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Abstract. Query performance predictors are commonly evaluated by
reporting correlation coefficients to denote how well the methods per-
form at predicting the retrieval performance of a set of queries. Despite
the amount of research dedicated to this area, one aspect remains ne-
glected: how strong does the correlation need to be in order to realize
an improvement in retrieval effectiveness in an operational setting? We
address this issue in the context of two settings: Selective Query Ex-
pansion and Meta-Search. In an empirical study, we control the quality
of a predictor in order to examine how the strength of the correlation
achieved, affects the effectiveness of an adaptive retrieval system. The
results of this study show that many existing predictors fail to achieve a
correlation strong enough to reliably improve the retrieval effectiveness
in the Selective Query Expansion as well as the Meta-Search setting.

1 Introduction

Predicting the performance, i.e. the retrieval effectiveness, of queries has become
a very active area of research in recent years [1, 4, 6, 8, 13, 15, 18–21]. Accurately
predicting a query’s effectiveness would enable the development of adaptive com-
ponents in retrieval systems. For instance, if the performance of a query is pre-
dicted to be poor, the system may ask the user for a refinement of the query
or divert it to a specialized corpus. Conversely, if the performance of a query
appears sufficiently good, the query’s performance can be further improved by
an affirmative action such as automatic query expansion (AQE) [1].
While the perceived benefits of query performance prediction (QPP) methods
are clear, current evaluations often do not consider whether those benefits are in-
deed realized. Commonly, the correlation between the ground truth (the retrieval
effectiveness in average precision for instance) and the predicted performance of
queries is reported. The subsequent application of QPP methods in an oper-
ational setting is often missing and thus it remains unclear, if QPP methods
perform well enough to be useful in practice.
In this work, we attempt to bridge this knowledge gap by investigating the
relationship between the correlation that QPP methods achieve, and their effect
on retrieval effectiveness in two operational settings: Meta-Search (MS) [15, 18]
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and Selective Query Expansion (SQE) [1, 5, 18]. Our goal is to determine at
what levels of correlation a QPP method can be considered good enough to be
employable in practice. If we can determine such thresholds, we would be able to
infer from a correlation-based evaluation, whether the quality of a QPP method
is sufficient for an operational setting.
We conduct two empirical studies based on several TREC3 data sets. In previous
work [7], we performed preliminary experiments with respect to SQE. Here, we
extend these experiments and add a second setting: Meta-Search. We will show,
that the correlation a QPP method needs to achieve on average to be useful in
practice, is dependent on the operational setting. In the SQE setting, moderate
to high correlations result in reliable improvements. In the MS setting, low to
moderate correlations are already sufficient, however for these improvements to
be statistically significant, we find moderate to high correlations to be required.
The paper is organized as follows: in Sec. 2 we outline related work and the
motivation for our work. The data sets and our general approach are described
in Sec. 3. Then, the experiments on SQE (Sec. 4) and MS (Sec. 5) are presented,
followed by the conclusions and directions for future work (Sec. 6).

2 Related Work and Motivation

First, we briefly describe the two main types (pre- and post-retrieval) of QPP
methods. To give an indication of the success QPP methods have achieved in
SQE and MS respectively, we also provide an overview of literature that em-
ployed QPP methods in either setting.

Query Performance Prediction Pre-retrieval QPP methods predict the per-
formance of a query without considering the ranked list of results returned by a
retrieval system in response to a query. Approaches in this category are usually
based on the query terms’ corpus-statistics, such as the standard deviation of the
query terms’ IDF [8] or TF.IDF [19] values. Post-retrieval predictors base their
predictions on the ranked list of results. The strategies employed are manifold,
they include a comparison between the ranked list and the corpus [1, 4], the per-
turbation of query terms and a subsequent comparison of the generated ranked
lists [13, 18, 21], the perturbation of documents in the ranked list to determine
the list’s stability [13, 20], and the reliance on different retrieval approaches to
form predictions based on the diversity of the returned documents [6]. The two
most commonly reported correlation coefficients in QPP evaluations are the rank
correlation coefficient Kendall’s Tau τ ∈ [−1, 1] and the linear correlation coef-
ficient r ∈ [−1, 1]. Current state of the art QPP methods achieve up to τ ≈ 0.55
and r ≈ 0.65, depending on the test corpus and query set.

Applications of SQE The two SQE scenarios evaluated in [18] are based on
the notion that easy queries (queries with a high retrieval effectiveness) improve
with the application of AQE, while difficult queries (queries with a low retrieval
effectiveness) degrade. The reasoning is as follows: easy queries will have relevant

3 Text REtrieval Conference (TREC), http://trec.nist.gov/
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documents among the top ranked results, and thus an AQE algorithm [3, 12,
16, 17], which derives additional query terms from the top ranked documents
returned for the initial query, is likely to pick terms related to the information
need. The ranked list retrieved for the expanded query thus further improves the
quality of the results. Difficult queries have few or no relevant documents in the
top ranks and an AQE algorithm will add irrelevant terms to the query, degrading
the result quality. In the first scenario in [18], a support vector machine is trained
on features derived from the ranked list of the original query to classify queries
as either to be expanded or not. In the second scenario [18], a QPP method
is used to rank the queries according to their predicted performance. The 85%
best performing queries are derived from TREC topic descriptions4 (simulating
AQE), while the bottom 15% of queries are derived from TREC topic titles
(simulating no AQE). In both experiments, selectively expanding the queries
based on a QPP method proves slightly better than uniformly expanding all
queries, with a change in Mean Average Precision (MAP) of +0.001.

An analogous scenario with a different QPP method is evaluated in [1]; the
greatest improvement reported is from a MAP of 0.252 (AQE of all queries) to
0.256 (selective AQE). Better results are reported in [5], where the threshold
of when (not) to expand a query is learned: in the best case, MAP increases
from 0.201 (AQE of all queries) to 0.212 (selective AQE). AQE is combined
with collection enrichment in [9]: depending on how the QPP method predicts
a query to perform, it is either not changed, expanded based on the results of
the local corpus or expanded based on the results of the external corpus. The
evaluation yields mixed results, while for one data set the MAP increases from
0.220 (AQE of all queries) to 0.236 (selective AQE), no change in effectiveness is
observed for a second data set. These results indicate, that successfully applying
a QPP method in the SQE setting is a challenging task.

Applications of MS In [18], the following meta-search setup is evaluated: a
corpus is partitioned into four parts, each query is submitted to each partition,
and the result lists of each partition are merged with weights according to their
predicted performance. In this experiment, MAP increases from 0.305 (merging
without weights) to 0.315 (merging with QPP based weights).

In [15], a variety of retrieval algorithms are applied on one corpus. For each query
and retrieval algorithm, a result list is derived and its predicted performance
score is determined. Heuristic thresholds are used to classify each result list as
either poor, medium or good. The result lists are then merged with weights ac-
cording to the performance classification. The best weighted data fusion method
performs 2.12% better than the unweighted baseline. Finally, in [14] it is pro-
posed to generate a number of relevance models [11] for each query and pick the
model that is predicted to perform best. The results indicate the feasibility of
the approach, the QPP-based model selection strategy significantly outperforms
the baseline.

4 A TREC topic usually consists of a title (a small number of keywords), a description
(a sentence) and a narrative (a long description of the information need).
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Overall, few works have employed QPP in practice. Based on the results, we
hypothesize, that it is easier to be successful in the MS than in the SQE setup.

Evaluation by Correlation Evaluating QPP methods by reporting correlation
coefficients is the current standard. The correlation based evaluation though can
lead to problems: (i) very different predictions can lead to similar correlations,
(ii) a QPP method for which a high (low) correlation is reported, may not lead
to an increase (decrease) in retrieval effectiveness in an operational setting, and,
(iii) following from (i) and (ii) is the observation that a single QPP method is not
a reliable indicator of the level of correlation required, at which the application
of a QPP method in practice is likely to lead to a consistent gain in retrieval
effectiveness.

Fig. 1. Examples of predicted query rankings (R1 to R3) and their effect on SQE. Of the 18 queries,
those ranked 1-12 (white) improve when AQE is employed, the results of queries ranked 13-18 (grey)
degrade with the application of AQE.

Fig. 1 contains a conrete example for Kendalls τ , the correlation coefficient we
investigate in this work. The true ranking is the ranking of queries based on their
retrieval effectiveness. Let us assume a SQE setup according to [18]: the queries
ranked 1-12 benefit from AQE, the remaining queries do not. R1, R2 and R3 are
examples of predicted rankings of query performance. R1 predicts all ranks in-
correctly, thus τR1

= −0.06 with respect to the true ranking. All AQE decisions
though are correct, which leads to an optimal increase in retrieval effectiveness
in SQE. The opposite case is R2 with τR2

= 0.53. The AQE decision is wrong for
12 queries, degrading the retrieval effectiveness. Based on the predicted rank-
ing R3, the wrong AQE decision is made for 4 queries. Although the retrieval
effectiveness will be better than based on R2, τ is similar: τR3

= 0.49.

Thus, predictions resulting in similar correlations can have very different impacts
on retrieval effectiveness, a problem which motivates our work.

3 Method and Materials

Ideally, we would like to perform the following experiment: given a large number
of QPP methods, a large number of retrieval algorithms and a set of queries, let
each QPP method predict the queries’ quality. Evaluate the QPP methods in
terms of τ , use the predictions in an operational setting and perform retrieval
experiments to derive baseline and QPP-based results. Finally, check at what
level of τ the QPP-based results generally improve over the baseline. In practice,
this is not feasible as state of the art QPP methods only reach up to τ ≈ 0.55.
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Data Sets To perform experiments on SQE and MS, test collections, sets of
queries and their respective retrieval performances are required. To make our
results independent of a particular retrieval approach, we utilize TREC data
sets, in particular the runs submitted by the participants to different adhoc
retrieval tasks. All submitted runs with a MAP greater than 0.15 are included
in this study. The data sets used are as follows (in brackets the number of
runs): TREC6 (49), TREC7 (77), TREC8 (103), TREC9 (53), TREC10 (59),
Terabyte04 (35), Terabyte05 (50) and Terabyte06 (71).

QPP Method of Arbitrary Accuracy As state of the art QPP methods
achieve a limited τ , they are unsuitable for our investigation. Since τ is rank
based, it is possible to construct predicted rankings of any level of τ , simply
by randomly permutating the true performance ranking of queries. The smaller
the number of permutations, the closer τ is to 1. The larger the number of
permutations, the closer τ is to 0. From the full range of τ ∈ [−1, 1], sixteen
intervals {c0.1, ..., c0.85} of size 0.05 each were investigated, starting a c0.1 =
[0.1, 0.15) and ending at c0.85 = [0.85, 0.9)5. For each interval ci, 1000 rankings
were randomly generated with τ ∈ ci with respect to the true ranking. We rely
on such a large number of rankings due to the issues outlined in Fig. 1: a single
predicted ranking can be misleading when applied in practice. By considering
the results of 1000 rankings for each ci, we can consider the change in retrieval
effectiveness on average. Each predicted ranking is used in the SQE and MS
experiments, which allows us to analyze the impact of varying levels of correlation
against retrieval effectiveness.

4 Selective Query Expansion

We analyze the relationship between τ as evaluation measure of QPP methods
and the change in retrieval performance when queries are expanded selectively
in a setup analogous to [18]. The effect AQE has on retrieval effectiveness varies,
depending on the AQE approach, the retrieval algorithm and the set of queries
evaluated. While across the whole query set, AQE aids retrieval effectiveness
(improvements range between 3 − 40% [12, 16, 17]), not all queries benefit. The
percentage of queries from a query set performing worse when AQE is applied
varies between 20−40% [1, 10, 12, 16]. In [1, 10] it is reported that the worst and
the very best queries are hurt by AQE6, whereas in [3, 16] only the worst queries
are reported to be hurt by AQE.

4.1 Experimental Details

Let us for now assume that all well performing queries improve with AQE, while
the worst performing queries all degrade with AQE. Let θ be a rank threshold.

5 This is sufficient, as negative correlations can be transformed into positive correla-
tions by reversing the ranking and τ = 1 indicates two perfectly aligned rankings.

6 Further adding terms dilutes the results of the already highly performing queries.



6

Our SQE setup is as follows: given a set of m queries, they are ranked according
to their predicted performance. AQE is applied to the best (θ×m− 1) perform-
ing queries, the remaining queries are not expanded. As this setup only requires
predicted rankings, we can use our generated predicted rankings of arbitrary ac-
curacy. To evaluate the retrieval effectiveness of SQE, we require pairs of baseline
(no AQE) and AQE runs. Then, we perform SQE based on the predicted rank-
ings and consider SQE successful if it improves over the retrieval effectiveness
of the AQE run. We derive baseline and AQE run pairs from the runs in our
data sets. As we are not interested in the result lists themselves, but in the ef-
fectiveness of each run on each query Q, we consider a run to consist of a list of
average precision (AP) values, thus run = (apQ1 , apQ2 , .., apQm).

Run Pairs Each run of our data sets is considered as a baseline run runbase (no
AQE) for which a corresponding AQE run runaqe is generated. Recall, that we
work with the assumption that AQE improves the effectiveness of the well per-
forming queries, while degrading the effectiveness of poorly performing queries.
Thus, for each apQi

base in runbase, a respective apQi
aqe value in runaqe is generated

such that apQi
aqe > apQi

base when apQi

base is among the top (θ × m − 1) perform-

ing queries in runbase, otherwise apQi
aqe < apQi

base. The apQi
aqe values are randomly

sampled (with the outlined restrictions) from the other runs in the data sets, a

strategy supported by [2], where no correlation between apQi

base and the amount

of improvement, i.e. ∆ = apQi
aqe − apQi

base, ∆ > 0, was found. The optimal SQE
run runopt is the run where the correct AQE decision is made for every query:

apQi

opt = max(apQi

base, apQi
aqe). We only include run pairs where the MAP of runaqe

improves by between 15− 30% over runbase and runopt improves by at least 3%
over runaqe. Due to the random component in the process, 500 run pairs are
created for each setting of θ = {1/2, 2/3, 3/4} and m = {50, 150}. The choice of
θ is based on [12, 16], the settings of m are typical TREC topic set sizes.

Experiment Given the 1000 rankings per ci and the 500 run pairs (runbase/runaqe)
for each setting of θ and m, SQE is thus performed 500, 000 times for each ci.
From each run pair and predicted ranking in ci a selective AQE run runsqe is

formed: if according to the predicted ranking apQi

base is among the top (θ×m−1)
scores in runbase, then apQi

sqe = apQi
aqe, that is the AQE result is used. The re-

maining queries are not expanded and apQi
sqe = apQi

base. Recorded are the MAP of
runbase, runaqe, runopt and runsqe. We consider SQE to be successful if the MAP
of runsqe is higher than the MAP of runaqe. Since the (runbase/runaqe) pairs lead
to different absolute changes in retrieval performance, we report a normalized
value: vsqe = 100(MAPsqe −MAPbase)/(MAPopt −MAPbase). When the correct
AQE decision is made for each query, vsqe = 100. In contrast, vsqe < 0 if the
MAP of runsqe is below the baseline’s runbase MAP.
We present the results, derived for each ci, in the form of box plots. Every box
marks the lower quartile, the median and the upper quartile of 500, 000 vsqe

values. The whiskers mark the 1.5 inter-quartile range, the remaining separately
marked points are outliers. We also plot the median normalized value of AQE
runs as horizontal line, as it is the value vsqe should improve upon.
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4.2 Experimental Results

Best-Case Scenario First, we evaluate the best-case scenario, where our as-
sumption that AQE only hurts the worst performing queries holds for all run
pairs. The results for the different settings of θ and m are presented in Fig. 2.

(a) m = 50, θ = 1/2,
levels τ = [0.3, 0.4, 0.5]

(b) m = 50, θ = 2/3,
levels τ = [0.35, 0.45, 0.6]

(c) m = 50, θ = 3/4,
levels τ = [0.35, 0.45, 0.6]

(d) m = 150, θ = 1/2,
levels τ = [0.35, 0.45, 0.5]

(e) m = 150, θ = 2/3,
levels τ = [0.45, 0.5, 0.55]

(f) m = 150, θ = 3/4,
levels τ = [0.35, 0.45, 0.5]

Fig. 2. SQE best-case scenario. On the x-axis the starting value of each correlation interval ci is
listed, that is the results for c0.2 = [0.2, 0.25) are shown at position 0.2. The horizontal lines mark
the normalized median value of the performance of the AQE runs, which vsqe must improve upon
for SQE to be successful. “levels τ” lists the lower bound of ci where the SQE runs outperform the
AQE runs in at least 25%, 50% and 75% of all 500, 000 samples (these levels can be read from the
box plots).

Independent of m and θ, for all correlation intervals ci a number of positive
outliers exist, where the MAP of runsqe improves over runaqe’s MAP. Thus,
even if τ = 0.1, a QPP method can be successful by chance. This supports the
view that a single experiment and QPP method are inadequate indicators to
show a QPP’s method utility in practice.
When the correlation of the predicted ranking with respect to the ground truth is
low, runsqe may perform worse than runbase as observed for θ = 1/2 and m = 50
(negative vsqe values). This means that a poor QPP method may significantly
degrade the effectiveness of a system. An increase in τ generally leads to a
smaller spread in performance (the height of the boxes in the plot) of vsqe,
that is, outliers are rarer and the performance drop is not as sharp. Finally, the
number m of queries also influences the outcome - with increased m the spread
of the results decreases and the results can be considered to be more stable.
This suggests that the more queries are used in the evaluation, the better the
correspondence between the evaluation measure Kendalls τ and the performance
in an operational setting.
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Random Perturbations We now investigate what happens when the assump-
tion that all well performing queries improve with AQE is violated. This exper-
iment is motivated by the divergent observations [1, 10, 12, 16] about the change
in effectiveness of the best performing queries when AQE is applied.

(a) m = 50, p = 10%,
levels τ = [0.35, 0.55, 0.75]

(b) m = 50, p = 20%,
levels τ = [0.45, 0.8,−]

(c) m = 50, p = 30%,
levels τ = [−,−,−]

(d) m = 150, p = 10%,
levels τ = [0.45, 0.6, 0.7]

(e) m = 150, p = 20%,
levels τ = [0.65, 0.85, −]

(f) m = 150, p = 30%,
levels τ = [−,−,−]

Fig. 3. SQE random perturbation scenario. θ = 1/2 is fixed. “levels τ” lists the lower bound of ci

where the SQE runs outperform the AQE runs in at least 25%, 50% and 75% of all 500, 000 samples.

To simulate such violation, we perturb runaqe. Given a run pair (runbase/runaqe),
we randomly select a query Qi from the top (θ × m − 1) performing queries of

runaqe and perturb its score apQi
aqe to âpQi

aqe, which is a random value below apQi

base.

To keep the MAP of runaqe constant, the difference (apQi
aqe − âpQi

aqe) is randomly
distributed among the other queries’ ap scores. This procedure is performed for
p = {10%, 20%, 30%} of the queries. The results of this experiment with fixed
θ = 1/2 are shown in Fig. 3. Evidently, already a small number of perturbed
queries has a considerable influence on the minimum τ which is required to
improve runsqe over runaqe. When p = 10%, τ ≥ 0.55 is required to ensure that
for more than 50% of the samples runsqe improves over runaqe. A further increase
in the number of perturbed queries leads to a situation as visible for p = 30%,
where independent of the accuracy of the predicted ranking, in less than 25% of
all instances runsqe improves over runaqe.
To summarize, in the best-case scenario, we have shown that a QPP method
should evaluate to at least τ = 0.4, for 50% of the samples to improve with the
application of SQE. This threshold increases to τ = 0.55, when the assumption
we make about for what queries AQE is successful, is slightly violated. These
results explain the low levels of success in [1, 5, 9, 18], where QPP methods were
applied in the SQE setting. Only the best performing QPP methods reach the
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levels of τ required to be beneficial. Moreover, making the wrong assumption
about when AQE will lead to increased system effectiveness quickly leads to a
situation where it does not matter anymore, how well a QPP method performs.

5 Meta-Search

The second operational setting we examine is Meta-Search where we adopt a
setup analogous to [14]: given a query and a set of t runs, we select the run
that is predicted to perform best for the query. We chose this setup over the
data fusion setup [18], where the merging algorithm introduces an additional
dimension, as it allows us to better control the experimental setting.

5.1 Experimental Details

In preliminary experiments we found two parameters influencing the retrieval
effectiveness of QPP-based meta-search: (i) the number t of runs, and (ii) the
percentage γ of improvement in MAP between the worst and the best performing
run in the set of t runs. The experimental setup reflects these findings. We derived
500 sets of t runs from our data sets for each setting of γ: 0 − 5%, 15 − 20%,
30 − 35% and 50 − 55%. A range 0 − 5% means, that all t runs perform very
similar in terms of MAP, while in the extreme setting of γ, the MAP of the best
run is 50 − 55% better than the MAP of the worst run. To generate each set
of runs, t runs are randomly selected from the data sets. A set is valid if the
maximum percentage of retrieval improvement lies in the specified interval of
γ. Recall, that 1000 predicted rankings exist per correlation interval ci. As we
require t predicted rankings per set of runs, t rankings are randomly chosen from
all rankings of a given ci. To avoid result artifacts due to relying on predicted
ranks instead of scores7, the ith predicted rank is replaced by the ith highest ap
score of the run. The meta-search run runmeta is then created by selecting for
each query the result of the run with the highest predicted ap score. The optimal
run runopt is derived by apQi

opt = max(apQi
run1

, .., apQi
runt

).
Analogous to the SQE experiments, we report the normalized performance of
runmeta, that is, vmeta = 100(MAPmeta − MAPworst)/(MAPopt − MAPworst),
where MAPworst is the MAP of the worst of the t runs. When vmeta < 0, runmeta

performs worse than the worst run of the set, a value of vmeta = 100 implies that
runmeta is optimal. For MS to be successful, runmeta needs to perform better
than the best run of the set. This threshold is indicated by the horizontal line
in the plots (the normalized median of the best runs’ MAP across all sets).

5.2 Experimental Results

We experimented with t = {2, 3, 4, 5}. Due to space constraints though, in Fig. 4
we only report the results for t = 4 and γ = {0 − 5%, 30 − 35%, 50− 55%}.

7 An extreme example is the case where the worst performing query of run A has a
higher average precision than the best performing query of run B.
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Evidently, low correlations are sufficient to improve over the effectiveness of the
best run. Note though, that for low correlations outliers exist that perform worse
than the worst run (negative vmeta). As the performance difference between the
best and the worst run increases (γ), higher correlations are required to improve
runmeta over the best individual run. For m = 50 and γ = 50−55% for example,
τ ≥ 0.4 is required to improve 50% of the samples. As in the case of the SQE
experiments, an increase in m leads to more stable results.

(a) m = 50, γ = 0 − 5%,
levels τ = [0.1, 0.1, 0.2]

(b) m = 50, γ = 30 − 35%,
levels τ = [0.2, 0.3, 0.35]

(c) m = 50, γ = 50 − 55%,
levels τ = [0.3, 0.4, 0.5]

(d) m = 150, γ = 0 − 5%,
levels τ = [0.1, 0.1, 0.1]

(e) m = 150, γ = 30 − 35%,
levels τ = [0.15, 0.2, 0.25]

(f) m = 150, γ = 50 − 55%,
levels τ = [0.25, 0.3, 0.35]

Fig. 4. MS experiments with t = 4 systems, m queries and varying γ.

The table in Fig. 5 contains basic statistics of the MAP values of the worst and
best run of the sets of t runs as well as runopt. The results were averaged over
the 500 sets of runs for each m and γ. A different view on the sets of runs offers
the percentage of queries in runopt that are drawn from the worst performing
run (column % worst in opt.). At t = 4, if the run selection is random, we
expect 25% of the results to come from each run. As expected, with increasing
γ, less results from the worst performing run are utilized in the optimal run.
Though even for large differences in retrieval effectiveness (γ = 50 − 55%), the
worst performing run still contributes towards the optimal run.

We also investigate if the improvements of the MAP of runmeta are statistically
significant8. We performed a paired t-test with significance level 0.05. Shown in
Fig. 5 is the percentage of samples in which runmeta significantly outperforms
the best individual run in the set of t runs. At m = 50, the threshold of τ to
improve 50% of the samples significantly, ranges from 0.4 (γ = 0 − 5%) to 0.7

8 This analysis was not required in the SQE setup, due to the run construction.
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(γ = 50 − 55%). The thresholds are lower for m = 150: τ = 0.2 (γ = 0 − 5%)
and τ = 0.5 (γ = 50 − 55%) respectively.
Thus, in the MS setting, QPP methods that result in low correlations can already
lead to a gain in retrieval effectiveness. For these improvements to be statistically
significant though, QPP methods with moderate to high correlations are needed.

m γ % worst MAP MAP MAP
in opt. worst best opt

50 0 − 5% 23.4% 0.236 0.245 0.328
15 − 20% 18.4% 0.220 0.259 0.334
30 − 35% 14.5% 0.209 0.277 0.344
50 − 55% 11.5% 0.196 0.298 0.356

150 0 − 5% 23.5% 0.222 0.231 0.345
15 − 20% 20.0% 0.211 0.249 0.347
30 − 35% 17.5% 0.195 0.259 0.348
50 − 55% 14.5% 0.182 0.277 0.354
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m=50, γ=0−5%
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m=150, γ=15−20%
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Fig. 5. The table contains the average MAP values over the 500 sets of t = 4 runs for each setting
of m and γ. Listed are the MAP of the worst, best and optimal meta-search run.
The figure shows the development of the percentage of samples in which runmeta statistically sig-
nificantly outperforms the best individual run (runbest) across the correlation intervals ci.

6 Conclusions

We have investigated the relationship of one standard evaluation measure of
QPP methods (Kendalls τ) and the change in retrieval effectiveness when QPP
methods are employed in two operational settings: Selective Query Expansion
and Meta-Search. We aimed to give a first answer to the question: when are
QPP methods good enough to be usable in practice? To this end, we performed
a comprehensive evaluation based on TREC data sets.
We found that the required level of τ depends on the particular setting a QPP
method is employed in. In the case of SQE, in the best-case scenario, τ ≥ 0.4
was found to be the minimum level of τ for the SQE runs to outperform the
AQE runs in 50% of the samples. In a second experiment we showed the danger
of assuming AQE to behave in a certain way - slightly violating an assumption
already requires QPP methods with τ ≥ 0.75 for them to be viable in practice.
The outcome is different for the MS experiments. Here, the level of τ is dependent
on the performance differences of the participating runs. If the participating runs
are similar, a QPP method with τ = 0.1 is sufficient to improve 50% of the runs
over the baseline. If the performance differences are great, τ = 0.3 is required. To
achieve statistically significant improvements for 50% of runs under large system
differences, τ = 0.7 (m = 50) and τ = 0.5 (m = 150) are required.
These results indicate that (i) QPP methods need further improvement to be-
come viable in practice, in particular for the SQE setting and (ii) that with
increasing query set sizes m the evaluation in terms of τ relates better to the
change in effectiveness in an operational setting.
We have restricted ourselves to an analysis of Kendalls τ as it is widely used in
QPP evaluations. We plan to perform a similar analysis for the linear correlation
coefficient r. In contrast to the rank-based τ , r is based on raw scores, which
adds another dimension - the distribution of raw scores - to the experiments.
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