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Abstract. In this paper, we examine a number of newly applied meth-
ods for combining pre-retrieval query performance predictors in order to
obtain a better prediction of the query’s performance. However, in order
to adequately and appropriately compare such techniques, we critically
examine the current evaluation methodology and show how using linear
correlation coefficients (i) do not provide an intuitive measure indica-
tive of a method’s quality, (ii) can provide a misleading indication of
performance, and (iii) overstate the performance of combined methods.
To address this, we extend the current evaluation methodology to in-
clude cross validation, report a more intuitive and descriptive statistic,
and apply statistical testing to determine significant differences. Dur-
ing the course of a comprehensive empirical study over several TREC
collections, we evaluate nineteen pre-retrieval predictors and three com-
bination methods.

1 Introduction

Predicting the retrieval performance or determining the degree of difficulty of a
query is a challenging research area which has received a lot attention recently
[13,20,19,8,16,5,7]. The aim is to create better methods (predictors) for the task,
as a reliable and accurate prediction mechanism would enable the creation of
more adaptive and intelligent retrieval systems. For instance, if the performance
of the query is considered to be poor, remedial action can be taken by the
system to try and ensure that the user’s information needs are satisfied. This
may be done through asking for refinement of the query, or some automatic
disambiguation process. On the other hand, if the performance of a query appears
sufficiently good, the query can be improved by some affirmative action such as
automatic query expansion with pseudo relevance feedback.

Despite the numerous methods proposed, little research has been performed
on combining the different predictors in a principled way. One of the questions
explored in this paper is whether or not such a combination leads to improved
prediction accuracy (w.r.t. the effectiveness measure used). In Section 2 we de-
scribe in more detail how the particular task should influence the choice of
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evaluation measure. In the case of distinguishing easy from difficult queries for
instance, rank correlation coefficients [1] are utilized to evaluate and compare
different predictors. A higher correlation coefficient is generally deemed sufficient
evidence to infer that one predictor outperforms another. However, due to the
small query set size in current evaluations, this is generally incorrect as signifi-
cance tests of the difference in correlation will show. Additionally, the currently
employed evaluation measure for query performance prediction, namely the lin-
ear correlation coefficient r, is shown to be prone to failure. r is an indicator of
the strength of the linear relationship between prediction values and retrieval
performance values (e.g. Average Precision) for a set of queries. While this is
reasonable when evaluating parameter-free methods such as the pre-retrieval
predictors introduced later, a problem arises when combining different predic-
tors: combination methods have a higher degree of freedom and can thus fit the
set of predictor/retrieval performance values very well. While such an overfit-
ting leads to a high r value, it generally lowers the prediction accuracy, that
is the quality of the method when predicting values of unseen queries. Fur-
thermore, what does r actually mean? The value itself, unless close to one or
zero, is difficult to interpret and does not provide an intuitive indication of the
quality of the prediction methods. A more intuitive measure would report the
error on the prediction of the effectiveness values. This informs the researcher
and practitioner of the utility of the method in terms of actual performance.
Since the prediction accuracy is a much more meaningful evaluation measure of
query performance prediction (QPP) than r, we adopt the methodology applied
in machine learning and report the root mean squared error (RMSE) derived
from training a linear model on a training set and evaluating it on a separate
test set.

This paper critically examines the evaluation of QPP methods and addresses
the aforementioned problems within the current evaluation methodology. Specif-
ically, we focus on the evaluation and combination of pre-retrieval QPP meth-
ods, where we compare nineteen predictors and three combination methods that
are novel to QPP. Our findings show, that while under the previous evaluation
methodology the combined predictors considerably outperform single predic-
tor methods (given r), this study reveals that the combined methods are only
slightly better than the best single predictor (in terms of RMSE). After out-
lining the different types of tasks and the different types of QPP algorithms in
Section 2, we consider the problems with the current evaluation methodology
in Section 3. We propose how these issues can be resolved by using standard
techniques employed in machine learning to combat effects of combining predic-
tors and evaluating and comparing predictor performance. In Section 4 several
penalized regression models are introduced as potential combination methods,
which have shown to perform well in analogous prediction scenarios in microar-
ray data analysis [14]. We performed an evaluation on three different TREC
collections (Section 5), discuss the results (Section 6) and conclude the paper in
Section 7.
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2 Related Work and Background

A considerable number of methods have been proposed in recent years that
attempt to provide an indication of a query’s quality. There are two ways in
which these methods can be considered: (i) time of estimate (pre/post-retrieval)
and (ii) type of task (difficulty, rank, retrieval performance).

Pre-retrieval algorithms predict the quality of a query without considering
the ranked list of results, whereas post-retrieval algorithms are employed after
the retrieval stage. They estimate the quality of the given output of a ranking
function. How “quality” is defined depends on the particular task at hand. Let q
be a query, C be a corpus of documents, E be an external source1 and let R be a
ranking function. Then, query difficulty estimation can formally be defined as a
classification task: fdiff(q, C, E, R) → {0, 1}, where 0 (1) indicates a poor (good)
query. In the case of R = ∅ (pre-retrieval), we speak of prediction instead of
estimation2. If we are interested in the particular ranking of a set of queries, for
example to determine which of a pool of queries is the best representation of an
information need, we estimate the queries’ performance: fperf(q, C, E, R) → R,
and the query with the highest score is considered to be the best. While fperf can
produce a ranking of queries, it does not directly estimate the Average Precision
of a query, which is required for instance when comparing the performance of
queries across different collections. In such cases, we rely on fnorm(q, C, E, R) →
[0, 1], which provides comparable normalized scores such as Average Precision.

In this paper, we concentrate on the evaluation of fnorm, but note that fperf

and fdiff can be obtained from fnorm. None of the predictors examined in this
paper provides predicted Average Precision scores but unbounded scores in R,
so that linear regression (whose by-product is r) needs to be applied to obtain
fnorm.

As the evaluation is based on pre-retrieval predictors’ normalized perfor-
mances and to avoid over complications, we will continue with query predictors
instead of estimators and normalized performance instead of rank or difficulty,
although the latter could be substituted in most cases in the context. In the
following subsection, we provide an overview of the 19 pre-retrieval methods
proposed in the literature which we utilized in our experiments.

2.1 Overview of Pre-retrieval Predictors

QPP methods can be divided into four different groups according to the heuristic
they exploit in making their prediction: specificity, ambiguity, term relatedness
and ranking sensitivity.

Specificity. The specificity based predictors predict a query to perform better
with increased specificity. How the specificity is determined, further divides these

1 External sources such as Wikipedia and WordNet are currently utilized in few algo-
rithms.

2 This distinction holds for all definitions that follow.
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predictors into collection statistics based and query based predictors. Average
Query Length (AvQL) [12] relies solely on the query terms. It is based on the
assumption that longer terms are more specific. A number of collection statistics
based specificity predictors have been proposed, which exploit the inverse term
or inverse document frequencies. Averaged Inverse Document Frequency
(AvIDF) [5] assumes the more discriminative the query terms on average, the
better the query will perform. Maximum Inverse Document Frequency
(MaxIDF) [13] on the other hand bases its prediction on the most discrimina-
tive term of all query terms only. A number of slight variations on AvIDF have
been proposed such as those in [7]. They include:Averaged Inverse Collec-
tion Term Frequency (AvICTF) , Query Scope (QS), Simplified Clar-
ity Score (SCS) and Standard Deviation of IDF (DevIDF). In [19], three
predictors were proposed that combine the collection frequency and inverse doc-
ument frequency, where the assumption is that a topic which is well covered in
the collection is likely to perform well: Summed Collection Query Similar-
ity (SumSCQ) , Averaged Collection Query Similarity (AvSCQ) and
Maximum Collection Query Similarity (MaxSCQ).

Ambiguity. If a term always appears in the same or similar contexts across all
documents, the term is considered to be unambiguous. Low ambiguity indicates
an easy query. Instead of basing the predictors on the collection, ambiguity
can also be calculated with an external source such as WordNet. Predictors in
this category include: Average Polysemy (AvP) and Average Noun Poly-
semy (AvNP) [12], which assume that the higher the average number of Word-
Net [2] senses, the more ambiguous and the worse the query is likely to perform.
Average Set Coherence (AvQC) and Global Average Set Coherence
(AvQCG) [8] are collection based and cluster the documents containing the
query terms to determine the number of possible senses (clusters) associated
with a term, where the assumption engaged is more clusters will be indicative of
poorer performance. It should be noted, that AvQC and AvQCG are the most
computationally intensive pre-retrieval predictors considered here, as they rely
on a document by document similarity calculation which for large collections
needs to be approximated by sampling.

Term Relatedness. The disadvantage of predictors in the first two categories stems
from their lack of consideration for the relationship between query terms; the query
political field for example is unambiguous due to the relationship between the two
terms, but a specificity or ambiguity based predictor is likely to predict a poor per-
formance. A strong relationship between query terms is assumed to be indicative of
a well formed query which is likely to be successful. Predictors of this kind include:
Average Pointwise Mutual Information(AvPMI) and Maximum Point-
wise Mutual Information (MaxPMI) which capture the dependency between
query terms, such that a high score is assumed to be correlated with better per-
formance. The exploitation of the semantic relationships identified in WordNet [4]
showed no correlation with retrieval performance and are thus omitted here.
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Ranking Sensitivity. Predictors in this category exploit the potential sensitivity
of the result ranking by predicting how easy it will be for the retrieval method to
rank the documents containing the query terms. If all documents “look the same”
to the retrieval method, it is difficult to rank them and the query is deemed dif-
ficult. In [19], three predictors of this nature are proposed, they are: Summed
Term Weight Variability (SumVAR), Averaged Term Weight Vari-
ability (AvVAR) and Maximum Term Weight Variability (MaxVAR).
The predictors based on the distribution of term weights across the collection,
SumVAR, AvVAR and MaxVAR require less intensive processing than AvQC(G),
although the precomputation of tf.idf weights for all collection terms can also
considered to be computationally more intensive than for instance retrieving the
inverse document frequencies.

Combinations. Despite the considerable number of pre-retrieval predictors pro-
posed, few attempts have been made to combine them. In [19] the proposed pre-
dictors are linearly combined, and the best performing combination is reported.
As already pointed out, in the case of the linear correlation coefficient, a combina-
tion of predictors usually results in a higher correlation coefficient and is thus not
necessarily indicative of improved query performance prediction abilities.

3 Evaluation Methodology

The standard correlation based approach to evaluation as performed in [8,7,19,
10, 12] is as follows. Let Q be the set of queries q and let Rq be the ranked
list returned by the ranking function R for q. For each q ∈ Q, the predicted
score v is obtained from a given predictor and the average precision p of Rq is
determined. Given all pairs (v, p), the correlation coefficient is calculated and
reported. This can either be the rank correlation coefficients Spearman’s Rho
or Kendall’s Tau [1] which are applicable in the context of fdiff and fperf or the
linear correlation coefficient r which has been used to evaluate fnorm. Note that
in [17,16] two correlation-independent evaluations for fdiff have been proposed.
Since the focus of this paper is on fnorm, we consider the linear correlation
coefficient r.

Using two examples, we show why it is difficult to interpret the r value and
why it is prone to providing misleading conclusions, before addressing the short-
comings of the current methodology and conducting a comprehensive evaluation
of QPP methods assuming the task defined by fnorm.

Linear Correlation Coefficient. Ranking based approaches are not suitable to
evaluate the scenario fnorm, due to their indifference to the particular predicted
and actual scores. The linear correlation coefficient r is the used alternative.
It is defined as the covariance Cov(X, Y ), normalized by the product of the
standard deviations σXσY of the predicted scores X and the actual scores Y :
r = Cov(X,Y )

σXσY
. X and Y are perfectly positively linearly related if r = 1, while r =

0 indicates the lack of a linear relationship. As pointed out in the introduction,
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r, although difficult to interpret, can be employed when the QPP method is
not prone to overfitting. What is not sufficient however, is to compare the point
estimate of r to a basline predictor and to view a higher value as proof of a better
method. Instead, the confidence interval of r should be reported and it should
be established (and that is usually neglected) if the difference in correlation is
statistically significant3. In our evaluation, we employed the significance test
proposed in [11]. It will be evident that due to the small query set sizes, a
number of predictors show no significant difference and thus no conclusion can
be drawn about the best. While we restrict ourselves to significance tests on r
due to space constraints, the results are similar when evaluating Kendall’s Tau
and Spearman’s Rho in this manner.

Drawbacks of r. To exemplify the interpretation problem of r, scatter plots are
presented in Figure 1 for high, moderate and low correlation along with the
best linear fit. Each point represents a query with its corresponding Average
Precision on the x-axis and prediction score on the y-axis. In case of 1(a) the
AvIDF scores of queries 301-350 were plotted against a tf.idf based retrieval run
with a low mean average precision (map) of 0.11. The high linear correlation
of r = 0.81 highlights another possible issue: the correlation coefficient of a
predictor can be improved by correlating the prediction scores with the “right”
retrieval method instead of improving the predictor method itself. Figures 1(b)
and 1(c) were generated from the predictor AvIDF and a Dirichlet smoothed
(μ = 1000) retrieval run. They show the difference between a medium and a
low correlation. Intuitively, one might expect a noticeable difference in linearity
between the cases of r = 0.59 and r = 0.22. In the two scatter plots however,
the difference appears minor. For comparison, Kendall’s Tau τ is also reported
in Figure 1: its value is generally lower, but the trend is the same.
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(a) map = 0.11, r = 0.81,
τ = 0.48
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(b) map = 0.23, r = 0.59,
τ = 0.32
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(c) map = 0.18, r = 0.22,
τ = 0.18

Fig. 1. Correlation examples

Another drawback is the increase in correlation if multiple predictors are
linearly combined (multiple linear regression). Independent of the quality of the
predictors, r increases as more predictors are added to the model. An extreme

3 Currently, predictors are only tested for their significance against a correlation of 0.
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example is given in Figure 2 where the Average Precision scores of queries 451-
550 were correlated with between 1 and 75 randomly generated predictors. At
75 predictors, r > 0.9. Figure 2 also contains the trend of the so-called adjusted
r which takes the number of predictors in the model into account, but still
radj > 0.6.

Extending the current methodology. As our focus is on predicting the retrieval
performance, the evaluation measure should reflect the emphasis on the predic-
tive capabilities of a predictor and should provide us with a number that can be
interpreted as how far the predictions deviate on average from the true value.
Let Ŷ be the predictions and Y be the true values, then the root mean squared

error RMSE is given by RMSE =
√

1
n

∑
i(yi − ŷi)2. Since RMSE2 is the func-

tion minimized in linear regression, in effect, the pre-retrieval predictor with the
highest linear correlation coefficient will have the lowest RMSE. This approach
however mixes training and test data - what we are evaluating is the fit of the
predictor with the training data, while we are interested in the evaluation of the
predictor given novel queries. Ideally, we perform regression on the training data
to determine the model parameters and then use the model to predict the query
performance on separate test queries. Due to the very limited query set size,
this is not feasible, and cross-validation is utilized instead: the query set is split
into k partitions, the model is tuned on k − 1 partitions and the kth partition
functions as test set. This process is repeated for all k partitions and the overall
RMSE is reported.

4 Penalized Regression Approaches

Modeling a continuous dependent variable y, which in our case is a vector of
Average Precision values, as a function of p independent predictor variables xi

is referred to as multiple regression. If we assume a linear relationship between
the variables, we speak of multiple linear regression. Given the data (xi, yi),
i = 1, 2, .., n and xi = (xi1, ..., xip)T , the parameters β = (β1, ..., βp) of the model
y = Xβ + ε are to be estimated. X is the n × p matrix of predictors and ε is
the vector of errors, which are assumed to be normally distributed. The ordinary
least squares (OLS) estimates of β are derived by minimizing the squared error of
the residuals. Apart from overfitting, the lack of model interpretation is an issue.
All predictors remain in the model and very similar predictors might occur with
very different coefficients. If we have a large number of predictors, methods are
preferred that perform automatic model selection, only introducing the most
important subset of predictors into the model. While this has not yet been
explored in the context of QPP, it received considerable attention among others
in microarray data analysis [14] where good results were reported with penalized
regression approaches. As the problems in both areas are similar (very small
data sets, possibly many predictors) it appears sensible to attempt to apply
those methods to query performance prediction. Due to space constraints we
only briefly introduce the four variations tested, namely LARS-Traps, LARS-
CV [6], bootstrapped LASSO (BOLASSO) [3] and the Elastic Net [21]. Penalized
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regression approaches place penalties on the regression coefficients β to keep
the coefficients small or exactly zero which essentially removes a number of
predictors from the model. The least absolute shrinkage and selection operator
(LASSO) [15] is such a method:

LASSO(β̂) = arg min
{ n∑

i=1

(
yi −

p∑
j=1

βjxij

)2
}

subject to
p∑

j=1

|βj | ≤ t. (1)

The total weight of the coefficients is restricted by tuning parameter t ≥ 0.
If a number of predictors are very similar, LASSO tends to include only one
of them in the final model whereas the Elastic Net [21] has a grouping effect
such that highly correlated predictors acquire similar coefficients. It relies on
a penalty combination of the squared and absolute sum of beta coefficients.
LASSO is a special case of the later developed least angle regression (LARS) [6].
LARS determines the full regularization path: in each step, LAR selects the
predictor that is most highly correlated with the residuals y − ŷ of the current
model, resulting in a p × p matrix of beta coefficients. In our experiments, such
regularization paths were derived for LASSO, LARS and the Elastic Net. The
question remains, which vector of beta coefficients from the matrix to choose as
model coefficients. Several stopping criteria exist. Traps are randomly generated
predictors that are added to the set of predictors. The regularization is stopped,
as soon as the one of the random predictors is picked to enter the model. An
alternative is cross-validation (CV): the beta coefficients are learned from k − 1
partitions of the training data and the kth partition is used to calculate the error;
the vector of beta coefficients with the smallest error is then chosen. A third
possibility is the recently proposed bootstrapped LASSO [3], where a number
of bootstrap samples are generated from the training data, the matrix of beta
coefficients of LASSO are determined for each sample and in the end, only those
predictors with non-zero coefficients in all bootstrap samples are utilized in the
final model.

5 Experiments and Results

5.1 Experimental Setup

Data. The adhoc retrieval task was evaluated on three collections and their
respective title topics: TREC Volumes 4+5 (minus CR), WT10g and GOV2.
The corpora were stemmed [9] and stopwords were removed. The basic statistics
are shown in Figure 3. TREC Volumes 4+5 consists of news reports and is the
smallest of the three corpora. WT10g was extracted from a crawl of the Web;
it is rather noisy and contains numerous empty pages, pages with 1-2 terms
only, copyright notices etc. The largest corpus is GOV2. It was derived from
a crawl of the .gov domain and resembles somewhat an intranet structure. For
the analysis of pre-retrieval predictors we fixed the retrieval approach to the
language modeling framework with Dirichlet smoothing [18], with smoothing
parameter μ = 1000.
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TREC WT10g GOV2
Vol. 4+5

#documents 528155 1692095 25199132
#unique terms 764376 7081712 32933168
av doc length 266.4 377.6 665.3
r(cf, df) 0.95 0.88 0.67

topics 301-450 451-550 701-850
av topic length 2.48 2.63 2.97

Fig. 3. Basic corpora statistics. r(cf, df) is
the linear correlation coefficient between col-
lection term frequencies and document fre-
quencies.

Predictor Settings. All predictors described in Section 2 were evaluated. Most are
parameter-free, only the cluster based predictors AvQC and AvQCG require a
manually set sampling level. As it is infeasible to cluster all documents containing
a particular term, a maximum of 10000 (TREC Vol. 4+5), 20000 (WT10g) and
50000 (GOV2) documents were sampled respectively. The parameter settings of
the Elastic Net were taken from [21]. LARS-Traps was tested with 6 randomly
generated traps while LARS-CV was set up with 10-fold CV. BOLASSO was
used with 10 bootstrapped samples and each sample was cross-validated to re-
trieve the best beta coefficient vector. For evaluation purposes, the RMSE of
all methods was determined by leave-one-out cross validation, where each query
is once assigned as test set and the model is trained on all other queries. This
setting is sensible due to the small query set size (maximum 150). To emphasize
the cross-validation RMSE approach being different from r/CI established on
the training set only, we write rtrain and CItrain.

5.2 Results

Statistical Significance. In Figure 4 the performance of all pre-retrieval predic-
tors is given in terms of their linear correlation coefficient and the corresponding
95% confidence interval (CI). If the CI contains 0, the predictor is not signifi-
cantly different from 0 correlation. Additionally, all predictors not significantly
different [11] from the best performing predictor for each collection are under-
lined. While not shown, a similar analysis was performed for Kendall’s Tau,
whose results were comparable.

Root Mean Squared Error. The RMSE of the single predictors are also presented
in Figure 4. Since linear regression minimizes the mean squared error, the best
predictors in terms of r also have the lowest RMSE. The penalized regression
results are reported in Figure 5 along with r and CI and exemplary the predictors
selected for LARS-Traps and LARS-CV are shown in histogram form in Figure 6.
The bars indicate in how many of the n times the algorithm run, each predictor
was selected to be in the model.
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TREC Vol. 4+5 WT10g GOV2

Predictor rtrain CItrain RMSE rtrain CItrain RMSE rtrain CItrain RMSE

AvICTF 0.49 [ 0.36, 0.60] 0.190 0.17 [-0.03, 0.35] 0.195 0.28 [ 0.13, 0.42] 0.184
AvIDF 0.52 [ 0.39, 0.62] 0.188 0.18 [-0.02, 0.37] 0.192 0.31 [ 0.16, 0.45] 0.182
AvPMI 0.35 [ 0.21, 0.48] 0.207 0.28 [ 0.09, 0.46] 0.191 0.28 [ 0.12, 0.42] 0.187
AvQC 0.46 [ 0.32, 0.58] 0.191 0.16 [-0.04, 0.35] 0.196 0.30 [ 0.14, 0.44] 0.184
AvQCG 0.33 [ 0.18, 0.47] 0.206 -0.02 [-0.22, 0.18] 0.201 0.05 [-0.11, 0.21] 0.194
AvQL 0.13 [-0.03, 0.29] 0.215 -0.14 [-0.32, 0.07] 0.197 0.01 [-0.15, 0.17] 0.194
AvSCQ 0.26 [ 0.10, 0.40] 0.210 0.31 [ 0.12, 0.48] 0.188 0.35 [ 0.20, 0.52] 0.180
AvVAR 0.51 [ 0.38, 0.62] 0.185 0.29 [ 0.10, 0.46] 0.188 0.39 [ 0.25, 0.52] 0.177
DevIDF 0.24 [ 0.08, 0.38] 0.212 0.23 [ 0.04, 0.41] 0.192 0.18 [ 0.02, 0.34] 0.189
MaxIDF 0.53 [ 0.41, 0.64] 0.186 0.29 [ 0.10, 0.46] 0.187 0.33 [ 0.18, 0.47] 0.181
MaxPMI 0.30 [ 0.14, 0.43] 0.210 0.27 [ 0.07, 0.44] 0.191 0.30 [ 0.15, 0.44] 0.186
MaxSCQ 0.34 [ 0.19, 0.47] 0.205 0.40 [ 0.22, 0.55] 0.184 0.40 [ 0.26, 0.53] 0.178
MaxVAR 0.51 [ 0.38, 0.62] 0.182 0.41 [ 0.23, 0.56] 0.184 0.41 [ 0.27, 0.54] 0.176
QS 0.41 [ 0.26, 0.53] 0.201 0.06 [-0.14, 0.26] 0.197 0.18 [ 0.02, 0.33] 0.189
SCS 0.48 [ 0.35, 0.59] 0.191 0.13 [-0.07, 0.32] 0.195 0.25 [ 0.09, 0.39] 0.186
SumSCQ 0.00 [-0.16, 0.16] 0.217 0.18 [-0.02, 0.37] 0.194 0.23 [ 0.08, 0.38] 0.187
SumVAR 0.30 [ 0.14, 0.44] 0.206 0.30 [ 0.11, 0.47] 0.189 0.34 [ 0.19, 0.47] 0.182
AvNP -0.22 [-0.37, -0.06] 0.210 -0.11 [-0.30, 0.09] 0.198 -0.03 [-0.19, 0.13] 0.194
AvP -0.12 [-0.28, 0.04] 0.214 -0.18 [-0.37, 0.02] 0.195 0.02 [-0.14, 0.18] 0.194

Fig. 4. Performance of pre-retrieval predictors given in r, the 95% confidence interval
CI of r and the RMSE. In bold is the best performing predictor for each collection.
According to the significance test in [11], all underlined predictors per column are not
significantly different from the best performing predictor.

TREC Vol. 4+5 WT10g GOV2

Predictor rtrain CItrain RMSE rtrain CItrain RMSE rtrain CItrain RMSE

OLS 0.69 [ 0.60, 0.77] 0.188 0.64 [0.51, 0.74] 0.208 0.52 [ 0.39, 0.63] 0.190
LARS-Traps 0.59 [ 0.47, 0.68] 0.179 0.52 [0.36, 0.65] 0.187 0.44 [ 0.30, 0.56] 0.178
LARS-CV 0.68 [ 0.59, 0.76] 0.183 0.53 [0.38, 0.66] 0.178 0.46 [ 0.33, 0.58] 0.184
BOLASSO 0.59 [ 0.47, 0.68] 0.181 0.43 [0.25, 0.58] 0.198 0.43 [ 0.28, 0.55] 0.180
Elastic Net 0.69 [ 0.60, 0.77] 0.182 0.52 [0.35, 0.65] 0.182 0.46 [ 0.32, 0.57] 0.178

Fig. 5. Results of the penalized regression approaches. In bold, improvements over the
best single predictor per collection are shown. Notice how the rtrain values provide a
misleading indication of the system’s actual performance.
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Fig. 6. Predictor selection
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6 Discussion

The results show that the predictor performance is collection dependent, varying
according to the quality of the corpus documents. It is evident, that the single pre-
dictors perform better on the high quality news article collection compared to the
web collections. The specificity based predictors achieve the highest correlation at
TREC Vol. 4+5, whereas the ranking sensitivity based predictors appear the most
stable, performing similarly across all three corpora. The CIs of r are wide due to
the small number of queries and the lower r, the wider the interval. For r = 0.31
with CI = [0.12, 0.48] for instance, one cannot say more than with 95% confidence
that r is below0.5. Significance testing reveals that a variety of single predictors are
not significantly different from the predictor with the highest r value. This result
indicates, that any one of the top predictors could be used. MaxIDF and the more
computationally intensive MaxVAR, consistently provided the best performance.

While the correlation coefficient r suggests that the combined methods per-
form better than the single predictors, when we examine the results of the
stronger RMSE based evaluation methodology, a different picture presents it-
self. Although the penalized regression approaches have a lower error than the
OLS baseline as expected, the decrease in error compared to the single predictors
is smaller than one might expect. In fact, on the GOV2 collection the error in-
creased. In Figure 6(a) the histogram shows which predictors contribute the most
to the combined estimate. Notably, in most instances the same five predictors
are used in the final models. The remaining predictors appear to fail to capture
any more of the variance within the data and remain unused. Such a behaviour
is desired, however, the performance is less than expected in terms of RMSE.
This is due to two reasons, (a) the quality of some predictors is poor and might
not be better than random and (b) as evident from the scatter plots (Figure 1),
the training data is overrepresented at the lower end of the Average Precision
scores (0.0-0.2) while very few queries exist in the middle and high range. The
problems caused by poor predictors is further exemplified in Figure 6(b) where
apart from MaxVAR a large variety of predictors are added to the model.

7 Conclusions

In this paper we presented a taxonomy of pre-retrieval predictors and clarified
the different tasks that lead to different evaluation measures. We focused on
fnorm and its currently employed measure, the linear correlation coefficient. We
showed that it is difficult to interpret, without a significance test no conclusion
can be drawn about the relative improvement of one method over another and it
is not usable when combining predictors. Reporting the cross-validated RMSE
as a measure of the prediction accuracy gives a more reliable and interpretable
indicator of a method’s quality. Finally, we performed first experiments on com-
bining predictors in a principled way through penalized regression which has the
advantages of sparseness and interpretability. We showed that under the previous
evaluation methodology the combination methods would be considered better in
terms of r, though they are in fact comparable to the best single predictors. In
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future work we will address the problem of limited training data by employing
simulated queries to create more training data, investigate the use of non-linear
methods for combination and employ regression trees.

References

1. Rank Correlation Methods. Hafner Publishing Co., New York (1955)
2. WordNet - An Electronic Lexical Database. MIT Press, Cambridge (1998)
3. Bach, F.R.: Bolasso: Model consistent lasso estimation through the bootstrap. In:

ICML (2008)
4. Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic re-

latedness. In: IJCAI 2003, pp. 805–810 (2003)
5. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In:

SIGIR 2002, pp. 299–306 (2002)
6. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann.

Statist. 32(2), 407–499 (2004)
7. He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors. In:

Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 43–54.
Springer, Heidelberg (2004)

8. He, J., Larson, M., de Rijke, M.: Using coherence-based measures to predict query
difficulty. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W.
(eds.) ECIR 2008. LNCS, vol. 4956, pp. 689–694. Springer, Heidelberg (2008)

9. Krovetz, R.: Viewing morphology as an inference process. In: SIGIR 1993, pp.
191–202 (1993)

10. Macdonald, C., He, B., Ounis, I.: Predicting query performance in intranet search.
In: SIGIR 2005 Query Prediction Workshop (2005)

11. Meng, X., Rosenthal, R., Rubin, D.: Comparing correlated correlation coefficients.
Psych. Bull. 111, 172–175 (1992)

12. Mothe, J., Tanguy, L.: Linguistic features to predict query difficulty - a case study
on previous trec campaigns. In: SIGIR 2005 Query Prediction Workshop (2005)

13. Scholer, F., Williams, H., Turpin, A.: Query association surrogates for web search.
Journal of the American Society for Information Science and Technology 55(7),
637–650 (2004)

14. Segal, M.R., Dahlquist, K.D., Conklin, B.R.: Regression approaches for microarray
data analysis. J. Comput. Biol. 10(6), 961–980 (2003)

15. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Statist. Soc.
B 58(1), 267–288 (1996)

16. Vinay, V., Cox, I.J., Milic-Frayling, N., Wood, K.: On ranking the effectiveness of
searches. In: SIGIR 2006, pp. 398–404 (2006)

17. Voorhees, E.: Overview of the trec 2003 robust retrieval track. In: Proceedings of
the Twelfth Text REtrieval Conference (2003)

18. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to ad hoc information retrieval. In: SIGIR 2001, pp. 334–342 (2001)

19. Zhao, Y., Scholer, F., Tsegay, Y.: Effective pre-retrieval query performance predic-
tion using similarity and variability evidence. In: Macdonald, C., Ounis, I., Pla-
chouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp.
52–64. Springer, Heidelberg (2008)

20. Zhou, Y., Croft, W.B.: Query performance prediction in web search environments.
In: SIGIR 2007, pp. 543–550 (2007)

21. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R.
Statist. Soc. B 67(2), 301–320 (2005)


	The Combination and Evaluation of Query Performance Prediction Methods
	Introduction
	Related Work and Background
	Overview of Pre-retrieval Predictors

	Evaluation Methodology
	Penalized Regression Approaches
	Experiments and Results
	Experimental Setup
	Results

	Discussion
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


