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Abstract

Taking advantage of the vast history of theoretical and empirical findings
in the learning literature we have inherited, this research offers a synthesis of
prior findings in the domain of empirically evaluated active learning strate-
gies in digital learning environments. The primary concern of the present
study is to evaluate these findings with an eye towards scalable learning.
Massive Open Online Courses (MOOCs) have emerged as the new way to
reach the masses with educational materials, but so far they have failed to
maintain learners’ attention over the long term. Even though we now un-
derstand how effective active learning principles are for learners, the current
landscape of MOOC pedagogy too often allows for passivity — leading to
the unsatisfactory performance experienced by many MOOC learners today.
As a starting point to this research we took John Hattie’s seminal work from
2008 on learning strategies used to facilitate active learning. We considered
research published between 2009-2017 that presents empirical evaluations of
these learning strategies. Through our systematic search we found 126 pa-
pers meeting our criteria and categorized them according to Hattie’s learn-
ing strategies. We found large-scale experiments to be the most challenging
environment for experimentation due to their size, heterogeneity of partici-
pants, and platform restrictions, and we identified the three most promising
strategies for effectively leveraging learning at scale as Cooperative Learning,
Simulations & Gaming, and Interactive Multimedia.

Keywords: teaching/learning strategies, adult learning, evaluation of CAL
systems, interactive learning environments, multimedia/hypermedia systems
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1. Introduction

In the dense landscape of scalable learning technologies, consideration
for sound pedagogy can often fall by the wayside as university courses are
retrofitted from a classroom to the Web. Up against the uncertainty of how
to best rethink and conceive of pedagogy at scale, we here synthesize the
previous findings as well as highlight the possibilities going forward with
the greatest potential for boosting learner achievement in large-scale digital
learning environments.

Now that the initial hype of Massive Open Online Courses (MOOCs) has
passed and the Web is populated with more than 4,000 of these free or low-
cost educational resources, we take this opportunity to evaluate and assess
the state-of-the art in pedagogy at scale while identifying the best practices
that have been found to significantly increase learner achievement.

This study conducts a review of the literature by specifically seeking inno-
vations in scalable (not requiring any physical presence or manual grading or
feedback) learning strategies that aim to create a more active learning expe-
rience, defined in Freeman et al. (2014) as one that “engages students in the
process of learning through activities and/or discussion in class, as opposed
to passively listening to an expert. It emphasizes higher-order thinking and
often involves group work.” By limiting the selection criteria to empirical re-
search that can be applied at scale, we aim for this survey to serve as a basis
upon which future MOOC design innovations can be conceived, designed,
and tested. We see this as an important perspective to take, as many learn-
ing design studies provide design ideas, but do not contain a robust empirical
evaluation. We certainly do not intend to discount the value of observational
or qualitative studies in this domain; rather, for the following analyses we
are primarily concerned with results backed by tests of statistical significance
because this offers a more objective, quantitative measure of effectiveness.

2. Method

The driving question underpinning this literature survey is: Which active
learning strategies for digital learning environments have been em-
pirically evaluated, and how effective are they?

To begin the literature search we utilized John Hattie’s Visible Learning:
A Synthesis of Over 800 Meta-Analyses Relating to Achievement Hattie

(2008) as a basis. It provides a comprehensive overview of findings in the



domain of empirically tested learning strategies in traditional classroom envi-
ronments. As Hattie’s work was published in 2008, we used that as a natural
starting point for our review, working forward to July 2017. It creates a nar-
row enough scope (nine years: 2009-2017) and temporally relevant (MOOCs
went mainstream in 2012) time constraints for the review. We manually
scanned all publications released from our selected venues in this time pe-
riod and determined for each whether or not they met our criteria: (1) the
learning strategy being analyzed must have been scalable — it must not
require manual coding, feedback, physical presence, etc., (2) the evidence
must come from empirical analyses of randomized controlled experi-
ments with a combined sample size of at least ten across all conditions,
and (3) the subjects of the studies must be adult learners, i.e. at least 18
years old. We included the age criterion based on the profile of the typical
MOOC learner — aged 25-35 according to Tomkin and Charlevoix (2014),
which aligns with our own institution’s data as well.

From Hattie’s synthesis of meta-analyses we identified the 10 core learn-
ing strategies that best apply to open online education — only selecting
from those which Hattie found to be effective. With these learning strate-
gies fixed, we systematically reviewed all publications in five journals and
eight conferences (listed in Table 1) that have displayed a regular interest
in publishing work on testing these categories of innovative online learn-
ing strategies. These venues were identified and selected based on an ex-
ploratory search through the literature—we began with a sample of studies
we were previously familiar with that fit the scope of the present review
and perused the references of each to identify more potential venues worth
exploring. This process was repeated for each identified study thereafter.
The lead author also reached out to experts in the field to assure that this
method did not overlook any potential venues. The thirteen venues used
for the final review are those which showed the most consistent interest in
publishing studies that meet our criteria. We employed this method over a
search /query term method because our criteria (namely that of being a ran-
domized controlled trial among adult populations) are not reliably gleanable
from standard search engine indexing.

We acknowledge there are other journals and conference proceedings that
may have been applicable for this survey, but given our search criteria, we
found these thirteen venues to be the most appropriate based on our initial
exploratory search.

Of the 7,706 papers included in our search, we found 126 (1.6%) to
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Table 1: Overview of included venues. The most recent included issue from each publica-
tion is indicated in parentheses. Unless otherwise indicated with a f, the full proceedings
from 2017 have been included.

Computers & Education (Vol. 114)

Journal of Learning Analytics (Vol. 4, No. 2)

Journal of Educational Data Mining (Vol. 8, No. 2)

The Open Education Journal eLearning Papers (Issue 43)

IEEE Transactions of Learning Technologies (Vol. 10, Issue 1)

ACM Learning @ Scale (LQS)

Learning Analytics & Knowledge (LAK)

European Conference on Technology-Enhanced Learning (EC-TEL) 1
International Conference on Educational Data Mining (EDM)

ACM Conference on Computer-Supported Cooperative Work (CSCW)
European MOOCs Stakeholders Summit (EMOOCs)

European Conference on Computer-Supported Collaborative Work (ECSCW)
Human Factors in Computing Systems (CHI)

meet our criteria. The criterion requiring randomized controlled trials proved
to be a strong filter with many studies not reporting randomization or a
baseline condition to compare against. Overall, these 126 papers report on
experiments with a total of 132,428 study participants. We then classified
each work into one of the ten learning strategy categories (listed in Table 2).

Figure 1 illustrates the number of studies that met our selection criteria
organized by the year published. It shows the increasing frequency of such
experiments in recent years, with the most notable increase from 2014 to
2015.

We could propose any number of explanations for the decrease in studies
from 2015 to 2016, but it would be purely speculation. However, when ex-
amining the studies themselves, we do notice a prominent trend with some
explanatory power. With the dawn of MOOC research emerging around
2013 and 2014, the experiments carried out in this window can be viewed
now, in hindsight, as foundational. Such interventions in this era included
sending out emails to learners (Kizilcec et al., 2014a) or dividing the course
discussion forum and controlling instructor activity (Tomkin and Charlevoix,
2014). However, in 2016 and 2017 we begin to see an elevated level of com-
plexity in interventions such as the adaptive and personalized quiz question
delivery system (Rosen et al., 2017) implemented and evaluated at scale in



Table 2: Overview of considered learning categories. The selected papers per category are
shown in parentheses. The sum of the numbers is 131 and not 126, as five papers apply
to two categories.

Mastery Learning (1)
Meta-Cognitive Strategies (24)

Questioning (9)
Spaced vs. Massed Practice (1)

Matching Learning Styles (3)
Feedback (21)

Cooperative Learning (17)

Simulations & Gaming (18)

Programmed Instruction (6)

Interactive Multimedia Methods (31)

a MOOC. It is also worth noting that a number of journal issues and con-
ference proceedings from 2017 had not yet been released at the time of this
writing (indicated in Table 1).

Figure 2a shows the proportion of results (positive, null, or negative)
with respect to the experimental environment employed by the selected arti-
cles/studies. Noting the difference between MOOCSs and native environments
(those designed and implemented specifically for the study), we see native
environments yielding positive results at a much stronger rate than MOOCs
(59% vs. 42% respectively). We see two main factors contributing to this
difference: (i) native environments can be modeled specifically for the exper-
iment /tested concepts, whereas experiments done in MOOCs must adapt to
the existing platforms and (ii) no MOOC studies provide participants any
incentive to participate, whereas this is common to experiments in native
environments.

Figure 2c further visualizes this discrepancy in illustrating the proportion
of positive, negative, and null results across three subject pool sizes: small-
scale studies with between 10 and 100 participants, medium-sized studies
with 101- 500 participants and large-scale studies with more than 500 study
participants. We here find a statistically significant difference in the propor-
tion of reported positive findings in large (42% in studies with 500+ partic-
ipants) and small (60% in studies with 10-100 participants) studies using a
X2 test (p < 0.05). As the focus of this study is on large-scale learning, we
specifically ran this analysis to evaluate the impact that scale and, in turn,
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Figure 1: The number of papers by year and learning environment meeting our selection
criteria. Each environment is defined in detail in Section 3.1. Best viewed in color.

sample size and heterogeneity can have on an experiment.

We registered this project with the Center for Open Science!, and the reg-
istration which includes all data gathered as well as scripts used for analysis
& visualization are available at https://osf.io/jy9n6/.

3. Terminology

We now define the terminology used in the reporting of our results. Not
only is this explicit terminology elucidation important for the clarity of this
review, it can also serve as a reference for future experiments in this area
to ensure consistency in how results are reported and replicated. In dis-
cussing each study, we refer to “learners”, “students”, or “participants” as
the authors do in the referenced work.

3.1. Environment

The first dimension by which we categorize the studies is the environment
wherein the experiment /intervention took place. We distinguish between the
following;:

e Intelligent Tutoring System (ITS): Digital learning systems that
monitor and adapt to a learner’s behavior and knowledge state.

https://cos.io
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Figure 2: Reported results (y-axis) from papers meeting our selection criteria partitioned
by environment, incentive, and size. The red - indicates studies reporting a significant
negative effect of the intervention; the green + indicates a significant positive effect of

the intervention; and the blue o indicates findings without a statistically significant effect.
Best viewed in color.



e Laboratory Setting (Lab): Controlled, physical setting in which
participants complete the experimental tasks.

e Learning Management System (LMS): Software application used
to host & organize course materials for students to access online at any
time.

e Mobile Phone Application (Mobile): Participants must download
and use an application on their mobile phone to participate in the
experiment.

e Massive Open Online Course (M OOC): Online course which offers
educational materials free of cost and with open access to all.

e Amazon Mechanical Turk (Mturk): Online marketplace used to
host low-cost micro-payment tasks for crowdsourcing and human com-
putation. Participants are recruited and paid through MTurk and often
redirected to an external application.

e Native: A piece of software designed and implemented specifically for
the study.

Figure 1 shows the breakdown of our studies with respect to the envi-
ronment. Note that despite the widespread availability of MOOC and LMS
environments in 2015, native environments still dominated that year. We
speculate that this may be because researchers find it more efficient to build
their own environment from scratch rather than adapt their study to the
limitations of a pre-existing platform—which is the case with all MOOC ex-
periments included in this study; each intervention had to be designed within
the confines of either the edX? or Coursera® platforms. We also note a sud-
den spike in popularity for studies using Mturk from 2015 to 2016. While
it is more expensive to carry out research with Mturk compared to MOOCs
(which provide no incentive or compensation), Mturk ensures a certain level
of compliance and engagement from the subjects in that they are rewarded
for their time with money.

2Www.edx.org
3www . coursera.org



3.2. Incentive

The second dimension we distinguish is the incentive participants in each
study received for their participation:

Monetary Reward ($): Participants receive either a cash reward or
a gift certificate.

Required as part of an existing class (Class): An instructor con-
ducts an experiment in her own course where all enrolled students are
participants.

Class Credit (Credit): By participating in the study, participants
receive course credit which can be applied to their university degree.

None: Participants were not provided any incentive or compensation.

n/r: Not reported.

3.3. Outcome Variables

As experiments on learning strategies can evaluate a multitude of out-
comes, here we provide an overview of all learning outcomes reported in the
included studies.

Final Grade: the cumulative score over the span of the entire course
which includes all graded assignments.

Completion Rate: the proportion of participants who earn the re-
quired final passing grade in the course.

Learning Gain: the observed difference in knowledge between pre-
treatment and post-treatment exams

Exam Score: different from the final grade metric in that this only
considers learner performance on one particular assessment (typically
the final exam).

Long-Term Retention: measured by assessing a learner’s knowledge
of course materials longitudinally, not just during/immediately after
the experiment.



e Learning Transfer: measuring a learner’s ability to apply new knowl-
edge in novel contexts beyond the classroom/study.

e Ontrackness: the extent to which a learner adheres to the designed
learning path as intended by the instructor.

e Engagement: a number of studies measure forms of learner activ-
ity /behavior and fall under this category. Specific forms of engagement
include:

— Forum Participation: measured by the frequency with which
learners post to the course discussion forum (including posts and
responses to others’ posts).

— Video Engagement: the amount of actions (pause, play, seek,
speed change, toggle subtitles) a learner takes on a video compo-
nent.

— Revision: the act of changing a previously-submitted response.

— Persistence/Coverage: the amount of the total course content
accessed. For example, a learner accessing 75 out of the 100 com-
ponents of a course has 75% persistence.

e Self-Efficacy: a learner’s self-perceived ability to accomplish a given
task.

e Efficiency: the rate at which a learner progresses through the course.
This is most commonly operationalized by the amount of material
learned relative to the total time spent.

4. Review

In the following review we synthesize the findings and highlight par-
ticularly interesting aspects of certain experiments. Unless otherwise in-
dicated, all results presented below come from intention-to-treat (ITT) anal-
yses, meaning all participants enrolled in each experimental condition are
considered without exception. Each category has a corresponding a table
detailing the total sample size (“N”), experimental environment (“Env.”),
incentive for participation (“Incentive”), and reported results (“Result”).
In the Result column, statistically significant positive outcome variables as
a result of the experimental treatment are indicated with a +; null findings
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where no significant differences were observed are indicated with a o; and
negative findings where the treatment resulted in an adverse effect on the
outcome variable are indicated with a -.

4.1. Mastery Learning

Teaching for mastery learning places an emphasis on learners gaining a
full understanding of one topic before advancing to the next (Bloom, 1968).
Given that students’ understanding of new topics often relies upon a solid un-
derstanding of prerequisite topics, teaching for mastery learning only exposes
students to new material once they have mastered all the preceding material,
very much in line with constructivist thinking as outlined by Cunningham
and Duffy (1996). In the traditional classroom, teaching for mastery learning
presents a major challenge for teachers in that they must constantly moni-
tor each individual student’s progress towards mastery over a given topic—a
nearly impossible task in a typical classroom with 30 students, never mind
30,000. However, with the growing capabilities of education technologies,
individualized mastery learning pedagogy can now be offered to students at
scale.

While mastery learning is so frequently found to be an effective teaching
strategy in terms of student achievement, it often comes at the cost of time.
This issue of time could be a reason behind there being only one paper in
this category. Mostafavi et al. (2015) implemented a data-driven knowledge
tracing system to measure student knowledge and release content according
to their calculated knowledge state. Students using this system were far more
engaged than those using the default problem set or that with on-demand
hints. A strict implementation of mastery learning — as in Mostafavi et al.
(2015), where learners in an ITS are required to demonstrate concept mastery
before advancing in the system — would be useful to understand its effect
on the heterogeneous MOOC learner population.

Table 3: Mastery Learning

Mastery Learning: +: 1

Ref. N Env. Incentive Result

Mostafavi et al. (2015) 302 ITS Class +Engagement

+ = positive etfects
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4.2. Metacognitive Strategies

Metacognitive behavior is defined by Hattie (2008) as “higher-order think-
ing which involves active control over the cognitive processes engaged in
learning.” Metacognition is an invaluable skill in MOOCs, where learners
cannot depend on the watchful eye of a teacher to monitor their progress
at all times. Instead, they must be highly self-directed and regulate their
own time management and learning strategies to succeed. The papers in this
category explore novel course designs and interventions that are intended to
make learners more self-aware, reflective, and deliberate in the planning of
(and adherence to) their learning goals.

Davis et al. (2016) conducted two experiments: in study “A” they pro-
vided learners with retrieval cue prompts after each week’s lecture, and in
study “B” they provided study planning support to prompt learners to plan
and reflect on their learning habits. Overall, neither intervention had any ef-
fect on the learners in the experimental conditions, likely because the learners
could ignore the prompts without penalty. However, when narrowing down
to the very small sample of learners who engaged with the study planning
module, the authors found desirable significant increases in learner behavior.
Maass and Pavlik Jr (2016) also ran an experiment testing support for re-
trieval practice. They found that (i) retrieval prompts increase learning gain
and (ii) the complexity of the retrieval prompt had a significant impact on
the prompts effect, with deeper prompts leading to better learning gains. In
contrast, the retrieval prompts used by Davis et al. (2016) assessed shallow,
surface-level knowledge, which could be a reason for the lack of a significant
effect.

Even though the education psychology literature suggests that boosting
learners’ metacognitive strategies is highly effective for increasing learning
outcomes (Hattie, 2008), 23 of the 38 results (61%) in this category report null
or negative findings. Furthermore, with the reporting of a negative impact of
an intervention, Kizilcec et al. (2014a) found a certain form of participation
encouragement (collectivist-framed prompting) to actually decrease learners’
participation in the course discussion forum.

Nam and Zellner (2011) conducted a study evaluating the effect of framing
a group learning activity in different ways. Compared to a “group processing”
frame of mind (where group members are asked to assess the contribution of
each group member), the “positive interdependence” frame of mind (where
group members are reminded that boosting one’s individual performance can
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have a great impact on the overall group achievement) group had higher post
assessment scores.

In lieu of an actual learning platform, crowdworker platforms are also
beginning to be used for learning research. One example is the study by
Gadiraju and Dietze (2017), who evaluated the effect of achievement priming
in information retrieval microtasks. While completing a crowdworker task
aimed at teaching effective information retrieval techniques, the participants
were also assessed on their learning through a test at the end of the task. By
providing achievement primers (in the form of inspirational quotes) to these
crowdworkers, the authors observed no significant difference in persistence
or assessed learning. Given the ease with which these experiments can be
deployed, more work should go into exploring the reproducibility of findings
from a crowdworker context to an actual learning environment.

In summary, the current body of work in supporting learners’ metacogni-
tive awareness indicates how difficult it is to affect such a complex cognitive
process, as more than half of the reported results from this category led
to non-significant results. While some studies do indeed report positive re-
sults, the overall trend in this category is an indication that we have not yet
mastered the design and implementation of successful metacognitive support
interventions that can effectively operate at scale. Setting this apart from
other categories is the difficulty to measure metacognition; compared to other
approaches such as questioning (where both the prompt and response are
easily measurable), both eliciting and measuring responses to metacognitive
prompts is far more challenging.

4.3. Questioning

Hattie (2008) found questioning to be one of the most effective teaching
strategies in his meta-analysis. Questioning is characterized by the posing of
thoughtful questions that elicit critical thought, introspection, and new ways
of thinking. The studies in this category explore new methods of prompting
learners to retrieve and activate their prior knowledge in formative assess-
ment contexts. Yang et al. (2016) evaluated the effectiveness of a two-tier
questioning technique, described as “...a set of two-level multiple choice ques-
tions [in which the] first tier assesses students’ descriptive or factual knowl-
edge...while the second tier investigates the reasons for their choices made
in the first tier.” They found this questioning technique to be highly effec-
tive in their experiment, with learners in the two-tier condition achieving 0.5
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Table 4: Metacognitive Strategies

Metacognitive Strategies: + :

15/0:20/-:3

Ref. N Env. Incentive Result
Kizilcec et al. (2016) 653 MOOC  None oPersistence
oFinal Grade
Lang et al. (2015) 950 ITS None oLearning Gain
oEngagement
Lamb et al. (2015) 4,777  MOOC  None +Forum
Participation
Sonnenberg and Bannert (2015) 70  Native $ +Learning Gain
Dodge et al. (2015) 882 LMS Class oFinal Grade
Tabuenca et al. (2015) 60 Native $ oExam Score
Kizilcec et al. (2014a) 11,429 MOOC  None oForum
Participation
-Forum
Participation
Margulieux and Catrambone (2014) 120  Native Credit +Exam Score
Xiong et al. (2015) 2,052  Native None +Learning Gain
+Completion Rate
Noroozi et al. (2012) 56  Native n/r +Learning Gain
Davis et al. (2016)A 9,836 MOOC  None oFinal Grade
oEngagement
oPersistence
Davis et al. (2016)B 1,963 MOOC None oFinal Grade
oEngagement
oPersistence
Maass and Pavlik Jr (2016) 178  Mturk $ +Learning Gain
Kizilcec et al. (2017a) 1,973 MOOC  None +Final Grade
+Persistence
+Completion Rate
Yeomans and Reich (2017)A 293 MOOC  None -Completion Rate
Yeomans and Reich (2017)B 3,520 MOOC  None -Completion Rate
oEngagement
Gadiraju and Dietze (2017) 340  Mturk* $ oFinal Grade
oPersistence
Kim et al. (2017) 378  Mturk $ +Final Grade
Hwang and Mamykina (2017) 225  Native n/r +Learning Gain
De Grez et al. (2009) 73  Native Class oLearning Gain
Nam and Zellner (2011) 144  Native Class oEngagement
+Final Grade
Huang et al. (2012) 60 Mobile  None +Final Grade
Poos et al. (2017) 80 Lab None oFinal Grade
oLearning Transfer
Gamage et al. (2017) 87 MOOC n/r +Learning Gain
+ = positive effects, o = null results, - = negative effects
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standard deviations better learning gains than learners receiving standard
one-tier questions.

Instructional questioning was explored in the Mturk setting by Williams
et al. (2016a) who compared the effectiveness of different questioning prompt
wordings. They found prompts that directly ask the learner to provide an
explanation of why an answer is correct leads learners to revise their answers
(to the correct one) more than a prompt asking for a general explanation of
the answer.

de Koning et al. (2010) conducted a study where half of the learners were
cued to generate their own inferences through self-explaining and half were
provided pre-written instructional explanations. Taking place in the context
of a course about the human cardiovascular system, results show that learners
prompted to self-explain performed better on the final test, but did not show
any difference in persistence or learning transfer from the given explanation
group.

Given its effectiveness and relative simplicity to implement, two-tier ques-
tioning should be further investigated in the MOOC setting to stimulate
learners critical thought beyond surface-level factual knowledge.

Related to the tactic of questioning is the learning strategy known as
retrieval practice, or the testing effect, which is characterized by the process
of reinforcing prior knowledge by actively and repeatedly recalling relevant
information Adesope et al. (2017). Recent work has found retrieval practice
to be highly effective in promoting long-term knowledge retention Adesope
et al. (2017); Clark and Mayer (2016); Roediger and Butler (2011); Henry
L Roediger and Karpicke (2016); Lindsey et al. (2014); Karpicke and Roediger
(2008); Karpicke and Blunt (2011). Accordingly, we recommend that future
research interested in questioning tactics is designed to stimulate learners to
engage in retrieval practice.

4.4. Spaced vs. Massed Practice

Hattie (2008) describes the difference between spaced learning (some-
times referred to as distributed practice) and massed practice as “the fre-
quency of different opportunities rather than merely spending more time on
task.” In other words, distributing one’s study sessions over a long period of
time (e.g., 20 minutes per day for 2 weeks) is characteristic of high spacing,
whereas studying in intense, concentrated sessions (one four-hour session) is
characteristic of massed practice (Wulf and Shea, 2002). Historically, studies
have found that the desired effect of spaced learning (long-term knowledge
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Table 5: Questioning

Questioning: +: 7 /0: 7

Ref. N Env. Incentive Result
Yang et al. (2016) 43 Native n/r +Learning Gain
Thompson et al. (2015) 43  Native Class +Learning Gain
Williams et al. (2016a) 659 Mturk $ +Revision
Sendag and Ferhan Odabas:1 (2009) 40 Native Class oLearning Gain
oFinal Grade
Chen (2010) 84 Native Class +Learning Gain
de Koning et al. (2010) 76  Native Credit +Final Grade
oPersistence
oLearning Transfer
Yang et al. (2015) 79 Native Class +Final Grade
oEngagement
Attali (2015) 804 Mturk $ +Learning Gain
Attali and van der Kleij (2017) 2,445 Native None oPersistence

oFinal Grade

+ = positive effects, o = null results

retention) is found most commonly in tasks of low difficulty, and the effect
decreases as the difficulty increases (Rohrer and Taylor, 2006).

Dearman and Truong (2012) developed a mobile phone “Vocabulary Wall-
paper” which aimed to implicitly teach (through the learners mobile phone
background) learners new vocabulary in a second language in highly spaced
microlearning sessions. Their findings show that, compared to learners receiv-
ing the lessons at less distributed rates, learners with highly-spaced exposure
showed a significant increase of second language vocabulary learned.

As evidenced by the lone study in the category, it is difficult to design
and implement experiments that effectively get learners to commit to high
spacing (ideally enacted as a learned self-regulation skill). Even still, given
its proven effectiveness elsewhere in the learning literature (Hattie, 2008),
practitioners and researchers should tackle this design challenge in creating
and evaluating environments that encourage spaced practice.

4.5. Matching Learning Styles

Brown et al. (2009) conducted an experiment testing the efficacy of “learn-
ing style-adapted e-learning environments.” In the study, where students
self-proclaimed learning styles were either matched or unmatched, yielded
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Table 6: Spaced vs. Massed Practice

Spaced vs. Massed Practice: +: 1

Ref. N Env. Incentive Result

Dearman and Truong (2012) 15 Mobile § +Learning Gain

+ = positive effects

no significant differences in terms of learner achievement between conditions.
Consistent with the current popular literature on the topic (Kirschner and
van Merriénboer, 2013; Kirschner, 2017), the authors found that adapting the
courses to students’ learning styles did not result in any significant benefit.

Soflano et al. (2015) employed a game-based learning environment to
evaluate the impact of adapting instruction to learning styles in a computer
programming learning context. The authors report that compared to the
groups using a non-adaptive version of the SQL language tutor software, the
adaptive system yielded no difference in final grades (Soflano et al., 2015).

However, there does still exist some evidence in favor of this learning
strategy. Chen et al. (2011) created a online learning environment where the
teaching strategy was adapted to each of the learners’ individual thinking
styles. With three teaching strategies (constructive, guiding, or inductive)
either matched or unmatched to three thinking styles (legislative, executive,
or judicial, respectively), the authors found that the group who had their
thinking style matched accordingly outperformed those who did not.

Instead of adapting to a single modality that a learner prefers (such as
being a “visual learner”), the literature on learning styles emphasizes that
while one modality may be preferred by the learner (and can lead to positive
experimental results in certain contexts), providing them instruction in a
variety of modalities will provide the greatest benefit overall (Kirschner and
van Merriénboer, 2013).

4.6. Feedback

Hattie (2008) defines feedback as “information provided by an agent (e.g.,
teacher, peer, book, parent, or one’s own experience) about aspects of one’s
performance or understanding.” Strategically providing students with feed-
back offers them the chance to reflect and reassess their approach to a given
situation. Feedback can best be thought of as a mirror for learners; it serves
to encourage them to stop and mindfully evaluate their own behavior or
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Table 7: Matching Learning Styles

Matching Learning Styles: +: 2 /o : 2

Ref. N Env. Incentive Result
Brown et al. (2009) 221  Native Class oExam Score
Chen et al. (2011) 223 Native n/r +Final Grade
Soflano et al. (2015) 120 Native None oFinal Grade
+Efficiency
+ = positive effects, o = null results
learning processes — which are otherwise unconscious or unconsidered —

and make them readily visible. However, this act of mindfully evaluating and
altering one’s behavior should not be taken for granted. Self-regulating one’s
own learning processes (especially in response to feedback) is a skill which is
highly correlated with and caused by prior education (Winters et al., 2008).
Especially in the MOOC context, where the learners come from many diverse
backgrounds, it is imperative that feedback offered to the learner is adaptive
and aligned to their ability to process, understand, and act upon it.

While Hattie (2008) finds feedback to be the most effective teaching strat-
egy in his entire meta-analysis, we find very mixed results in our selected
studies in terms of its effectiveness. Of the 38 results reported within the 21
papers of this category, only 14 (37%) are positive findings.

Zooming in on two of the MOOC studies in this category, Coetzee et al.
(2014) and Tomkin and Charlevoix (2014) evaluated the effectiveness of feed-
back in the context of the discussion forum. Coetzee et al. (2014) tested the
effectiveness of implementing a reputation system in a MOOC discussion fo-
rum — the more you post to the forum, the more points you accumulate (this
paper also applies to the Simulations & Gaming category for this reason).
The authors found that providing this positive feedback did indeed lead learn-
ers to post more frequently in the forum, but this did not have any impact on
their final course grade. Tomkin and Charlevoix (2014) ran an experiment
in which learners were divided into one of two course discussion forums — in
one forum the instructor was active in providing individualized feedback to
learners and engaging in discussion, and in the other no instructor feedback
was provided. The authors report no differences in either completion rate or
course engagement between the two conditions.

To address the challenge of providing in-depth feedback on students’
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learning in a coding context, Wiese et al. (2017) tested the effectiveness
of a code style tutor which offered adaptive, real-time feedback and hints to
students learning to code. Compared to a control group receiving a simpli-
fied feedback system consisting of a single unified score assessing the code,
students who used the adaptive feedback system did not show any difference
in the extent to which they improved their coding style (Wiese et al., 2017).

Bian et al. (2016) developed and evaluated an animated pedagogical agent
which was able to provide different types of emotional feedback to partici-
pants in a simulated environment. They found that positive emotional feed-
back (expressing happiness and encouragement in response to desirable be-
havior) led to significantly higher test scores than negative feedback (where
the agent expressed anger and impatience to undesirable behavior). Also
taking place in a simulated environment, the experiment carried out by Se-
drakyan et al. (2014) evaluated the effectiveness of a feedback-enabled simu-
lation learning environment. Compared to students in the intervention group
who interacted with the feedback-enabled simulation environment, those in
the control condition, who did not have access to the simulation, performed
more poorly on a final assessment.

While navigational feedback (support for learners in optimizing their
learning path through a course) like that introduced by Borek et al. (2009) is
common in ITS to help learners through problems, the challenge now arises
to provide personalized feedback at scale on other factors such as learner
behavior patterns. This way, feedback can be used as a mechanism to make
learners more aware of their learning habits/tendencies and, in turn, better
at self-regulating. However, with only 37% of results reported in this cate-
gory being positive, this highlights the fact that simply providing feedback
is insufficient in promoting positive learning outcomes—these results are an
indication that, even though we now have developed the technology to en-
able the delivery of feedback at scale, attention must now be shifted towards
understanding the nuance of what type of feedback (and with what sort of
frequency) will help the learner in a given context or state.

4.7. Cooperative Learning

Interventions targeting cooperative learning explore methods to enable
learners in helping and supporting each other in the understanding of the
learning material. Cooperative learning is one of the major opportunity
spaces in MOOCs for their unprecedented scale and learner diversity, as
evidenced by the prevalence of reported positive findings (71%). The studies
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Table 8: Feedback

Feedback: +: 14 /0:22 /-:2
Ref. N Env. Incentive Result
Kulkarni et al. (2015a) 104 Native  None +Exam Score
oRevision
Williams et al. (2016b) 524 MTurk $ +Exam Score
oSelf-Efficacy
Eagle and Barnes (2013) 203  Native Class +Persistence
Kardan and Conati (2015) 38 Native n/r +Learning Gain
oExam Scores
oEfficiency
Fossati et al. (2009) 120 Native  Class +Learning Gain
Borek et al. (2009) 87 Native  Class oExam Score
oLearning Transfer
+Learning Gain
Coetzee et al. (2014) 1,101  MOOC None oFinal Grade
oPersistence
+Forum
Participation
Tomkin and Charlevoix (2014) 20,474 MOOC None oCompletion Rate
oEngagement
Beheshitha et al. (2016) 169  Class None oForum
Participation
Rafferty et al. (2016) 200  Mturk $ oLearning Gain
Bian et al. (2016) 56 Lab None +Self-Efficacy
+Exam Score
Nguyen et al. (2017) 205  Mturk $ +Final Grade
- Revision
Wiese et al. (2017) 103  Native  Class oLearning Gain
oRevision
Davis et al. (2017) 33,726 MOOC None +Completion Rate
oEngagement
Mitrovic et al. (2013) 41 Native  Class oLearning Gain
oEngagement
oFinal Grade
+Efficiency
Corbalan et al. (2010) 34 Native n/r oEngagement
oFinal Grade
Gonzélez et al. (2010) 121  Native  Class +Final Grade
van der Kleij et al. (2012) 152 Native  Class oFinal Grade
Erhel and Jamet (2013) 41 Lab n/r oFinal Grade
Christy and Fox (2014) 80 Lab Credit -Final Grade
Sedrakyan et al. (2014) 66 Native n/r +Final Grade
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in this category develop and test solutions which try to find new ways to
bring learners together no matter where they are in the world to complete a
common goal.

One successful example of this is the study by Kulkarni et al. (2015b)
where MOOC learners were divided into small groups (between 2 and 9
learners per group) and allowed to have discussions using real-time video calls
over the internet. Each group was given prompts encouraging the learners
to both discuss course materials and share general reflections of the course
experience. The authors found that learners in groups with a larger diversity
of nationalities performed significantly better on the course final exam than
learners in groups with low diversity. This result shows promise that the
scale and diversity of MOOC learners can actually bring something novel to
the table in learners’ apparent interest in cultural diversity.

On a similar note, Zheng et al. (2014) developed an algorithm which
aimed to divide MOOC learners into small groups in a more effective fashion
compared to randomization. This model took into consideration the follow-
ing factors: collaboration preferences (local, email, Facebook, Google+ or
Skype), gender, time zone, personality type, learning goal, and language.
The authors found this algorithmic sorting of students into groups to not
have any effect on overall engagement, persistence, or final grade. Whereas
this algorithm grouped largely for similarity (for example, grouping learn-
ers in the same time zone together), the study presented by Kulkarni et al.
(2015b) suggests that diversity may be a better approach to automated group
formation.

There are also possibilities for cooperative learning in which the learners
do not meet face-to-face. In this light, Bhatnagar et al. (2015) evaluated a
cooperative learning system which crowd-sourced learner explanations. After
answering an assessment question, learners were prompted to give an expla-
nation/justification. These explanations were then accumulated and shared
with their peers; the authors found that providing learners the explanations
of their peers increased the likelihood of a learner revising their answer to the
correct one. In this scenario, the prompting for explanations not only serves
as a reflective activity for the individual learner, it also leverages the social
aspect by allowing him or her to contribute to the larger course community
and potentially help a peer in need.

Cho and Lee (2013) investigated the effectiveness of co-explanation (where
learners are instructed to collaboratively explain worked examples) as com-
pared to self-explanation (where learners work alone) in a Design Principles
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course context. The authors found that learners in the co-explanation condi-
tion were not as engaged with the assessment questions (identifying a design’s
strengths and weaknesses) as their counterparts in the self-explanation con-
dition.

In the domain of peer review, Papadopoulos et al. (2012) compared “free-
selection” peer review (where students could freely choose which of their
peers’ work to review) against an “assigned-pair” design (where the peer
review pairings are assigned by the instructor) in the context of a computer
networking course. The authors found that students in the free-selection
group achieved greater learning outcomes and provided better reviews than
those in the assigned-pair group (Papadopoulos et al., 2012).

Labarthe et al. (2016) developed a recommender system within a MOOC
to provide each learner with a list of peers in the same course who they
would likely work well with based on profile similarity modeling. Compared
to the control group with no recommendations, the experimental group (re-
ceiving the list of peer recommendations) displayed significantly improved
persistence, completion rate and engagement.

Given the consistency of positive results in this category (71%—the high-
est of any category), the above studies should be used as building blocks or
inspiration for future work in finding new ways to bring learners together
and increase their sense of community and belonging in the digital learning
environment. Advances made in this vein would work towards harnessing the
true power of large-scale open learning environments where learners not only
learn from the instructor but from each other as well through meaningful
interactions throughout the learning experience Siemens (2005).

4.8. Simulations & Gaming

Hattie (2008) categorizes simulations and games together and defines
them as a simplified model of social or physical reality in which learners
compete against either each other or themselves to attain certain outcomes.
He also notes the subtle difference between simulations and gaming in that
simulations are not always competitive. The studies in this category are
carried out predominantly in native environments. While understandable
given the games could have been developed for purposes other than exper-
imentation, this raises potential issues with an eye towards reproducibility.
However, considering 19 of the 28 reported results (68%) in the category
pertain to desirable benefits in learner achievement or behavior, this also
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Table 9: Cooperative Learning

Cooperative Learning: +: 17 /o0:6 /-: 1

Ref. N Env. Incentive Result
Bhatnagar et al. (2015) 144  Native  Class +Revision
Lan et al. (2011) 54 Native  Class +Learning Gain
Tritz et al. (2014) 396 Native  Class +Final grade
Ngoon et al. (2016) 75 Native § +Learning Gain
Kulkarni et al. (2015a) 104 Native  None +Exam Score
oRevision
Kulkarni et al. (2015b) 2,422 MOOC None +Exam Score
Cambre et al. (2014) 2,474  MOOC None +Exam Score
Culbertson et al. (2016) 42  Native  $/Credit +Learning Gain
Coetzee et al. (2015) 1,334 MTurk $ +Exam Scores
Zheng et al. (2014) 1,730 MOOC None oEngagement
oPersistence
oFinal Grade
Khandaker and Soh (2010) 145 Native  Class oExam Score
Konert et al. (2016) 396 Class None +Engagement
+Persistence
Labarthe et al. (2016) 8,673 MOOC None +Persistence
+Completion Rate
+Engagement
AbuSeileek (2012) 216  Lab n/r +Final Grade
Papadopoulos et al. (2012) 54 Native  Class +Final Grade
Chang et al. (2013) 27 LMS Class +Final Grade
Cho and Lee (2013) 120 Class None -Engagement

oLearning Gain

+ = positive effects, o = null results, - = negative effects

indicates a very strong trend towards the generalizable effectiveness of using
simulations and gamification to help learners.

While each game or simulation is unique in its own right, the under-
pinning theme in all of these studies is as follows: the learner earns and
accumulates rewards by exhibiting desirable behavior as defined by the in-
structor/designer. While creating native educational games or gamifying ex-
isting learning environments (especially MOOCs as in Coetzee et al. (2014))
is a complex, time-consuming process, based on the predominantly positive
findings in the literature, we conclude that it is an area with high potential
for boosting learning performance.
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Cutumisu and Schwartz (2016) ran a study evaluating the effect of choos-
ing versus receiving feedback in a game-based assignment. Compared to the
group which passively received feedback, the group which was forced to ac-
tively retrieve feedback was more engaged with the environment, but showed
no difference in learning or revision behavior. Note that this study is not in
the Feedback category, as both cohorts received the same feedback; the ele-
ment being tested in the experiment was the manner in which it was delivered
within the simulated environment.

Cagiltay et al. (2015) employed a serious game design and put students
either in a competitive (showing a scoreboard and ranking of peer perfor-
mance) or non-competitive environment. The authors found that the com-
petitive environment led to significantly higher test scores and more time
spent answering questions. On a similar note, Attali and Arieli-Attali (2015)
evaluated the effect of implementing a points system within a computer-based
mathematics learning environment. Although participants in the conditions
with the points system answered questions faster, there was no effect on the
accuracy of their responses.

Hooshyar et al. (2016) created a formative assessment game for a com-
puter programming learning task. The authors found that participants in a
traditional, non-computer-based environment performed worse on problem
solving tasks than those who received the computer-based formative assess-
ment system. Barr (2017) also compared a game-based learning environment
to a non-computer-based experience. In their experiment, the participants
in the game-based learning condition displayed better scores on a post-test.

With 68% of the reported results being positive findings—the second
highest among all categories—we see great potential for the effectiveness
of learning experiences where learners are afforded the ability to interact
with and explore simulated environments. Due to the substantial cost of
developing such environments, future research is needed to evaluate whether
this trend of positive findings continues so that institutions can be assured
in justifying their investment in these instructional strategies.

4.9. Programmed Instruction

According to Hattie (2008), programmed instruction is a method of pre-
senting new subject matter to students in a graded sequence of controlled
steps. Its main purposes are to (i) manage learning under controlled condi-
tions and (ii) promote learning at the pace of the individual learner.
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Table 10: Simulations & Gaming

Simulations & Gaming: +: 19 /o0: 9

Ref. N Env. Incentive  Result
Bumbacher et al. (2015) 36 Native n/r +Learning Gain
Cox et al. (2012) 41  Native § +Engagement
Culbertson et al. (2016) 42 Native  $/Credit +Engagement
+Exam Score
Ibanez et al. (2014) 22  Native  Class +Exam Score
Krause et al. (2015) 206 Native n/r +Persistence
+Exam Score
Li et al. (2014) 24 Native n/r oEfficiency
+Learning Transfer
Schneider et al. (2011) 82 Native  Class +Learning Gain
+Engagement
Cutumisu and Schwartz (2016) 264  Mturk $ oEngagement
oLearning Gain
Coetzee et al. (2014) 1,101 MOOC None oFinal Grade
oPersistence
+Forum
Participation
Cheng et al. (2017) 68 Native n/r oLearning Gain
Pozo-Barajas et al. (2013) 194 Native n/r +Final Grade
Smith et al. (2013) 57 Native  Class +Learning Gain
Brom et al. (2014) 75 Lab $ or Credit oFinal Grade
+Engagement
Attali and Arieli-Attali (2015) 1,218  Mturk 3 oFinal Grade
oEfficiency
Cagiltay et al. (2015) 142 Native n/r +Final Grade
Hooshyar et al. (2016) 52 Native  Class +Learning Gain
Nebel et al. (2017) 103 Native  $ or Credit +Final Grade
+Efficiency
Barr (2017) 72 Lab n/r +Final Grade

+ = positive effects, o = null results

Programmed instruction is inherently adaptive—it presents material to
the learner according to that learners unique set of previous actions. As
they stand now, MOOCs are simply online course content resources that
remain static irrespective of a learners behavior. Unlike the native and lab
environments used in Brinton et al. (2015) and Karakostas and Demetriadis
(2011), the current MOOC technology has not yet accounted for a learners
past behavior in delivering personalized content accordingly. By developing
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and implementing these types of systems in a MOOC, MOOCs could then
become more adaptable and able to cater instruction based on the individual
learner. To enable this would require a real-time tracking system for learners
where their behavior could be collected, modeled/analyzed, and then acted
upon (e.g., with the delivery of a personalized recommendation for a next
activity or resource) in real time on a large scale.

Table 11: Programmed Instruction

Programmed Instruction: +: 4 /o: 7

Ref. N Env. Incentive Result
Brinton et al. (2015) 43 Native  None +Engagement
Karakostas and Demetriadis (2011) 76 Lab n/r +Learning Gain
Rosen et al. (2017) 562 MOOC None +Learning Gain
+Persistence
oFinal Grade
Zhou et al. (2017) 153 ITS Class oFinal Grade
oEngagement
Arawjo et al. (2017) 24  Native n/r oEngagement

oCompletion Rate
oLearning Transfer

van Gog (2011) 32 Lab n/r oFinal Grade

+ = positive outcomes o = null results

4.10. Interactive Multimedia Methods

As lecture videos are currently the backbone of MOOC instructional con-
tent, it is imperative that they effectively impart knowledge to learners in an
engaging, understandable fashion. Also among the most effective strategies
with 64% of reported results being positive, interactive multimedia methods,
though not limited to video, test various methods of content delivery through
multimedia application interfaces.

Kizilcec et al. (2014b), for example, compared lecture videos which in-
cluded a small overlay of the instructor’s face talking versus the same lecture
videos without the overlay. Results show that while learners preferred videos
showing face and perceived it as more educational, there were no significant
differences in the groups’ exam scores.

A more interactive approach to lecture videos was explored by Monser-
rat et al. (2014) who integrated several interactive components into lecture
videos by integrating quiz, annotation, and discussion activities within a
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video player. Compared to a baseline interface, which separates the videos
and assessments, the integrated interface was favored by learners and enabled
them to learn more content in a shorter period of time.

Looking beyond video delivery methods, Kwon and Lee (2016) compare
four delivery methods of a tutorial on the topic of data visualization. The
four conditions are: (i) a baseline which only included text, (ii) baseline
plus static images, (iii) video tutorial, and (iv) interactive tutorial where
learners worked with a Web interface to manipulate and create their own
data visualizations. The authors found that learners with the interactive
tutorial performed better on the exam and did so while spending less overall
time in the platform — an indication of increased efficiency.

Aldera and Mohsen (2013) evaluated the effectiveness of captioned anima-
tion with keyword annotation (a note explaining the meaning of a given word)
in multimedia listening activities for language learning. Compared to partic-
ipants who received either just animations or animations with captions, the
captioned animations with keyword annotation condition performed signifi-
cantly better on recognition and vocabulary tests. However, the participants
just receiving the animations significantly outperformed the other conditions
on listening comprehension and recall over time.

Martin and Ertzberger (2013) deployed a “here and now” learning strat-
egy (where learners have 24/7 access to learning activities on their mo-
bile phones) to compare its effectiveness against computer-based instruc-
tion. While the “here and now” conditions expressed more positive attitudes
towards the learning experience after the experiment, the computer-based
learning cohort earned higher scores on a post-test.

Limperos et al. (2015) tested the impact of modality (text vs. audio+text)
on learning outcomes. They found that the multimodal format (audio+text)
led to better learning outcomes than receiving text alone. Pastore (2012) ran
a study to see the effect of compressing the time of instruction (decreasing
time to train/learn the materials) on learning. They found that decreasing
(accelerating) the time by 25% leads to similar learning outcomes, whereas
decreasing by 50% causes a decrease in learning.

Pursuing new research in this category is important going forward in
trying to truly leverage the Web for all of its learning affordances. The
possibilities for digital interfaces, sensors, and devices are expanding rapidly,
and more immersive, interactive, and intelligent environments promise to
make a significant impact on online learning environments in the future.
Even before these exciting technologies have become widely explored, we still
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observe an encouraging trend in this category in terms of positive results
reported; we therefore recommend future research continue to explore the
new possibilities in highly dynamic, interactive learning environments.

5. Conclusion

Based on both the quantitative and qualitative analyses from this review,
we identify Cooperative Learning, Simulations & Gaming, and Interactive
Multimedia as the three most promising strategies for most effectively ac-
tivating learning at scale. We draw this conclusion from the proportion of
positive results from each category: 71% for Cooperative Learning, 68% for
Simulations & Gaming, and 64% for Interactive Multimedia—compared to
all other groups with more than one study which have an average of 43%
positive results.

According to Hattie’s meta-analysis including over 50,000 studies, the ten
learning strategies shown in Table 2 are among the most effective. And yet,
in so many instances do we here find null results for the studies employing
them. Based on Hattie’s work and sheer volume of studies included, we can-
not yet dismiss the strategies themselves as ineffective; rather, translating
them to the digital age of scalable learning has emerged as the primary chal-
lenge for the future. We identify a key factor in meeting this challenge to be
that of incentive. Compared to an even balance of positive and null findings
in experiments without any incentive for the participant (49% + and 49% o),
positive results are twice as likely as null results in experiments which provide
a monetary incentive. Given that the main application area for the present
review is concerned with self-directed, informal online learning environments
such as MOOCs, we see this discrepancy as one that calls for thorough in-
vestigation in future research. This trend suggests that the applicability and
effectiveness of instructional and/or learning strategies could potentially be
context-dependent—that the same intervention might be highly effective in
a context where participants have a monetary incentive and ineffective in
a context where participants are rewarded with course credit or are intrin-
sically motivated, for example. This bears significant implications for the
generalizability of online learning research in that (i) researchers must take
great care in contextualizing findings and (ii) readers must be attentive in
interpreting results and mindful of the study’s full context.

We are in the beginning stages now of constructing this new narrative of
pedagogy at scale, and would be naive to think this could have been perfected
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Table 12: Interactive Multimedia Methods

Interactive Multimedia Methods: +: 28 /o: 12 / -

Ref. N Env. Incentive  Result

Lee et al. (2015) 102 Native n/r +Learning Gain

Monserrat et al. (2013) 15 Native  None +Efficiency

Monserrat et al. (2014) 18 Native  None +Learning Gain

Nicholson et al. (2014) 40 Native  None +Efficiency

Trusty and Truong (2011) 21  Native $ oLearning Gain
oEngagement

Dearman and Truong (2012) 15 Mobile § +Learning Gain

Kizilcec et al. (2014b) 22 Lab Credit oExam Score

Kwon and Lee (2016) 120 Mturk 3 +Exam Score
+Efficiency

Kizilcec et al. (2017b) 104 Native  Credit oFinal Grade

Zhu et al. (2017) 22 Native n/r +Learning Gain
+Engagement

Pandey et al. (2017) 44  Native n/r oEngagement
- Final Grade

Culbertson et al. (2017) 27 Native $ oLarning Gain
+Engagement

Austin (2009) 75 Native  Credit +Learning Transfer

Yamada (2009) 40 Native n/r +Engagement
oRevision

Wang et al. (2011) 123 Lab n/r +Final Grade

Pastore (2012) 154 LMS n/r +Efficiency

Chen et al. (2014) 81 LMS n/r +Final Grade

Chuang and Tsao (2013) 111  Mobile n/r +Learning Gain
oLong Term Retention

AbuSeileek and Qatawneh (2013) 30 Native  Class -Engagement

Imbhof et al. (2013) 71  Native  § or Credit -Final Grade

Urquiza-Fuentes and Veldzquez-Iturbide (2013) 132 Native Credit oFinal Grade
oLong Term Retention
+Completion Rate

Aldera and Mohsen (2013) 50 Native  Class +Final Grade
+Long Term Retention

Martin and Ertzberger (2013) 109  Mobile  Class -Final Grade

Chen and Wu (2015) 37 Native n/r +Learning Gain

Song et al. (2014) 144 Native  None +Learning Transfer
+Engagement

van Gog et al. (2014) 43 Lab $ or Credit  +Final Grade

Limperos et al. (2015) 259  Lab None +Final Grade

Tirkay (2016) 621  Mturk 3 oPersistence
+Final Grade

Jang et al. (2017) 76  Native n/r +Final Grade

Jeno et al. (2017) 29 71 Mobile $ +Final Grade

van Wermeskerken and van Gog (2017) 69 Lab $ or Credit oFinal Grade

Sharma et al. (2015) n/r MOOC None +Video

Engagement

+ = positive effects, o = null results, - = negative effects



in just three years. Guided by the proven efficacy of Cooperative Learning,
Simulations & Gaming, and Interactive Multimedia learning strategies, the
community should now work through iterative cycles of designing, testing,
and evaluating new solutions in formalizing this emergent body of theory
and literature.
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