Retrieval models III & Evaluation

IN4325 – Information Retrieval

General feedback on assignment 1

Some groups got on well

- Some struggled with AWS
 - Others did not mention the AWS experiments at all in their report **
- Some did not report the required numbers (results on small test corpus required, no new AWS experiments)
 - Some reported all numbers, but did not specify which corpus they were referring to (small/large would be a good distinction)
 - Some only reported the numbers on the large corpus
- Some did not include the source code (*.class only)

Assignment II

small: \$0.095 / hour xlarge: \$0.76 / hour

• Assignment I cost \$1400 (we have \$3500 in total)

- xlarge instances are expensive
- Now everything on max. 8 instances of **m1.small**
 - ~1 hour
- Hints for assignment II
 - Can be done in one pass
 - Queries can be "hardcoded" into the Mapper / more principled: DistributedCache
 - Use a combiner (very important when emitting a lot of (key,value) pairs)

Assignment II

• Hints for assignment II cont.

- Performance may be very low (depends on normalizing steps taken)
- Test queries are available now on the website:
 - http://www.st.ewi.tudelft.nl/~hauff/IN4325/
- Trec_eval can be used to calculate MAP: <u>http://trec.nist.gov/trec_eval/</u>
- Example index will be made available on S3 today
 - Check <u>http://www.st.ewi.tudelft.nl/~hauff/IN4325/</u>

Today

- Language modeling
 - More about smoothing
 - Document priors
- Binary independence model
- BM25
- More about evaluations

Probabilistic models in IR

Language modeling
Last lecture in r slide
$$P(D | Q) = \frac{P(Q | D) \times P(D)}{P(Q)}$$

$$P(Q | D) = \prod_{q_i \in Q} P(q_i | D)$$
central equations in
language modeling
$$P_{\lambda}(w | D) = (1 - \lambda)P_{ml}(w | D) + \lambda P(w | \mathbb{C}), \quad \lambda \in (0, 1)$$
can be reversed
parameters control

• Dirichlet smoothing

$$P_{\mu}(w \mid D) = \frac{c(w; D) + \mu P(w \mid \mathbb{C})}{\sum_{w} c(w; D) + \mu}, \text{ usually } \mu > 100$$

 \rightarrow The longer the document, the less smoothing is applied

amount of smoothing

Smoothing: an experimental study [5]

Reminder: ad hoc TREC topic

TREC 2001 Web adhoc topic

<top> <num> Number: 503

<title> Vikings in Scotland?

<desc> Description: What hard evidence proves that the Vikings visited or lived in Scotland?

<narr> Narrative: A document that merely states that the Vikings visited or lived in Scotland is not relevant. A relevant document must mention the source of the information, such as relics, sagas, runes or other records from those times. </top>

5 TREC corpora

Language modeling

Jelineck-Mercer smoothing [5]

- λ more sensitive for long queries
- Title queries: good $\lambda = 0.1$
- Long queries: good $\lambda = 0.7$

What about several sources of evidence? [6]

- On the Web (or elsewhere), several sources of information to estimate content models
 - E.g. the content of the Web page + the anchor texts of all hyperlinks pointing to the document
 - N potentially very different representations of the same document

Cluster-based retrieval [7]

 Smooth documents with a mixture of the document's topical cluster and the corpus

$$P(w \mid D) = (1 - \lambda)P_{ml}(w \mid D) + \lambda[(1 - \beta)P_{ml}(w \mid Cluster) + \beta P(w \mid \mathbb{C})],$$

with $\lambda, \beta \in (0, 1)$

- 1. Cluster model smoothed with corpus model
- 2. Document model is smoothed with smoothed cluster model
- Retrieval effectiveness of cluster-based smoothing has been shown to improve upon standard LM
- Issue: parameter estimation of the clustering approaches

Cluster-based retrieval [7]

- The corpus documents need to be clustered
- 2 step process
 - Determine a suitable pairwise measure of document similarity (or distance)
 - Group documents based on their similarity (distance)
- Popular similarity measures: cosine similarity, Dice & Jaccard coefficients, overlap coefficient, Kullback-Leibler divergence
- Grouping: partitioning (e.g. k-means), hierarchical agglomerative clustering (e.g. single linkage)

Goal: partition the *N* elements into *k* disjoint sets S_j with minimized sum of squares: $\sum_{k=1}^{k} \sum_{j=1}^{k} |x_n - \mu_j|^2$

 $j=1 n \in S$

Hierarchical agglomerative clustering A short detour

cutoff point needs to be determined (when to stop merging)

$Language \ modeling: P(D)$

The document prior

• So far: *P*(*D*) is assumed to be uniform

- Each document is equally likely to be drawn for a query
- What can influence the probability of a document being relevant to an unseen query?
 - Document length
 - Document quality (PageRank, HITS, etc.)
 - Document source (Wikipedia pages receive a high prior)
 - Recency
 - Language
 -

A case study in language modeling: P(D)Kraaij et al. [6]

• Another TREC task: Entry page search

- Find an entry page (homepage) of an organisation
- Ad hoc retrieval systems purely based on content perform poorly
- Priors (or other model components) can be
 - Estimated from training data
 - Defined based on some general modelling assumptions

$Language \ modeling: P(D)$

Kraaij et al. [6]

Figure 1: Prior probability of relevance given document length on the Ad Hoc task

$Language \ modeling: P(D)$

Kraaij et al. [6]

• What about page priors? Which ones might be successful?

- Page length?
- Number of web pages pointing to the target page?
- URL form?

Language modeling: P(D) Kraaij et al. [6]

Figure 2: Prior probability of relevance given document length on the Entry Page task (*P(entry page|doclen)*)

Figure 2: Prior probability of relevance given document length on the Entry Page task $(P(entry \ page|doclen))$

$Language \ modeling: \ P(D)$

Kraaij et al. [6]

URL type

- Root: <u>http://www.sigir.org</u>
- Subroot: <u>http://www.sigir.org/sigirlist</u>
- Path: <u>http://www.sigir.org/sigirlist/issues/</u>
- File: <u>http://www.sigir.org/resources.html</u>

 $P(Entry page | root) = 6.44 \times 10^{-3}$ $P(Entry page | subroot) = 3.95 \times 10^{-4}$ $P(Entry page | path) = 9.55 \times 10^{-5}$ $P(Entry page | file) = 3.85 \times 10^{-6}$

URL type	Entry page	WT10g
root	79 (73.1%)	12,258(0.7%)
subroot	15 (13.9%)	37,959(2.2%)
path	8 (7.4%)	83,734(4.9%)
file	6 (5.6%)	1,557,719 (92.1%)

Language modeling: P(D)

Kraaij et al. [6]

• Results in MRR

small amounts of smoothing

Ranking	Content (λ =0.1)	Anchors (λ =0.1)
P(Q D)	0.3375	0.4188
$P(Q D)P_{doclen}(D)$	0.2634	0.5600
$P(Q D)P_{URL}(D)$	0.7705	0.6301
$P(Q D)P_{inlink}(D)$	0.4974	0.5365

Binary independence model and BM25(F)

Probability Ranking Principle

Stephen Robertson

- Theoretical basis for probabilistic IR
 - Optimizes results for ad hoc retrieval
- Ad hoc retrieval setup:
 - Corpus, user query
 - Wanted: a ranked list of documents
- In what order should the documents be retrieved?
 - In LM we rank by P(q|d)

no explicit notion of relevance in LM

- Binary notion of relevance
 - indicator variable: $R_{D,O} = \{0, 1\}$

relevant non-relevant

Probability Ranking Principle

Stephen Robertson

- Retrieve documents in decreasing order of their estimated probability of relevance
 - At each rank position i the system should select D_i

$$D_{i} = \underset{\substack{D \in RE \setminus RA}{P(R_{D,Q} = 1 \mid D,Q)}{P(R_{D,Q} = 1 \mid D,Q)}$$

retrieved documents ranked documents

• "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request, where the **probabilities are estimated as accurately as possible** [...], the overall effectiveness of the system to its user will be **the best that is obtainable**..." [2]

Probability Ranking Principle

Stephen Robertson

 Bayes optimal decision rule for set retrieval (in place of ranked retrieval)

D is relevant iff P(R=1|D,Q) > P(R=0|D,Q)

- PRP assumptions
 - Each document's relevance is independent of all other relevance assessments
 - High accuracy in the probability of relevance
- Question: how to estimate P(R=1|D,Q) and P(R=0|D,Q)

- Classic model used with PRP
- Simplifying assumptions to make modeling P(R|D,Q) feasible
- The "binary" in BIM: documents and queries as binary term incidence vectors

D as
$$\vec{x} = (x_1, x_2, ..., x_M)$$
, where $x_i = \{0, 1\}$

many documents with the same representation

- The "independence" in BIM: terms are modeled as occuring independently in documents
- Terms not appearing in the query do not affect the ranking

• *P*(*R*|*D*,*Q*) modeled with incidence vectors

$$P(R = 1 | \vec{x}, \vec{q}) = \frac{P(\vec{x} | R = 1, \vec{q}) P(R = 1 | \vec{q})}{P(\vec{x} | \vec{q})}$$
Bayes rule
$$P(R = 0 | \vec{x}, \vec{q}) = \frac{P(\vec{x} | R = 0, \vec{q}) P(R = 0 | \vec{q})}{P(\vec{x} | \vec{q})}$$
How to compute?
How to compute?
$$P(\vec{x} | \vec{q})$$
probability that if a relevant/non-relevant document is retrieved, its document representation is \vec{x} (from the space of all possible documents)

• *P*(*R*|*D*,*Q*) modeled with incidence vectors

$$P(R = 1 | \vec{x}, \vec{q}) = \frac{P(\vec{x} | R = 1, \vec{q}) P(R = 1 | \vec{q})}{P(\vec{x} | \vec{q})}$$
$$P(R = 0 | \vec{x}, \vec{q}) = \frac{P(\vec{x} | R = 0, \vec{q}) P(R = 0 | \vec{q})}{P(\vec{x} | \vec{q})}$$

Prior probability of retrieving a relevant/ non-relevant document given a query

Easy to compute if we knew the total number of relevant documents in the corpus

$$P(R=1 \mid \vec{x}, \vec{q}) + P(R=0 \mid \vec{x}, \vec{q}) = 1$$

- We are interested in a ranking of documents → P(R=1|D,Q) is difficult to determine, use easier to compute quantities which result in the same ordering
- Rank documents by the odds of relevance

$$O(R \mid \vec{x}, \vec{q}) = \frac{P(R = 1 \mid \vec{x}, \vec{q})}{P(R = 0 \mid \vec{x}, \vec{q})} = \frac{\frac{P(R = 1 \mid \vec{q})P(\vec{x} \mid R = 1, \vec{q})}{P(R = 0 \mid \vec{q})P(\vec{x} \mid R = 0, \vec{q})}}{\frac{P(\vec{x} \mid \vec{q})}{P(\vec{x} \mid \vec{q})}}$$

constant given $Q = \frac{P(R = 1 \mid \vec{q})P(\vec{x} \mid R = 1, \vec{q})}{P(R = 0 \mid \vec{q})P(\vec{x} \mid R = 0, \vec{q})} \times \frac{P(\vec{x} \mid R = 1, \vec{q})}{P(\vec{x} \mid R = 0, \vec{q})}$

• We are left with:

term independence assumption

$$\frac{P(\vec{x} \mid R = 1, \vec{q})}{P(\vec{x} \mid R = 0, \vec{q})} = \prod_{t=1}^{M} \frac{P(x_t \mid R = 1, \vec{q})}{P(x_t \mid R = 0, \vec{q})}$$

• In odds notation:

$$O(R \mid \vec{x}, \vec{q}) = O(R \mid \vec{q}) \times \prod_{t=1}^{M} \frac{P(x_t \mid R = 1, \vec{q})}{P(x_t \mid R = 0, \vec{q})}$$

$$= O(R \mid \vec{q}) \times \prod_{t=1}^{M} \frac{P(x_t \mid R = 1, \vec{q})}{P(x_t \mid R = 1, \vec{q})} \times \prod_{t=1}^{M} \frac{P(x_t \mid R = 1, \vec{q})}{P(x_t \mid R = 0, \vec{q})} \times \prod_{t=1}^{M} \frac{P(x_t \mid R = 1, \vec{q})}{P(x_t \mid R = 0, \vec{q})}$$
separate terms occurring and not occurring in the document

• Let:

$$p_t = P(x_t = 1 | R = 1, \vec{q})$$

$$u_t = P(x_t = 1 | R = 0, \vec{q})$$

probability of a term occurring in a $R = \{0, 1\}$ document

 Add another assumption: terms not occurring in the query are equally likely in both classes

if $q_t = 0$ then $p_t = u_t$ • Simplifies the odds equation further $O(R \mid \vec{x}, \vec{q}) = O(R \mid \vec{q}) \times \prod_{t:x_t = q_t = 1} \frac{p_t}{u_t} \times \prod_{t:x_t = 0, q_t = 1} \frac{1 - p_t}{1 - u_t}$ query terms not found in Dquery terms not found in D

• Another reformulation (right side now over all query terms)

constant for a given query

$$O(R \mid \vec{x}, \vec{q}) = O(R \mid \vec{q}) \times \prod_{t:x_t = q_t = 1} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} \times \prod_{t:q_t = 1} \frac{1 - p_t}{1 - u_t}$$

left to estimate to rank the documents
• Rank documents according to the **retrieval status value** (RSV)
$$RSV_D = \log \prod_{t:x_t = q_t = 1}^{n} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} = \sum_{t:x_t = q_t = 1} \log \frac{p_t(1 - u_t)}{u_t(1 - p_t)}$$

Log is monotonic!

TUDelft

• Reformulate!

$$c_{t} = \log \frac{p_{t}(1 - u_{t})}{u_{t}(1 - p_{t})} = \log \frac{p_{t}}{(1 - p_{t})} + \log \frac{1 - u_{t}}{u_{t}}$$

odds of the term appearing
if the document is relevant odds of the term appearing
if the document is non-relevant

- c_t=0 if term t is equally likely to appear in relevant and non-relevant documents
- $c_t > 0$ if t is more likely to appear in relevant documents
- $c_t < 0$ if t is more likely to appear in non-relevant documents

• Estimate c_t for a given corpus and query

• Assume we know the number of relevant documents (*S*)

	documents	relevant	non-relevant	total
term present	$x_t = l$	S	df_t -s	df_t
term absent	$x_t=0$	S-s	$(N-df_t)-(S-s)$	N - df_t
	total	S	N-S	N

$$p_t = s / S \text{ and } u_t = (df_t - s) / (N - S)$$

$$c_{t} = \log \frac{\frac{+0.5 + 0.5}{s/(S-s)}}{\frac{(df_{t} - s)/((N - df_{t}) - (S-s))}{+0.5 + 0.5}}$$
smoothin

g

In practice: probabilities for the non-relevant components

- Very few relevant documents usually exist (e.g. 3 documents out of 7 million documents in our Wikipedia corpus)
- Estimate the probabilities across all documents in the corpus

$$u_t = \log \frac{1 - u_t}{u_t} = \log \frac{N - df_t}{df_t} \approx \log \frac{N}{df_t}$$

theoretical justification for IDF

In practice: probabilities for the non-relevant components

- Many variations, usually difficult to estimate accurately
- Croft & Harper (1979)
 - Assume $p_t=0.5$ and let it be constant for all query terms
 - Equally likely to appear in relevant/non-relevant documents
 - In effect, the documents are ranked by the query terms occurring in the documents scaled by their IDF weighting
 - Weak estimate, but can be useful
 - Short documents (titles, paper abstracts)

In practice: probabilities for the non-relevant components

- Many variations, usually difficult to estimate accurately
- Greiff (1998)
 - Empirical observation: p_t rises with df_t (just think about stopwords)
 - Proposal:

$$p_t = \frac{1}{3} + \frac{2}{3} \times \frac{df_t}{N}$$

In practice: probabilities for the relevant components

- Many variations, usually difficult to estimate accurately
- If a few relevant documents are known, the probabilities can be estimated across those
 - Relevance feedback
 - Effectiveness dependent on the number of relevant documents and the document content (typical for the class of relevant documents?)

In practice: iterative (pseudo)-relevance feedback

- 1. Guess p_t and u_t
- 2. Retrieve a set of candidate relevant documents (based on our initial estimates)
- 3. The user judges **a few** documents as relevant (*VR*) and non-relevant (*VNR*)
- 4. Revise the model from the judgments

$$VR = \{ D \in V, R_{D,Q} = 1 \} \subset R, VNR = \{ D \in V, R_{D,Q} = 0 \}$$

5. Re-estimate p_t and u_t via Bayesian updating, e.g. $|VR| + \kappa n^{(k)}$

$$p_t^{(k+1)} = \frac{|VK_t| + \kappa p_t}{|VR| + \kappa}$$

6. Repeat from step 2

simpler: $p_t = \frac{|VR_t| + \frac{1}{2}}{|VR| + 1}$

Okapi BM25

• In the early years, PRP & BIM

- Offered a good theoretical justification
- Required partial relevance judgments
- Without such judgments, degrades to adhoc term weighting models (e.g. IDF)
- This changed with the development of BM25
 - High retrieval effectiveness
 - Today still used as a baseline in research
- BIM neither includes term frequencies nor document length
 - Okapi BM25 does!

 $\frac{N - df_t + 0.5}{df_t + 0.5}$ can be negative; floor to zero!

Development of the scoring function

include tf and document length $RSV_D = \sum_{t \in Q} \log \frac{N - df_t + 0.5}{df_t + 0.5}$ $RSV_{D} = \sum_{t \in Q} \log \frac{N - df_{t} + 0.5}{df_{t} + 0.5} \times \frac{(k_{1} + 1)tf_{t,D}}{k_{1}((1 - b) + b \times (L_{D} / L_{av})) + tf_{t,D}}$ document av. document positive tuning value length in corpus length $k_1 = 0$: binary model $k_1 >> 0$: raw tf values scaling by document length b=0: no normalization b=1: full normalization $b \in [0,1]$

Okapi BM25

Long queries: query term weighting

$$RSV_{D} = \sum_{t \in Q} \log \frac{N}{df_{t}} \times \frac{(k_{1} + 1)tf_{t,D}}{k_{1}((1 - b) + b \times (L_{D} / L_{av})) + tf_{t,D}}$$

$$\times \frac{(k_3 + 1)tf_{t,Q}}{k_3 + tf_{t,Q}}$$

length normalization unnecessary

TREC 2001 Web adhoc topic

Narrative: A document that merely states that the Vikings visited or lived in Scotland is not relevant. A relevant document must mention the source of the information, such as relics, sagas, runes or other records from those times.

positive tuning value

Parameter settings

Ideally: use separate train/test collections Often: $k_1, k_3 \in [1.2, 2], b = 0.75$

TF.IDF, BM25 and LM with Dirichlet smoothing

• 3 TREC corpora, reported is Mean Average Precision

		queries	TF.IDF	Okapi	LM (µ=1000)
0.5M docs	TREC Vol. 4+5	301-350			
Av. length: 266		351-400			
News articles		401-450			
1.7M docs Av. length: 378 Web	WT10g	451-500			
		501-550			
25.2M docs Av. length: 665 Web	GOV2	701-750			
		751-800			
		801-850			

0

Α

TF.IDF, BM25 and LM with Dirichlet smoothing

• 3 TREC corpora, reported is Mean Average Precision

		queries	TF.IDF	Okapi	LM (µ=1000)
0.5M docs	TREC Vol. 4+5	301-350	0.109		
Av. length: 266		351-400	0.073		
news articles		401-450	0.088		
1.7M docs Av. length: 378 Web	WT10g	451-500	0.055		
		501-550	0.061		
25.2M docs Av. length: 665 Web	GOV2	701-750	0.029		
		751-800	0.036		
		801-850	0.023		

TF.IDF, BM25 and LM with Dirichlet smoothing

• 3 TREC corpora, reported is Mean Average Precision

		queries	TF.IDF	Okapi	LM (µ=1000)
0.5M docs	TREC Vol. 4+5	301-350	0.109	0.218	
Av. length: 266		351-400	0.073	0.176	
News articles		401-450	0.088	0.223	
1.7M docs Av. length: 378 Web	WT10g	451-500	0.055	0.183	
		501-550	0.061	0.163	
25.2M docs Av. length: 665 Web	GOV2	701-750	0.029	0.230	
		751-800	0.036	0.296	
		801-850	0.023	0.250	

TF.IDF, BM25 and LM with Dirichlet smoothing

• 3 TREC corpora, reported is Mean Average Precision

		queries	TF.IDF	Okapi	LM (µ=1000)
0.5M docs	TREC Vol. 4+5	301-350	0.109	0.218	0.226
Av. length: 266		351-400	0.073	0.176	0.187
news articles		401-450	0.088	0.223	0.245
1.7M docs Av. length: 378 Web	WT10g	451-500	0.055	0.183	0.207
		501-550	0.061	0.163	0.180
25.2M docs Av. length: 665 Web	GOV2	701-750	0.029	0.230	0.269
		751-800	0.036	0.296	0.324
		801-850	0.023	0.250	0.297

Extending BM25 to document fields [8]

<page></page>			important
	<title>Anarchism</title>		
	<id>12</id>		
	<contributor></contributor>	un	important
	<username>Skomorokh</username>		-
	<id></id> 1749684 		
	<comment></comment>		otontially
	<pre>/* External links */ partial reversion - we do link to forums per [[WP:EL]]</pre>	on't	useful
ſ	<text xml:space="preserve"></text>		
	"Anarchism" is a [[political philosophy]] en theories and attitudes which support the elimin	compas	sing all

Extending BM25 to document fields [8]

• Textual data often found in some sort of structural form

- Retrieval effectiveness can be improved by taking the structure into account
- Simple solution: calculate score for each field and combine them linearly $RSV_D = \sum_{r}^{K} v_f \times RSV_{D_f}$

k=1

Extending BM25 to document fields [8]

- Textual data often found in some sort of structural form
- Retrieval effectiveness can be improved by taking the structure into account
- Simple solution: calculate score for each field and combine them in a linear fashion: $RSV_D = \sum_{k=1}^{K} v_f \times RSV_{D_f}$
- TF usually non-linear: information gained by observing a term for the first time is greater than observing subsequent occurrences
 - Linear combination of scores breaks this relation

Extending BM25 to document fields [8]

• Undesirable effects of linear combination

- A document matching a single query term over several fields can score much higher than a document matching several query terms
- Term weights need to be kept small to preserve term dependence (e.g. a weight of 0.1 for *title* would bring *raw* and *ScoreComb* closer together)
- What about the IDF component?
 - If corpus statistics are computed per field, IDF can vary highly in different fields (e.g. stopwords scoring highly in the title field)
- Extensive parameter tuning necessary (per field)

Extending BM25 to document fields [8]

- Solution: term frequency combination
 - Map the structured collection into unstructured space with modified term frequencies: combine original term frequencies in the different fields in a weighted manner

• Rank in the usual manner

Evaluation

Task-dependent evaluation

- Query: homepage TU Delft
 - Navigational
 - ~1 relevant entry page
- Query: TU Delft world-wide university ranking
 - Informational query
 - N relevant Web pages, retrieving some is good enough
 - It would also be beneficial to retrieve diverse results *
- Query: TU Delft patents nano-technology
 - Informational
 - N relevant patents, retrieving all is important
- Query: successful treatment of Newcastle disease
 - Informational
 - N relevant Web pages, retrieving all is important

Evaluation is an ongoing research topic.

Broder's query classification:

- Navigational
- Informational
- Transactional (buy house")

Mean Average Precision

 \mathbf{Q}_2

 \mathbf{Q}_1

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

 Q_3

Q₄

 Q_5

One system, five queries.

Given a set of queries, the average effectiveness is the mean over AvP.

$$MAP = \frac{1}{|\mathbf{Q}|} \sum_{Q \in \mathbf{Q}} \frac{\sum_{k=1}^{s} P @k \times rel(k)}{R}$$

AvP 0.0 1.0 0.09 0.13 0.3 MAP=0.364

TUDelft

GMAP

Geometric mean average precision

- A measure designed to highlight improvements for low-performing topics
- Geometric mean of per-topic average precision values

$$GMAP = \sqrt[n]{\prod_{n} AP_{n}}, n \text{ is } \# \text{ topics}$$
$$= \exp \frac{1}{n} \sum_{n} \log AP_{n}$$

Two systems, five queries. AP values shown.

MAP = 0.350	MAP = 0.350
GMAP=0.134	GMAP=0.176

bpref

Evaluation: points to remember

- Evaluation is not straight-forward
- Still researched today
- The task is paramount to the correct choice of evaluation measure

Sources

- ① Introduction to Information Retrieval. Manning et al. 2008
- 2 Information retrieval. Keith van Rijsbergen, 1979
- 3 Managing gigabytes, Witten et al.
- 4 The probability ranking principle in IR, S.E. Robertson, 1977
- 5 A study of smoothing methods for language models applied to ad hoc information retrieval. Zhai & Lafferty. 2001.
- 6 The importance of prior probabilities for entry page search. Kraaij et al. 2002.
- Cluster-based retrieval using language models. Liu & Croft, 2004.
- 8 Simple BM25 extension to multiple weighted fields. Robertson et al. 2004.
- 9 Cumulated gain-based evaluation of IR techniques. Järvelin & Kekäläinen. 2002

