),(d2, ft2 ),...,(d ft
, fdft ) >, di < dj !i < j

< t;dft ;(d1, ft1;(pos1, pos2,..., pos ft1 )),...>, di < dj !i < j
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Hardware constraints [10] 

• Major constraints due to hardware 
•  Disks maximize input/output throughput if contiguously stored 

data is accessed 
•  Memory access is faster than disk access 
•  Operating systems read/write blocks of fixed size from/to disk 
•  reading compressed data from disk and decompressing it is 

faster than reading uncompressed data from disk 
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Index creation approaches 

• Commonly employed computational model [4] 
•  OS effects are ignored (caching, cost of memory allocation, etc.) 
•  Values based on a Pentium III 700MHz machine (512MB memory) 

How to compare their running time analytically? 

Parameters value 

Main memory size (MB) M 256 

Average disk seek time (sec) ts 9x10-3 

Disk transfer time (sec/byte) tt 5x10-8 

Time to parse one term (sec) tp 8x10-7 

Time to lookup a term in the lexicon (sec) tl 6x10-7 

Time to compare and swap two 12 byte 
records (sec) 

tw 1x10-7 
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Index creation approaches 

• Commonly employed computational model [4] 
•  TREC corpus (20GB Web documents) 

How to compare their running time analytically? 

Parameters value 

Size (Mb) S 20,480 
Distinct terms n 6,837,589 

Term occurrences (x106) C 1,261.5 

Documents N 3,560,951 

Postings (d,fd,t) (x106) tl 6x10-7 

Avg. number of terms / document Cavg 354 

Avg. number of index terms /document Wavg 153 

%words occuring once only H 44 

Size of compressed doc-level inverted file (MB) I 697 

Size of compressed word-level inverted file (MB) Iw 2,605 
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Inverted file creation 

①  First pass over the collection to determine the number of 
unique terms (vocabulary) and the number of documents to be 
indexed 

②  Allocate the matrix and second pass over the collection to fill 
the matrix  

③  Traverse the matrix row by row and write posting lists to file 
•  Prohibitively expensive [4] 

•  Small corpus 2 bytes per df: 4.4MB corpus yields 800MB matrix 
•  Larger corpus4 bytes per df: 20G corpus yields 89TB matrix 

•  Alternative: list-based in-memory inversion (one list per term) 
•  Each node represents (d,fd,t) and requires 12 bytes (posting+pointer) 
•  The 20G corpus requires 6G main memory [4] 

Simple in-memory inversion 

Relying on the OS and 
virtual memory is too slow 
since list access (eq. 
matrix rows) will be in 
random order 
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Disk-based inversion 

• Requires a single pass 
• Writes postings to temporary file, lexicon resides in memory 

①  Initialize lexicon structure in memory (keeps track of the 
last posting file adress p of term t in the temp. file) 

②  Traverse the corpus (sequential disk access) 
①  Fr each posting (t,d,fd,t), query the lexicon for t and retrieve p 
②  Append temporary file: add (t,d,fd,t,p)  & update lexicon (p’) 

③  Post-process the temporary file to create an inverted file 
①  Allocate a new file on disk 
②  For each term (lexicographic order), traverse the posting list 

in reverse order, compress the postings and write to inverted 
file (random disk access) 

 

Candela and Harman, 1990 [5] 

Predicted indexing time for 
the 20GB corpus: 28.3 
days. 
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Disk-based inversion 

• Requires a single pass 
• Writes postings to temporary file, lexicon resides in memory 

①  Initialize lexicon structure in memory (keeps track of the 
last posting file adress p of term t in the temp. file) 

②  Traverse the corpus (sequential disk access) 
①  Fr each posting (t,d,fd,t), query the lexicon for t and retrieve p 
②  Append temporary file: add (t,d,fd,t,p)  & update lexicon (p’) 

③  Post-process the temporary file to create an inverted file 
①  Allocate a new file on disk 
②  For each term (lexicographic order), traverse the posting list 

in reverse order, compress the postings and write to inverted 
file (random disk access) 

 

Candela and Harman, 1990 [5] 

Predicted indexing time for 
the 20GB corpus: 28.3 
days. 

Predicted inversion time (in seconds): 

T = Stt +C(t p + tl )+10Ptt +
Pts / v +10Ptt +
I(tc + tt )

read, parse, lookup  
lexicon, write postings 

traverse lists 

compress, write out to 
inverted file 
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Sort-based inversion 

①  Create empty dictionary structure S and empty temporary file on disk 
②  For each document d in the collection 

①  Process d and then for each parsed index term t 

①  If t is not in S, insert it (in memory) 

②  Write <t,d,fd,t> to temporary file 

③  Sort: assume k records can be held in memory; read file in blocks of k records  

①  Read k records from temporary file  

②  Sort into non-descending t order and then d order (e.g. Quicksort) 

③  Write sorted-k-run back to temporary file 

④  Pairwise merge runs in the temporary file until entire file is sorted (from R initial 

runs               merges are required) 
⑤  Output inverted file: for each term t 

①  Start a new inverted file entry 

②  Read all <t,d,fd,t> from temporary file 

③  Append this inverted list to the inverted file 

log2 R!" #$
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d-gaps 

• We store positive integers (document identifiers, term pos.) 
•  If upper bound for x is known, x can be encoded in            

bits 
•  32-bit unsigned integers: 

•  Inverted lists can also be considered as a sequence of run 
length or document gaps between document numbers [7] 

1 Dantes 3 4 18 20 21 60 … 

2 1 14 2 1 39 d-gaps 

log2 X!" #$

0 ! x < 232

Compressing the posting lists 
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d-gaps 

• d-gaps are  
•  Small for frequent terms 
•  Large for infrequent terms 

• Basic idea: encode small value integers with short codes 

• Unary code (global method): an integer x (gap) is encoded 
as (x-1) one bits followed by a single zero bit 
•  Assumed probability distribution of gaps:  

1  0 
2  10 
221111111111111111111110 

Compressing the posting lists: unary code 

P(x) = 2! x

The binary code 
assumes a uniform 
probability distribution 
of gaps. 
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d-gaps 

•  Elias’s γ code: 

• Assumed probability distribution: 

•  Example 1 

x as unary code for 1+ log2 x!" #$
followed by a code of log2 x[ ]bits coding x % 2 log2 x!" #$ in binary

value x = 5
log2 x!" #$ = 2
coded in unary : 3= 1+ 2 (code110)
followed by1= 5 % 4 as a two% bit binary (code 01)
codeword :11001

Compressing the posting lists: Elias’s γ code (1975) [8] 

#bits to encode x 

codes x in that many bits 

P(x) = 1
2x2
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d-gaps 

•  Elias’s γ code example 2 
 
 
 
 
 
 
 
• Unambiguous decoding 
①  Extract unary code cu 

②  Treat the next cu-1 bits as binary code to get cb 

value x = 8
log2 x!" #$ = 3
coded in unary : 4 = 1+ 3 (code1110)
followed by 0 = 8 % 8 as a three% bit binary (code 000)
codeword :1110000

Compressing the posting lists: Elias’s γ code (1975) [8] 

x = 2cu!1 + cb



17 Claudia Hauff, 2012 

d-gaps 

•  Elias’s δ code: 

 
•  Example 

• Number of bits required to encode x: 

x as ! code for 1+ log2 x"# $%
followed by a code of log2 x[ ]bits coding x & 2 log2 x"# $% in binary

value x = 5
log2 x!" #$ = 2
coded in % & code : 3= 1+ 2 (code101)
followed by1= 5 & 4 as a two& bit binary (code 01)
codeword :10101

1+ 2 log2 log2 2x!" #$ + log2 x!" #$

Compressing the posting lists: Elias’s δ code (1975) [8] 
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d-gaps 

• Golomb code (local method):  
•  Different inverted lists can be coded with different codes (change 

in parameter b: dependent on corpus term frequency) 
•  Obtains better compression than non-parameterized Elias’s codes 

•  Example 

 

parameter b = 0.69(N / ft )
x as (q +1) unary, where q = (x !1) /b"# $%
followed by r = (x !1)! q & b coded in binary
(requires log2 b"# $% or log2 b'" ($ bits)

value x = 5, assume b = 3
q = (5 !1) / 3"# $% = 1+1(code10)
r = (5 !1)!1& 3= 1(code10)
codeword :1010

Requires two 
passes to generate! 

Compressing the posting lists: Golomb code (1966) [9] 
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Examples of encoded d-gaps 

Gap x Unary Elias’s γ Elias’s δ Golomb 
b=3 

1 0 0 0 00 

2 10 100 1000 010 

3 110 101 1001 011 

4 1110 11000 10100 100 

5 11110 11001 10101 1010 

6 111110 11010 10110 1011 

7 1111110 11011 10111 1100 

8 11111110 1110000 11000000 11010 

9 111111110 1110001 11000001 11011 

10 1111111110 1110010 11000010 11100 
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d-gaps 

•  So far, we considered the document gaps 

•  In positional postings, we also have fd,t values 
•  Often one, rarely large 

method d-gaps fd,t 

Unary 1.71 

binary 21.00 

Elias’s γ 6.76 1.79 

Elias’s δ 6.45 2.01 

Golomb 6.11 

Inverted file compression for a 2G 
TREC collection (2 million records, 
1000 bytes each) [6]. 
Index contains 196 million pointers in 
total and requires 185M disk space.  
 
Results in bits per pointer. 

Adding compression to positional posting lists 

In practice compress [4]: 
•  d-gaps with Golomb 

codes 
•  fd,t and word-position 

gaps with Elias codes 
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Sort-based inversion II 
Moffat and Bell, 1995 [6] 

t,d,fd,t 

Index  
term 

Term  
mum. 

this 1 

is 2 

a 3 

sample 4 

1,1,1 
2,1,1 
3,1,1 
4,1,1 
5,1,1 
3,2,1 
6,2,1 
1,3,1 
5,3,1 

… 

t’,d,fd,t 
(12 byte) 

1,1,1 
1,3,1 
2,1,1 
3,1,1 
3,2,1 
4,1,1 
5,1,1 
5,3,1 
6,2,1 

… 

t’,d,fd,t 

parse 
documents 

map terms to 
term number 

accumulate 
postings 

sort array  
and write  
compressed 
run (memory 
threshold  
reached) 

accumulate 
runs on disk 

Adapted from: [4] 

lexicon 

in-memory array 

temp. file 
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Sort-based inversion II 

• Compress the temporary file (<t,d,fd,t> triples) 
•  Elias’s δ code for d-gaps (Golomb would require 2 passes again) 
•  Elias’s γ for fd,t components 
•  Representation of the t component, e.g. unary 

•  Remove the randomness in the unsorted temporary file by interleaving 
the processing of the text and the sorting the postings in memory 

•  t-gaps are thus 0 or higher (triples are sorted by t!) 
 

• K-way merge 
•  Merging in one pass 
•  in-situ replacement of the temporary file 

• The lexicon needs to be kept in memory 

Moffat and Bell, 1995 [6] 

Predicted indexing time for 
the 20GB corpus: 105 
minutes. 

Storing the inverted list by 
term ids is a problem for 
range queries. 
Storage according to 
lexicographical order can 
be done in a second pass. 
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Efficient single pass index construction 

•  Previous approaches required the vocabulary to remain in 
main memory 
•  Not feasible for very large coprora 

Heinz and Sobel, 2004 [4] 
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Formally 

•  Zipf’s law: collection term frequency decreases rapidly with 
rank 

• Heap’s law: the vocabulary size V grows linearly with the size 
N of the corpus 

cfi !
1
i
, where cfi is the collection frequency

of the ith common term

V = kNb , where N is # tokens in the corpus
typically 30 ! k !100, b " 0.5
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Formally 

•  Zipf’s law: collection term frequency decreases rapidly with 
rank 

• Heap’s law: the vocabulary size V grows linearly with the size 
N of the corpus 

cfi !
1
i
, where cfi is the collection frequency

of the ith common term

V = kNb , where N is # tokens in the corpus
typically 30 ! k !100, b " 0.5

0 
2500 
5000 
7500 

10000 
12500 
15000 
17500 
20000 

Line count vs. vocabulary size 
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Efficient single pass index construction 

•  Previous approaches required the vocabulary to remain in 
main memory 
•  Not feasible for very large coprora 
•  Heap’s law: vocabulary increases “endlessly” 
•  Zipf’s law: many terms occur only once 

•  i.e. inserted into the in-memory lexicon, but never accessed again 

•  Efficient single pass indexing offers a solution 
•  Does not require all of the vocabulary to remain in main memory 
•  Can operate within limited volumes of memory 
•  Does not need large amounts of temporary disk space 
•  Faster than previous approaches 

Heinz and Sobel, 2004 [4] 
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Efficient single pass index construction II 

• Based on the same ideas as sort-based inversion (in-memory 
construction of runs that are saved to disk and stored) 
•  Design is crucial to achieve better results 

• Main idea: assign each index term in the lexicon a dynamic 
in-memory vector that accumulates their corresponding 
postings in compressed form (Elias codes) 
•  Last inserted document number needs to be known (kept as 

uncompressed integer) 

 

Heinz and Sobel, 2004 [4] 
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Efficient single pass index construction II 

①  Allocate empty temporary file on disk 
②  For each posting and as long as main memory is available, 

search the lexicon 
①  If not found, insert t into the lexicon, initialize bitvector 
②  Add posting to bitvector and compress on the fly 

③  If main memory is used up, index terms and bitvectors are 
processed in lexicographic order 
①  Each index term is appended to the temporary file on disk 

(front-coding) together with the padded bitvector 
②  Lexicon is freed 

④  Repeat steps 2&3 until all documents have been processed 
⑤  Compressed runs are merged to obtain the final inverted file 

Heinz and Sobel, 2004 [4] Predicted indexing time for 
the 20GB corpus: 91 
minutes. 
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Efficient single pass index construction II 
Heinz and Sobel, 2004 [4] 

Predicted running time 
in minutes over the  
20G corpus. 
Taken from [4]. 
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Recall: dictionary  

  
 jezebel   20    
 jezer    3 
 jezerit    1 
 jeziah    1 
 jeziel    1 
 jezliah    1 
 jezoar    1 
 jezrahiah 39 

 term t        ft     disk address 
                        of It 

Adapted from: [3] (page 157) 



31 Claudia Hauff, 2012 

Dictionary compression 
Dictionary-as-a-string 

…jezebeljezerjezeritjeziahjezieljezliahjezoarjezrahiah… 

20 

3 

1 

1 

1 

1 

ft     disk       adress  
      address  of 
      of It              term t 

Adapted from: [3] (page 158) 
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Dictionary compression 
Dictionary-as-a-string with reduced term pointers 

… 7jezebel5jezer7jezerit6jeziah 6jeziel7jezliah6jezoar… 

20 

3 

1 

1 

1 

1 

ft     disk       adress  
      address  of 
      of It              term t 

Adapted from: [3] (page 159) 

4k 
4k+1 
4k+2 
4k+3 
4(k+1) 

1 byte prefix 
(instead of 4 
byte pointers) 
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Dictionary compression 

• The efficient single pass indexing approach includes index 
terms in the runs (not term identifiers) 

 
•  Since the terms are processed in lexicographic order, 

ajdacent terms are likely to have a common prefix 
•  Adjacent terms typically share a prefix of 3-5 characters 

•  Front-coding: instead of storing the term, two integers and a 
suffix are stored 
①  Number of prefix characters in common with the previous 

terms 
②  Number of remaining suffix characters when the prefix is 

removed 
③  Non-matching suffix between consecutive terms 
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Dictionary compression 

• Best explained with an example [3, page 160]: 

Term Complete front 
coding 

  jezaniah 

7,jezebel 3,4,ebel 

5,jezer 4,1,r 

7,jezerit 5,2,it 

6,jeziah 3,3,iah 

6,jeziel 4,2,el 

7,jezliah 3,4,liah 

96 bytes saves 2.5 bytes/word 

Front-coding 
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Dictionary compression 

•  “Front coding yields a net saving of about 40 percent of the 
space required for string storage in a typical lexicon of the 
English language.” [3] 

•  Problem of complete front-coding: binary search is no longer 
possible 
•  A pointer directly to 4,2,el will not yield a usable term for binary 

search 

•  In practice: every nth term is stored without front coding so 
that binary search can proceed 

Front-coding 
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Dictionary compression 

•  “Front coding yields a net saving of about 40 percent of the 
space required for string storage in a typical lexicon of the 
English language.” [3] 

•  Problem of complete front-coding: binary search is no longer 
possible 
•  A pointer directly to 4,2,el will not yield a usable term for binary 

search 

•  In practice: every nth term is stored without front coding so 
that binary search can proceed 

Term Complete front 
coding 

Partial “3-in-4” 
front coding 

  jezaniah 

7,jezebel 3,4,ebel  ,7,jezebel 

5,jezer 4,1,r 4,1,r 

7,jezerit 5,2,it 5,2,it 

6,jeziah 3,3,iah 3, ,iah 

6,jeziel 4,2,el  ,6,jeziel 

7,jezliah 3,4,liah 3,4,liah 

Front-coding 
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Distributed indexing 

•  So far: one machine with limited memory is used to create 
the index 

• Not feasible for very large collections (such as the Web) 
•  Index is build by a cluster of machines 
•  Several indexers must be coordinated for the final inversion 

(MapReduce) 

• The final index needs to be partitioned, it does not fit into a 
single machine 
•  Splitting the documents across different servers 
•  Splitting the index terms across different servers 
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Distributed indexing 

• Also known as “distributed global indexing” 

• Query processing: 
•  Queries arrive at the broker which distributes the query and 

returns the results 
•  The broker is in charge of merging the posting lists and 

producing the final document ranking 

• The broker sends requests to the servers containing the 
query terms; merging occurs in the broker 

•  Load balancing depends on the distribution of query terms 
and its co-occurrences 
•  Query log analysis is useful, but difficult to get right 

Term-based index partitioning 
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Distributed indexing 

• Also known as “distributed local indexing” 

• The common approach for distributed indexing 

• Query processing 
•  Every server receives all query terms and performs a local 

search 
•  Result documents are sent to the broker, which sorts them 

•  Issues: maintainance of global collection statistics inside each 
server (needed for document ranking) 

Document-based index partitioning 
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Text compression 

• Having looked at inverted file and dictionary compression, 
lets turn to text compression (document compression) 

•  2 classes: symbolwise and dictionary methods 
 

encoder decoder text text 

model model 

compressed 
text 

Lossless! 
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Symbolwise compression 

• Modeling: estimation of symbol probabilities (statistical 
methods) 
•  Frequently occurring symbols are assigned shorter codewords 
•  E.g. in English ‘e’ is a very common character, ‘the’ is a common 

term in most texts, etc. 
•  Methods differ in how they estimate the symbol probabilities 

•  The more accurate the estimation, the greater the compression 
•  Approaches: prediction by partial matching, block sorting, word-

based methods, etc. 
•  No single best method 

• Coding: conversion of probabilities into a bitstream 
•  Usually based on either Huffman coding or arithmetic coding 
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Dictionary-based compression 

• Achieve compression by replacing words and other fragments 
of text with an index to an entry in a ‘dictionary’ 
•  Several symbols are represented as one output codeword 

• Most significant methods are based on Ziv-Lempel coding 
•  Idea: replace strings of characters with a reference to a previous 

occurrence of the string 
•  Effective since most characters can be coded as part of a string 

that has occurred earlier in the text 
•  Compression is achieved if the pointer takes less space than the 

string it replaces 
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Models 

• Alphabet: set of all symbols 
•  Probability distribution provides an estimated probability for 

each symbol in the alphabet 

• Model provides the probability distribution to the encoder, 
which uses it to encode the symbol that actually occurs 

• The decoder uses an identical model together with the output 
of the encoder 

• Note: encoder cannot boost its probability estimates by 
looking ahead at the next symbol 
•  Decoder and encoder use the same distribution and the decoder 

cannot look ahead! 
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Models II 

•  Information content: numer of bits in which s should be coded 
(directly related to the predicted probability) 

•  Examples: transmit fair coin toss: P(head)=0.5, -log2(0.5)=1                 
         transmit u with 2% occurrence: I(s)=5.6 

• Average amount of information per symbol: entropy H of the 
probability distribution 

 
•  H offers a lower bound on compression (source coding theorem) 

I(s) = ! log2 P(s)

H = P(s)! I(s) = "P(s)! log2 P(s)
s
#

s
#

Source coding theorem (Claude Shannon, 1948) 
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Models III 

• Models can also take preceding symbols into account 
•  If ‘q’ was just encountered, the probability of ‘u’ goes up to 

95%, based on how often ‘q’ is followed by ‘u’ in a sample text 
I(u)=0.074 bits 

•  Finite-context models of order m take m previous symbols 
into account 

• Static models: use the same probability distribution 
regardless of the text to be compressed 

• Semi-static models:  model generated for each file 
(requires an initial pass) 
•  Model needs to be transmitted to the decoder 
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Adaptive models 

• Adaptive models start with a bland probability distribution 
and gradually alters it as more symbols are encountered 
•  Does not require model transmission to the decoder 

•  Example: model that uses the previously encoded part of a 
string as sample to estimate probabilities 

• Advantages: robust, reliable and flexible 
• Disadvantage: not suitable for random access to files, the 

decoder needs to process the text from the beginning to 
build up the correct model 



47 Claudia Hauff, 2012 

Huffman coding 

• Coding: determine output representation of a symbol, based 
on a probability distribution supplied by a model 

•  Principle: common symbols are coded in few bits, rare 
symbols are encoded with longer codewords 

•  Faster than arithmetic coding, achieves less compression 

Huffman 1952 
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Huffman coding 
Principle 

Symbol Codeword P(s) 

a 0000 0.05 

b 0001 0.05 

c 001 0.1 

d 01 0.2 

e 10 0.3 

f 110 0.2 

g 111 0.1 a b c d e f g

0 1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

7 symbol alphabet 
egg 10111111 
deaf01100000110 

code tree 

prefix-free code Source: [3] 
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Huffman coding 
Code tree generation 

0.05   0.05     0.1    0.2     0.3     0.2      0.1  

a b c d e f g

0 1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0.1 

0.2 

0.3 

0.4 

0.6 

1.0 

Source: [3] 
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Huffman coding 

①  Set T as the set of n singleton sets, each containing one of 
the n symbols and its probability 

②  Repeat n-1 times 
①  Set m1 and m2: the two subsets of least probability in T 
②  Replace m1 and m2 with set {m1, m2} with p=P(m1)+P(m2) 

③  T now contains only one entry: the root of the Huffman 
tree 

 
• Considered a good choice for word-based models (rather 

than character-based) 
• Random access is possible (starting points indexed) 

Code assignment in pseudocode 

Source: [3] 
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Canonical Huffman code 

Source: [3] 

Code tree not needed for decoding 
Symbol Length CW Codeword (CW)  bits 

yopur 17 00001101010100100 

youmg 17 00001101010100101 

youthful 17 00001101010100110 

zeed 17 00001101010100111 

zephyr 17 00001101010101000 

zigzag 17 00001101010101001 

11th 16 0000110101010101 

120 16 0000110101010110 

…. 

were 8 10100110 

which 8 10100111 

as 7 1010100 

at 7 1010101 

For 7 1010110 

Had 7 1010111 

he 7 1011000 

her 7 1011001 

His 7 1011010 

It 7 1011011 

s 7 1011100 

… 

•  Terms in decreasing order of codeword length 
•  Within each block of codes of the same length 

(same freq.), terms are ordered alphabetically 

•  Fast encoding: CW determined from length of 
CW, how far through the list it is and the CW 

for the first word of that length 
•  ‘had’ is the 4th seven bit codeword; we know the 

first seven bit codeword, add 3 (binary) to 

retrieve 1010111 

•  Decoding without the code tree: list of 
symbols ordered as described and array storing 
the first codeword of each distinct length is 
used instead. 

alphabetically 
sorted 
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Arithmetic coding 

•  It can code arbitrarily close to the entropy 
•  It is known that it is not possible to code better than the entropy 

on average 
• Huffman coding becomes ineffective when some symbols are 

highly probable 
•  Binary alphabet: P(s1)=0.99 and P(s2)=0.01 
•  I(s1)=0.015 bits, though the Huffman coder needs at least one 

•  Slower than Huffman coding, no easy random access 

• Message is encoded in a real number between 0 and 1 
•  how much data can be encoded in one number depends on the precision 

of the number  
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Arithmetic coding 

• Output of an arithmetic coder is a stream of bits 
•  Image a “0.” in front of the stream and the output becomes a 

fractional binary between 0 and 1 
•  1010001111  0.1010001111  0.64 (decimal) 

• Compress bccb from alphabet {a,b,c} 
•  Before a part of the message is read: P(a)=P(b)=P(c)=1/3 and 

stored interval boundaries low=0 and high=1 
①  In each step, narrow the interval to the one corresponding to 

the character to be encoded: b  low=0.33 and high=0.66 
②  Adapt the probability distribution P(a)=P(c)=1/4, P(b)=2/4 and 

redistribute values over reduced interval 

Explained with an example 

1.0 

0.667 

0.333 

0.0 

c 

b 

a 

Source: [3] 
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Arithmetic coding 

• Compress bccb from alphabet {a,b,c} 
•  ‘b’ encoded 

•  P(a)=P(c)=1/4, P(b)=2/4 and low=0.33, high=0.66 
•  ‘c’ encoded 

•  P(a)=1/5, P(c)=2/5, P(b)=2/5 and low=0.583 and high=0.66 
•  ‘c’ encoded  

•  P(a)=1/6, P(c)=3/6, P(b)=2/6 and low=0.633 and high=0.667 
•  ‘b’ encoded  

 

Explained with an example 0.667 
0.583 

0.4167 

0.333 

c 

b 

a 

Transmitting any number  
in this interval yields bccb 
(e.g. 0.64) 

Source: [3] 

0.667 

0.633 

0.600 

0.583 

c 

b 

a 

0.667 

0.650 

0.639 
0.633 

c 

b 

a 



55 Claudia Hauff, 2012 

Arithmetic coding 

• Decompress 0.64 given the alphabet {a,b,c} 
•  Same uniform probability distribution as in the encoder 
•  0.64 is in the b-interval, thus first codeword is `b’ 

•  P(a)=P(c)=1/4, P(b)=2/4 and low=0.33, high=0.66 
•  … 

• Compression is achieved because high probability events do 
not decrease the low/high interval a lot, while low probability 
events result in a much smaller next interval 
•  A small final interval requires many digits (bits) to specify a 

number that is guaranteed to be within the interval 
•  A large interval requires few digits 

 

Explained with an example 

1.0 

0.667 

0.333 

0.0 

c 

b 

a 
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Recommended reading material 

•  Index compression for information retrieval systems. Roi 
Blanco Gonzales. PhD thesis. 2008. 
•  http://www.dc.fi.udc.es/~roi/publications/rblanco-phd.pdf 

• Managing Gigabytes: Compressing and Indexing Documents 
and Images. I.H. Witten, A. Moffat and T.C. Bell. Morgan 
Kaufmann Publishers. 1999. 

•  Introduction to Information Retrieval. Manning et al.. 
Chapters 4&5. 
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Sources 

①  Index compression for information retrieval systems. Roi Blanco Gonzales. 

PhD thesis. 2008. 
②  Efficient document retrieval in main memory. T. Strohman and W.B. Croft. 

SIGIR 2007. 
③  Managing gigabytes. Witten et al., 1999. 
④  Efficient single pass indexing. Heinz and Sobel 

⑤  Reviewing records from a gigabyte of text on a mini-computer using 
statistical ranking. 

⑥  In-situ generation of compressed inverted files. 1995 
⑦  Bell et al. 1993 d-gaps 
⑧  Elias 1975 (gamma/sigma code) 
⑨  Golomb 1966 (golomb code) 
⑩  Introduction to Information Retrieval. Manning et al. 2008 


