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Retrieval models III & Evaluation 
IN4325 – Information Retrieval 
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General feedback on assignment 1 

•  Some groups got on well 

•  Some struggled with AWS 
•  Others did not mention the AWS experiments at all in their report ** 

•  Some did not report the required numbers (results on small test 
corpus required, no new AWS experiments)  
•  Some reported all numbers, but did not specify which corpus they were 

referring to (small/large would be a good distinction) 
•  Some only reported the numbers on the large corpus 

•  Some did not include the source code (*.class only) 
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Assignment II 

• Assignment I cost $1400 (we have $3500 in total) 
•  xlarge instances are expensive 
•  Now everything on max. 8 instances of m1.small 

•  ~1 hour 

• Hints for assignment II 
•  Can be done in one pass  
•  Queries can be “hardcoded” into the Mapper / more principled: DistributedCache 
•  Use a combiner (very important when emitting a lot of (key,value) pairs) 

small:  $0.095 / hour 
xlarge: $0.76  / hour 
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Assignment II 

• Hints for assignment II cont. 
•  Performance may be very low (depends on normalizing steps taken) 
•  Test queries are available now on the website:  

•  http://www.st.ewi.tudelft.nl/~hauff/IN4325/ 
•  Trec_eval can be used to calculate MAP: http://trec.nist.gov/trec_eval/ 

•  Example index will be made available on S3 today 
•  Check http://www.st.ewi.tudelft.nl/~hauff/IN4325/ 
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Today 

•  Language modeling 
•  More about smoothing 
•  Document priors 

• Binary independence model 

• BM25 
 
• More about evaluations 
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Probabilistic models in IR 

information 
need 

query query 
representation 

documents document 
representation 

matching 

uncertain understanding  
of information need 

uncertain guess  
of relevance 
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Language modeling 
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Language modeling 

•  Jelineck-Mercer smoothing 

• Dirichlet smoothing 
 

 
 
 
 
 
 

 

Last lecture in 1 slide 

 P! (w |D) = (1" !)Pml (w |D)+ !P(w |!), ! #(0,1)

parameters control 
 amount of smoothing 

 

Pµ (w |D) =
c(w;D)+ µP(w |!)

c(w;D)+ µ
w
! , usually µ >100

The longer the document, the less smoothing is applied 

P(D |Q) = P(Q |D)! P(D)
P(Q)

P(Q |D) = P(qi |D)
qi"Q
#

central equations in 
language modeling 

can be reversed 
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Smoothing: an experimental study [5] 
Reminder: ad hoc TREC topic 

TREC 2001 Web adhoc topic 
<top>  
<num> Number: 503  
 
<title> Vikings in Scotland?  
 
<desc> Description: What hard evidence proves that 
the Vikings visited or lived in Scotland?  
 
<narr> Narrative: A document that merely states  
that the Vikings visited or lived in Scotland is not 
relevant. A relevant document must mention the  
source of the information, such as relics, sagas,  
runes or other records from those times.  
</top>  

title query 
(short query) 

descr. query 
(long query) 
rarely used. 

Information need 
description for 
assessors. 
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Language modeling 
Jelineck-Mercer smoothing [5] 

maximum smoothing  minimum smoothing  

av
er

ag
e 

pr
ec

is
io

n 

title queries 

T+D+N queries 

•  λ more sensitive for long queries 
•  Title queries: good λ=0.1 
•  Long queries: good λ=0.7 

long queries 
need more  
smoothing 

5 TREC corpora 

Source: [5] 
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Language modeling 
Dirichlet smoothing [5] 

maximum smoothing  minimum smoothing  

av
er

ag
e 

pr
ec

is
io

n 

title queries 

T+D+N queries 

•  µ more sensitive for long queries 
•  Optimal value similar for T/L queries 
•  Mostly µ=2000 

Source: [5] 
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Language modeling 

• On the Web (or elsewhere), several sources of information to 
estimate content models 
•  E.g. the content of the Web page + the anchor texts of all 

hyperlinks pointing to the document 
•  N potentially very different representations of the same document 

What about several sources of evidence? [6] 

 

P(D |Q)! P(D) (1" # " µ)P(qi( |!)+
i=1

n

$
#Pcontent (qi |D)+ µPanchor (qi |D ))
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Language modeling 

•  Smooth documents with a mixture of the document’s topical 
cluster and the corpus 

 
1.  Cluster model smoothed with corpus model 
2.  Document model is smoothed with smoothed cluster model 

• Retrieval effectiveness of cluster-based smoothing has been 
shown to improve upon standard LM 

•  Issue: parameter estimation of the clustering approaches 

Cluster-based retrieval [7] 

 

P(w |D) = (1! ")Pml (w |D)+
"[(1! # )Pml (w |Cluster)+ #P(w |!)],
with ",# $(0,1)
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Language modeling 

• The corpus documents need to be clustered 

•  2 step process 
•  Determine a suitable pairwise measure of document similarity (or 

distance) 
•  Group documents based on their similarity (distance) 
 

•  Popular similarity measures: cosine similarity, Dice & 
Jaccard coefficients, overlap coefficient, Kullback-Leibler 
divergence 

• Grouping: partitioning (e.g. k-means), hierarchical 
agglomerative clustering (e.g. single linkage) 

Cluster-based retrieval [7] 
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K-means clustering 
A short detour 

document 
space 

set k=3 centroids create clusters re-compute centroids cluster again 

iterate 

Goal: partition the N elements into k disjoint sets Sj with 
minimized sum of squares: xn ! µ j

n"Sj
#

j=1

k

#
2

Chapters 16 & 17 in 
the course book!! 
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Hierarchical agglomerative clustering 
A short detour 

document 
space 

every document 
is in its own cluster 

merge the two 
most similar 
clusters iteratively 

Single linkage: 
cluster similarity based 
On two most similar 
documents 

eventually 

…. 

cutoff point needs to be determined (when to stop merging) 
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Language modeling: P(D) 

•  So far: P(D) is assumed to be uniform 
•  Each document is equally likely to be drawn for a query 

• What can influence the probability of a document being 
relevant to an unseen query? 
•  Document length 
•  Document quality (PageRank, HITS, etc.) 
•  Document source (Wikipedia pages receive a high prior) 
•  Recency 
•  Language 
•  …. 

The document prior 
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A case study in language modeling: P(D) 

• Another TREC task: Entry page search 
•  Find an entry page (homepage) of an organisation 

• Ad hoc retrieval systems purely based on content perform 
poorly 

•  Priors (or other model components) can be 
•  Estimated from training data 
•  Defined based on some general modelling assumptions 

Kraaij et al. [6] 
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Language modeling: P(D) 

•  In ad hoc retrieval document length may be a prior 
•  The longer a document the higher Pdoclen(D)  

Kraaij et al. [6] 

document length, 
16 bins 

P(
D

) 

Based on such a plot, one can 
make the assumption: 

Pdoclen (D) = P(R |D) = C ! doclen(D)
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Language modeling: P(D) 

• What about page priors? Which ones might be successful? 
•  Page length? 
•  Number of web pages pointing to the target page? 
•  URL form? 

 

Kraaij et al. [6] 
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Language modeling: P(D) 

• What about page priors? Which ones might be successful? 
•  Page length? 
•  Number of web pages pointing to the target page? 
•  URL form? 

 

Kraaij et al. [6] 



22 Claudia Hauff, 2012 

Language modeling: P(D) 

• What about page priors? Which ones might be successful? 
•  Page length? 
•  Number of web pages pointing to the target page? 
•  URL form? 

 

Kraaij et al. [6] 
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Language modeling: P(D) 

• URL type 
•  Root: http://www.sigir.org 
•  Subroot: http://www.sigir.org/sigirlist 
•  Path: http://www.sigir.org/sigirlist/issues/ 
•  File: http://www.sigir.org/resources.html 
 

Kraaij et al. [6] 

URL type Entry page WT10g 

root 79 (73.1%)     12,258 (  0.7%) 

subroot 15 (13.9%)     37,959 (  2.2%) 

path   8 (  7.4%)     83,734 (  4.9%) 

file   6 (  5.6%) 1,557,719 (92.1%) 

P(Entry page | root) = 6.44 !10"3

P(Entry page | subroot) = 3.95 !10"4

P(Entry page | path) = 9.55 !10"5

P(Entry page | file) = 3.85 !10"6
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Mean Reciprocal Rank 

10. 

1. 
2. 

3. 

4. 
5. 

6. 

7. 
8. 

9. 

RR 0.01 1.0 0.33 0.0 0.5 

Q1 Q2 Q3 Q4 Q5 

One system, five queries. 

MRR=0.369 

1 
rank of relevant document RR= 

One relevant document 
per query. 
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Language modeling: P(D) 

• Results in MRR 

Kraaij et al. [6] 

Ranking Content (λ=0.1) Anchors (λ=0.1) 

P(Q|D) 0.3375    0.4188 

P(Q|D)Pdoclen(D) 0.2634     0.5600 

P(Q|D)PURL(D)  0.7705    0.6301 

P(Q|D)Pinlink(D)   0.4974 0.5365 

small amounts  
of smoothing 



26 Claudia Hauff, 2012 

Binary independence model���
and BM25(F) 
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Probability Ranking Principle 

• Theoretical basis for probabilistic IR 
•  Optimizes results for ad hoc retrieval 

• Ad hoc retrieval setup: 
•  Corpus, user query 
•  Wanted: a ranked list of documents 

•  In what order should the documents be retrieved? 
•  In LM we rank by P(q|d) 

 
• Binary notion of relevance 

•  indicator variable: RD,Q={0,1} 

Stephen Robertson 

relevant 
non-relevant 

no explicit notion 
of relevance in LM 
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Probability Ranking Principle 

• Retrieve documents in decreasing order of their estimated 
probability of relevance 
•  At each rank position i the system should select Di 

•  “If a reference retrieval system's response to each request is a ranking of the documents in the 

collection in order of decreasing probability of relevance to the user who submitted the request, where 

the probabilities are estimated as accurately as possible […], the overall effectiveness of the 

system to its user will be the best that is obtainable...” [2] 

 
 

Stephen Robertson 

retrieved documents 

Di = argmax
D!RE \RA

P(RD,Q = 1|D,Q)

ranked documents 
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Probability Ranking Principle 

• Bayes optimal decision rule for set retrieval (in place of 
ranked retrieval) 

 
•  PRP assumptions 

•  Each document’s relevance is independent of all other relevance 
assessments 

•  High accuracy in the probability of relevance 
 

•  Question: how to estimate P(R=1|D,Q) and P(R=0|D,Q) 

Stephen Robertson 

D is relevant iff P(R = 1|D,Q) > P(R = 0 |D,Q)
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Binary independence model (BIM) 

• Classic model used with PRP 

•  Simplifying assumptions to make modeling P(R|D,Q) feasible 

• The “binary” in BIM: documents and queries as binary term 
incidence vectors 

• The “independence” in BIM: terms are modeled as occuring 
independently in documents  

• Terms not appearing in the query do not affect the ranking 

 D as !x = (x1, x2,..., xM ), where xi = {0,1}
many documents 
with the same 
representation 
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Binary independence model (BIM) 

•  P(R|D,Q) modeled with incidence vectors 

 

P(R = 1| !x, !q) = P(
!x | R = 1, !q)P(R = 1| !q)

P(!x | !q)

P(R = 0 | !x, !q) = P(
!x | R = 0, !q)P(R = 0 | !q)

P(!x | !q)

Bayes rule 

probability that if a relevant/non-relevant 
document is retrieved, its document 
representation is 
(from the space of all possible documents) 

 
!x

How to compute? 
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Binary independence model (BIM) 

•  P(R|D,Q) modeled with incidence vectors 

 

P(R = 1| !x, !q) = P(
!x | R = 1, !q)P(R = 1| !q)

P(!x | !q)

P(R = 0 | !x, !q) = P(
!x | R = 0, !q)P(R = 0 | !q)

P(!x | !q)

Prior probability of retrieving a relevant/
non-relevant document given a query  

 P(R = 1| !x, !q)+ P(R = 0 | !x, !q) = 1

Easy to compute if we 
knew the total number 
of relevant documents 
in the corpus 
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Binary independence model (BIM) 

• We are interested in a ranking of documents  P(R=1|D,Q) is 
difficult to determine, use easier to compute quantities which 
result in the same ordering 

• Rank documents by the odds of relevance 

 

O(R | !x, !q) = P(R = 1| !x, !q)
P(R = 0 | !x, !q)

=

P(R = 1| !q)P(!x | R = 1, !q)
P(!x | !q)

P(R = 0 | !q)P(!x | R = 0, !q)
P(!x | !q)

= P(R = 1| !q)
P(R = 0 | !q)

! P(!x | R = 1, !q)
P(!x | R = 0, !q)constant given Q 
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Binary independence model (BIM) 

• We are left with: 

•  In odds notation: 

 

 

P(!x | R = 1, !q)
P(!x | R = 0, !q)

= P(xt | R = 1, !q)
P(xt | R = 0, !q)t=1

M

!

term independence assumption 

 

O(R | !x, !q) =O(R | !q)! P(xt | R = 1, !q)
P(xt | R = 0, !q)t=1

M

"

=O(R | !q)! P(xt | R = 1, !q)
P(xt | R = 0, !q)t:xt=1

M

" ! P(xt | R = 1, !q)
P(xt | R = 0, !q)t:xt=0

M

"

separate terms occurring 
and not occurring in the 
document 
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Binary independence model (BIM) 

•  Let: 

• Add another assumption: terms not occurring in the query 
are equally likely in both classes 

•  Simplifies the odds equation further 

 

 

pt = P(xt = 1| R = 1, !q)
ut = P(xt = 1| R = 0, !q)

probability of a term occurring  
in a R={0,1} document 

if qt = 0 then pt = ut

 
O(R | !x, !q) =O(R | !q)! pt

utt:xt=qt=1
" ! 1# pt

1# utt:xt=0,qt=1
"

query terms 
found in D 

query terms not 
found in D 
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Binary independence model (BIM) 

•  Another reformulation (right side now over all query terms) 

•  Rank documents according to the retrieval status value (RSV) 
 

 
O(R | !x, !q) =O(R | !q)! pt (1" ut )

ut (1" pt )t:xt=qt=1
# ! 1" pt

1" utt:qt=1
#

constant for a  
given query 

left to estimate to 
rank the documents 

RSVD = log pt (1! ut )
ut (1! pt )t:xt=qt=1

" = log pt (1! ut )
ut (1! pt )t:xt=qt=1

#
Log is monotonic! 
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Binary independence model (BIM) 

•  Reformulate! 

•  ct=0 if term t is equally likely to appear in relevant and non-
relevant documents 

•  ct >0 if t is more likely to appear in relevant documents 
•  ct <0 if t is more likely to appear in non-relevant documents 

 

ct = log
pt (1! ut )
ut (1! pt )

= log pt
(1! pt )

+ log1! ut
ut

odds of the term appearing 
if the document is relevant 

odds of the term appearing 
if the document is non-relevant 
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Binary independence model (BIM) 

•  Estimate ct for a given corpus and query 
•  Assume we know the number of relevant documents (S) 
 

documents relevant non-relevant total 

term present xt=1 s dft-s dft 
term absent xt=0 S-s (N-dft)-(S-s) N-dft 

total S N-S N 

pt = s / S and ut = (dft ! s) / (N ! S)

ct = log
s / (S ! s)

(dft ! s) / ((N ! dft )! (S ! s))

+0.5 +0.5 

+0.5 +0.5 

smoothing 
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Binary independence model (BIM) 

• Very few relevant documents usually exist (e.g. 3 documents 
out of 7 million documents in our Wikipedia corpus) 

•  Estimate the probabilities across all documents in the corpus 

 

 

In practice: probabilities for the non-relevant components 

ut = log
1! ut
ut

= log N ! dft
dft

" log N
dft

theoretical 
justification for IDF 
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Binary independence model (BIM) 

• Many variations, usually difficult to estimate accurately 
 
• Croft & Harper (1979) 

•  Assume pt=0.5 and let it be constant for all query terms 
•  Equally likely to appear in relevant/non-relevant documents 
•  In effect, the documents are ranked by the query terms 

occurring in the documents scaled by their IDF weighting 
•  Weak estimate, but can be useful 

•  Short documents (titles, paper abstracts) 

In practice: probabilities for the non-relevant components 
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Binary independence model (BIM) 

• Many variations, usually difficult to estimate accurately 
 
• Greiff (1998) 

•  Empirical observation: pt rises with dft (just think about 
stopwords) 

•  Proposal: 

In practice: probabilities for the non-relevant components 

pt =
1
3
+ 2
3
! dft
N
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Binary independence model (BIM) 

• Many variations, usually difficult to estimate accurately 
 
•  If a few relevant documents are known, the probabilities can 

be estimated across those 
•  Relevance feedback 
•  Effectiveness dependent on the number of relevant documents 

and the document content (typical for the class of relevant 
documents?) 

In practice: probabilities for the relevant components 
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Binary independence model (BIM) 

1.  Guess pt and ut 
2.  Retrieve a set of candidate relevant documents (based on 

our initial estimates) 
3.  The user judges a few documents as relevant (VR) and 

non-relevant (VNR) 
4.  Revise the model from the judgments 

5.  Re-estimate pt and ut via Bayesian updating, e.g. 

6.  Repeat from step 2 

In practice: iterative (pseudo)-relevance feedback 

VR = {D!V ,RD,Q = 1}" R, VNR = {D!V ,RD,Q = 0}

pt
(k+1) =

VRt +! pt
(k )

VR +! pt =
VRt +

1
2

VR +1

simpler: 
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Okapi BM25 

•  In the early years, PRP &BIM 
•  Offered a good theoretical justification 
•  Required partial relevance judgments 
•  Without such judgments, degrades to adhoc term weighting 

models (e.g. IDF) 

• This changed with the development of BM25 
•  High retrieval effectiveness 
•  Today still used as a baseline in research 

• BIM neither includes term frequencies nor document length 
•  Okapi BM25 does! 
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Okapi BM25 
Development of the scoring function 

RSVD = log N ! dft + 0.5
dft + 0.5t"Q

#

RSVD = log N ! dft + 0.5
dft + 0.5

$
(k1 +1)tft ,D

k1((1! b)+ b $ (LD / Lav ))+ tft ,Dt"Q
#

include tf and document length 

document  
length 

av. document 
length in corpus 

positive tuning value 
k1=0:   binary model 
k1>>0: raw tf values 

scaling by document length 
b=0: no normalization 
b=1: full normalization 
b![0,1]

N ! dft + 0.5
dft + 0.5

can be negative; 
floor to zero! 
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Okapi BM25 
Long queries: query term weighting 

RSVD = log N
dft

!
(k1 +1)tft ,D

k1((1" b)+ b ! (LD / Lav ))+ tft ,Dt#Q
$ !

(k3 +1)tft ,Q
k3 + tft ,Q

TREC 2001 Web adhoc topic 
Narrative: A document that merely states  
that the Vikings visited or lived in Scotland is not 
relevant. A relevant document must mention the  
source of the information, such as relics, sagas,  
runes or other records from those times. 

positive tuning value 

length normalization unnecessary 

Parameter settings 
Ideally: use separate train/test collections 
Often:  k1,k3 ![1.2,2], b = 0.75
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Empirical comparison 

•  3 TREC corpora, reported is Mean Average Precision 
 

TF.IDF, BM25 and LM with Dirichlet smoothing 

queries TF.IDF Okapi LM (µ=1000) 

TREC Vol. 4+5 301-350 

351-400 

401-450 

WT10g 451-500 

501-550 

GOV2 701-750 

751-800 

801-850 

0.5M docs 
Av. length: 266 
News articles 

1.7M docs 
Av. length: 378 
Web 

25.2M docs 
Av. length: 665 
Web 
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Empirical comparison 

•  3 TREC corpora, reported is Mean Average Precision 
 

TF.IDF, BM25 and LM with Dirichlet smoothing 

queries TF.IDF Okapi LM (µ=1000) 

TREC Vol. 4+5 301-350 0.109 

351-400 0.073 

401-450 0.088 

WT10g 451-500 0.055 

501-550 0.061 

GOV2 701-750 0.029 

751-800 0.036 

801-850 0.023 

0.5M docs 
Av. length: 266 
News articles 

1.7M docs 
Av. length: 378 
Web 

25.2M docs 
Av. length: 665 
Web 
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Empirical comparison 

•  3 TREC corpora, reported is Mean Average Precision 
 

TF.IDF, BM25 and LM with Dirichlet smoothing 

queries TF.IDF Okapi LM (µ=1000) 

TREC Vol. 4+5 301-350 0.109 0.218 

351-400 0.073 0.176 

401-450 0.088 0.223 

WT10g 451-500 0.055 0.183 

501-550 0.061 0.163 

GOV2 701-750 0.029 0.230 

751-800 0.036 0.296 

801-850 0.023 0.250 

0.5M docs 
Av. length: 266 
News articles 

1.7M docs 
Av. length: 378 
Web 

25.2M docs 
Av. length: 665 
Web 
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Empirical comparison 

•  3 TREC corpora, reported is Mean Average Precision 
 

TF.IDF, BM25 and LM with Dirichlet smoothing 

queries TF.IDF Okapi LM (µ=1000) 

TREC Vol. 4+5 301-350 0.109 0.218 0.226 

351-400 0.073 0.176 0.187 

401-450 0.088 0.223 0.245 

WT10g 451-500 0.055 0.183 0.207 

501-550 0.061 0.163 0.180 

GOV2 701-750 0.029 0.230 0.269 

751-800 0.036 0.296 0.324 

801-850 0.023 0.250 0.297 

0.5M docs 
Av. length: 266 
News articles 

1.7M docs 
Av. length: 378 
Web 

25.2M docs 
Av. length: 665 
Web 
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BM25F 
Extending BM25 to document fields [8] 

<page> 
     <title>Anarchism</title> 
     <id>12</id> 

 <contributor> 
          <username>Skomorokh</username> 
          <id>1749684</id> 
       </contributor> 
       <comment> 

  /* External links */ partial reversion - we don't  
  link to forums per [[WP:EL]] 
 </comment> 

       <text xml:space="preserve"> 
  '''Anarchism''' is a [[political philosophy]] encompassing 
  theories and attitudes which support the elimination of all … 
 </text> 

</page> 
 

important 

unimportant 

potentially 
useful 
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BM25F 

• Textual data often found in some sort of structural form 
• Retrieval effectiveness can be improved by taking the 

structure into account 

•  Simple solution: calculate score for each field and combine 
them linearly 

 

Extending BM25 to document fields [8] 

RSVD = vf
k=1

K

! " RSVDf

Source: [8] 
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BM25F 

• Textual data often found in some sort of structural form 
• Retrieval effectiveness can be improved by taking the 

structure into account 

•  Simple solution: calculate score for each field and combine 
them linearly 

 

Extending BM25 to document fields [8] 

RSVD = vf
k=1

K

! " RSVDf

tft(body)=2 
tft(title) =1 
 
w(body)=1 
w(title) =2 

BM
25

 

Source: [8] 
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BM25F 

• Textual data often found in some sort of structural form 
• Retrieval effectiveness can be improved by taking the 

structure into account 

•  Simple solution: calculate score for each field and combine 
them in a linear fashion: 

• TF usually non-linear: information gained by observing a term 
for the first time is greater than observing subsequent 
occurrences 
•  Linear combination of scores breaks this relation 

Extending BM25 to document fields [8] 

RSVD = vf
k=1

K

! " RSVDf



55 Claudia Hauff, 2012 

BM25F 

• Undesirable effects of linear combination 
•  A document matching a single query term over several fields can 

score much higher than a document matching several query 
terms 

•  Term weights need to be kept small to preserve term 
dependence (e.g. a weight of 0.1 for title would bring raw and 
ScoreComb closer together) 

 
• What about the IDF component? 

•  If corpus statistics are computed per field, IDF can vary highly in 
different fields (e.g. stopwords scoring highly in the title field) 

•  Extensive parameter tuning necessary (per field) 

Extending BM25 to document fields [8] 
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BM25F 

•  Solution: term frequency combination 
•  Map the structured collection into unstructured space with 

modified term frequencies: combine original term frequencies in 
the different fields in a weighted manner 

•  Rank in the usual manner 

Extending BM25 to document fields [8] 

<page> 
     <title>Anarchism</title> 

 <text xml:space="preserve"> 
  '''Anarchism''' is a [[political 
  philosophy]] encompassing 
  theories and attitudes which 
  support the elimination of all … 
 </text> 

</page> 
 

<page> 
     Anarchism Anarchism Anarchism Anarchism  

 '''Anarchism''' is a [[political philosophy]] encompassing 
 theories and attitudes which support the elimination 
 of all … 
 '''Anarchism''' is a [[political philosophy]] encompassing 
 theories and attitudes which support the elimination 
 of all … 

</page> 
 

w(title)=4, w(body)=2 
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Evaluation 
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Task-dependent evaluation 

•  Query: homepage TU Delft 
•  Navigational 
•  ~1 relevant entry page 

•  Query: TU Delft world-wide university ranking 
•  Informational query 
•  N relevant Web pages, retrieving some is good enough 

•  It would also be beneficial to retrieve diverse results * 
•  Query: TU Delft patents nano-technology 

•  Informational 
•  N relevant patents, retrieving all is important 

•  Query: successful treatment of Newcastle disease 
•  Informational 
•  N relevant Web pages, retrieving all is important 

 

 

Evaluation is an ongoing 
research topic. 

Broder’s query 
classification: 
•  Navigational 
•  Informational 
•  Transactional 

(buy house”) 
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Mean Average Precision 

10. 

1. 
2. 

3. 

4. 
5. 

6. 

7. 
8. 

9. 

Given a set of queries, 
the average effectiveness 
is the mean over AvP. 

AvP 0.13 1.0 0.09 0.0 0.3 

Q1 Q2 Q3 Q4 Q5 

One system, five queries. 

MAP=0.364 

MAP = 1
Q

P@k ! rel(k)
k=1

s

"
RQ#Q

"
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GMAP 

• A measure designed to highlight 
improvements for low-performing topics 

• Geometric mean of per-topic average 
precision values 

GMAP = APn
n
!n , n is # topics

= exp 1
n

logAPn
n
"

Geometric mean average precision 

1. 
2. 

3. 

4. 
5. 

S1 S2 

0.60 
0.20 

0.01 

0.04 
0.90 

0.58 
0.18 

0.03 

0.06 
0.90 

MAP  =0.350 
GMAP=0.134 

Two systems, five queries. 
AP values shown. 

MAP  =0.350 
GMAP=0.176 
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bpref 

S1 S2 S3 S4 S5 

query 

pool 

original systems 

Snew 

Traditional measures: 
not judged == non-relevant 
(biased against new systems) 

bpref: considers only judged 
documents (rel./non-rel.) 

bpref = 1
R

1!
n ranked higher than r

R
"
#$

%
&'r

(

R #judged relevant 
N #judged non-relevant 
r relevant retrieved document 
n member of the first R judged 
   non-relevant documents as 
   retrieved by the system 

Buckley & Voorhees, 2004 
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bpref 

bpref = 1
R

1!
n ranked higher than r

R
"
#$

%
&'r

(

assume R = 20

Snew1 

0.170   0.1825       

Snew2 
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Evaluation: points to remember 

•  Evaluation is not straight-forward 

•  Still researched today 

• The task is paramount to the correct choice of 
evaluation measure 
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Sources 

①  Introduction to Information Retrieval. Manning et al. 2008 
②  Information retrieval. Keith van Rijsbergen, 1979 
③  Managing gigabytes, Witten et al. 
④  The probability ranking principle in IR, S.E. Robertson, 1977 
⑤  A study of smoothing methods for language models applied to ad 

hoc information retrieval. Zhai & Lafferty. 2001. 
⑥  The importance of prior probabilities for entry page search. Kraaij 

et al. 2002. 
⑦  Cluster-based retrieval using language models. Liu & Croft, 2004. 
⑧  Simple BM25 extension to multiple weighted fields. Robertson et 

al. 2004. 
⑨  Cumulated gain-based evaluation of IR techniques. Järvelin & 

Kekäläinen. 2002 


