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Abstract. Word embeddings, made widely popular in 2013 with the re-
lease of word2vec, have become a mainstay of NLP engineering pipelines.
Recently, with the release of BERT, word embeddings have moved from
the term-based embedding space to the contextual embedding space—
each term is no longer represented by a single low-dimensional vector but
instead each term and its context determine the vector weights. BERT’s
setup and architecture have been shown to be general enough to be ap-
plicable to many natural language tasks. Importantly for Information
Retrieval (IR), in contrast to prior deep learning solutions to IR prob-
lems which required significant tuning of neural net architectures and
training regimes, “vanilla BERT” has been shown to outperform exist-
ing retrieval algorithms by a wide margin, including on tasks and cor-
pora that have long resisted retrieval e↵ectiveness gains over traditional
IR baselines (such as Robust04). In this paper, we employ the recently
proposed axiomatic dataset analysis technique—that is, we create diag-
nostic datasets that each fulfil a retrieval heuristic (both term matching
and semantic-based)—to explore what BERT is able to learn. In contrast
to our expectations, we find BERT, when applied to a recently released
large-scale web corpus with ad-hoc topics, to not adhere to any of the
explored axioms. At the same time, BERT outperforms the traditional
query likelihood retrieval model by 40%. This means that the axiomatic
approach to IR (and its extension of diagnostic datasets created for re-
trieval heuristics) may in its current form not be applicable to large-scale
corpora. Additional—di↵erent—axioms are needed.

1 Introduction

Over the course of the past few years, IR has seen the introduction of a large

number of successful deep learning approaches for solving all kinds of tasks previ-

ously tackled with hand-crafted features (within the learning to rank framework)

or traditional retrieval models such BM25.

In 2017, with the introduction of the transformer architecture [33], a second

wave of neural architectures for NLP has emerged. Approaches (and respec-

tive models) like BERT [7], XLNet [41] and GPT-2 [24] have shown that it is

indeed possible for one general architecture to achieve state-of-the-art perfor-

mance across very di↵erent NLP tasks (some of which are also related to IR

tasks, such as question answering, reading comprehension, etc.).
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Ad-hoc retrieval, the task of ranking a set of documents given a single query,

has long resisted the success of neural approaches, especially when employed

across standard IR test collections such as Robust04

1
, which come with hundreds

of topics (and thus relatively little training data). Often, the proposed neural

approaches require a very careful design of their architecture. Also, the training

regime and the input data transformations have to be just right [17] in order to

beat or come close to well-tuned traditional IR baselines such as RM3 [16,2]

2
.

With the introduction of BERT in late 2018, this has finally changed. Recently,

a range of BERT-inspired approaches have been shown to clearly surpass all

strong IR baselines on Robust04 [6,40] and other IR corpora.

It is still an open question though what exactly makes BERT and similar

approaches perform so well on IR tasks. While recent works try to understand

what BERT learns most often by analysing attention values, e.g., [32,21,12,4],

analysing BERT under the IR light requires a di↵erent set of tools. While most

NLP tasks optimise for precision, recall or other objective metrics, the goal of

ad-hoc retrieval is to optimise for relevance, a complex multidimensional and

somewhat subjective concept [3].

In this paper, we set out to explore BERT under the IR lens, employing

the concept of diagnostic datasets, an IR model analysis approach (inspired by

similar NLP and computer vision approaches) proposed last year by Rennings

et al. [25]. The idea behind these datasets is simple: each dataset is designed

to fulfil one retrieval axiom [9], i.e., a heuristic that a good retrieval function

should fulfil

3
. Each dataset contains query-documents instances (most often, a

query and two documents) that the investigated model should rank in the correct

order as determined by the heuristic. The extent to which a model correctly ranks

those instances is allowing us to gain insights into what type of information

the retrieval model pays attention to (or not) when ranking documents. While

traditional retrieval models such as BM25 [26] can be analysed analytically,

neural nets with their millions or even billions of learnt weights can only be

analysed in such an empirical manner.

More concretely, we attempt to analyse a version of BERT, DistilBERT (that

was shown to attain 97% of “vanilla” BERT performance [28]), fine-tuned on

the TREC 2019 Deep Learning track dataset

4
. We extend previous work [25]

by incorporating additional axioms (moving from term matching to semantic

axioms). We find that DistilBERT to outperform the traditional query likelihood

(QL) model by 40%. In contrast to our expectations however, we find that BERT

does not adhere to any of the axioms we incorporate in our work. This implies

that the currently existing axioms are not su�cient and not applicable to capture

1 Robust04 is a test collection employed at the TREC 2004 robust retrieval task [35],
consisting of 528K newswire documents, 250 topics and 311K relevance judgements.

2 We want to emphasise here that this observation is specific to IR corpora with few
training topics; for the very few corpora with hundreds of thousands of released
topics (such as MSMarco) this observation does not hold.

3 As a concrete example, consider the TFC1 [9] heuristic: The more occurrences of a

query term a document has, the higher its retrieval score.
4 https://microsoft.github.io/TREC-2019-Deep-Learning/

https://microsoft.github.io/TREC-2019-Deep-Learning/
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the heuristics that a strong supervised model learns (at least for the corpus and

model we explore); it is not yet clear to what extent those results generalise

beyond our model and corpus combination but it opens up a number of questions

about the axiomatic approach to IR.

2 Related Work

Axiomatic Information Retrieval The use of axioms (or “retrieval heuristics”)

as a means to improve and understand information retrieval techniques is well

established. It is an analytic technique to explore retrieval models and how best

to improve them. In their seminal work, Fang et al. [9,10] introduced a num-

ber of term-matching based heuristics that models should follow in order to

be successful in retrieval tasks. Subsequently, Fang et al. [11] proposed a set

of axioms based on semantic matching and thus allowing non-exact matches to

be accounted for in axiomatic retrieval. We apply these axioms in our work—

albeit in a slightly adapted manner. Other applications for axioms in IR include

document re-ranking based on a Learning to Rank scenario [13] and query expan-

sion [8] by exploring similar axioms. It should be noted, that—while sensible—it

cannot be assumed that these axioms are a good fit for all kinds of corpora; they

represent a general notion of how a good retrieval function should behave. Re-

cently, Rennings et al. [25] introduced diagnostic datasets extracted from actual

corpora that each fulfil one axiom. In contrast to the axiomatic approach, which

requires an analytical evaluation of the retrieval functions under investigation,

a diagnostic corpus enables us to analyse models’ axiomatic performance that

are too large to be analysed analytically (such as neural models with millions or

even billions of parameters

5
). Our work continues in that direction with a larger

number of axioms (9 vs. 4) and the analysis of the current neural state-of-the-art

(i.e., BERT).

Neural IR Models Neural IR models, i.e., deep learning based approaches that

tackle IR problems, have seen a massive rise in popularity in the last few

years, with considerable success [20]. Models like DRMM [19], ARCII [14] and

aNMM [39] have been shown to be suitable for a range of IR tasks when su�-

cient training data is available; it remains at best unclear at smaller data scale

whether the reported successes are not just an artefact of weak baselines [17].

Recently, a new wave of approaches, based on the transformer architec-

ture [33] has shown that, finally, neural models can significantly outperform

traditional and well-tuned retrieval methods such as RM3 [2]. Yang et al. [40]

have shown that BERT, fine-tuned on the available TREC microblog datasets,

and combined with a traditional retrieval approach such as query likelihood sig-

nificantly outperforms well-tuned baselines, even on Robust04 which has shown

to be a notoriously di�cult dataset for neural models to do well on. With sim-

ilar success, Dai and Callan [6] have recently employed another BERT variant

5 As a concrete example, our BERT model contains 66 million parameters.
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on Robust04 and ClueWeb09. Lastly we point out, that works are now also be-

ginning to appear, e.g., [18], that use the contextual word embeddings produced

by BERT in combination with another strong neural model, again with strong

improvements over the existing baselines.

Analysing Neural IR Models As we aim to analyse BERT, we also consider how

others have tackled this problem. Analysing neural models—whether for IR,

NLP or another research domain—is not a trivial task. By now a great number

of works have tried to light up the black box of the neural learning models [1],

with varying degrees of success. Within IR, Pang et al. [22] have aimed to paint a

complete and high-level picture of the neural IR area, comparing the behaviour

of di↵erent approaches, and showing that interaction and representation-based

models focus on di↵erent characteristics of queries and documents. While insight-

ful, such work does not enable us to gain deep insights into a single model. Closer

to our work, Rosset et al. [27] employ axioms to generate artifical documents

for the training of neural models and the regularization of the loss function. In

contrast, we employ axioms to analyze retrieval models.

Another direction of research has been the development of interpretation

tools such as DeepSHAP [12] and LIRME [34] that aim to generate local expla-
nations for neural IR models. Recently, in particular BERT (due to its successes

across a wide range of tasks and domains) has become the focus of analysis—

not within IR though. While approaches like [4] explore the attention values

generated by the model’s attention layers, Tenney et al. [32] argue that BERT

is re-discovering classical NLP pipeline approaches in its layers, “in an inter-
pretable and localizable way”, essentially repeating traditional NLP steps in a

similar order as an expert would do, with steps like POS tagging, parsing, NER

and coreference resolution happening within its layers in the expected order.

Finally, Niven et al. [21] raise some critical points about BERT, arguing that

it only “exploits spurious statistical cues in the dataset”; they showcase this by

creating adversarial datasets that can significantly harm its performance.

3 Diagnostic Datasets

The usage of diagnostic datasets as a means to analyse neural models is com-

mon in NLP, e.g. [37,15,36] as there are a large number of fine-grained linguistic

tasks (anaphora resolution, entailment, negation, etc.) that datasets can be cre-

ated for with relative ease. In contrast, in IR the central notion is relevance

and although we know that it can be decomposed into various types (topical,

situational, etc.) of relevance [29], we have no easy way of creating datasets for

each of these—it remains a time-intensive and expensive task. This also explains

why corpora such as Robust04 remain useful and in use for such a long time.

Instead, like Rennings et al. [25] we turn to the axiomatic approach to IR and

create diagnostic datasets—one for each of our chosen retrieval heuristics. It

has been shown that, generally, retrieval functions that fulfil these heuristics

achieve a greater e↵ectiveness than those that do not. In contrast to [25] which
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restricted itself to four term matching axioms, we explore a wider range of ax-

ioms, covering term frequency, document length, lower-bounding term frequency,

semantic term matching and term proximity constraints. In total, we explore 9

axioms, all of which are listed in Table 1 with a short informal description of

their main assumption of what a sensible retrieval function should fulfil. We note

that this covers most of the term-matching and semantic-matching axioms that

have been proposed. We have eliminated a small number from our work as we do

not consider them relevant to BERT (e.g., those designed for pseudo-relevance

feedback [5]).

As the axiomatic approach to IR has been designed to analytically anal-

yse retrieval functions, in their original version they assume very specific artifi-

cial query and document setups. As a concrete example, let us consider axiom

STMC1 [11]. It is defined as follows: given a single-term query Q = {q} and two
single-term documents D1 = {d1}, D2 = {d2} where d1 6= d2 6= q, the retrieval
score of D1 should be higher than D2 if the semantic similarity between q and
d1 is higher than that between q and d2. This description is su�cient to math-

ematically analyse classic retrieval functions, but not suitable for models with

more than a handful of parameters. We thus turn to the creation of datasets

that exclusively contain instances of query/documents (for STMC1 an instance

is a triple, consisting of one query and two documents) that satisfy a particu-

lar axiom. As single-term queries and documents o↵er no realistic test bed, we

extend (moving beyond single-term queries and documents) and relax (moving

beyond strict requirements such as equal document length) the axioms in or-

der to extract instances from existing datasets that fulfil the requirements of

the extended and relaxed axiom. Importantly, this process requires no relevance

judgements—we can simply scan all possible triples in the corpus (consisting of

queries and documents) and add those to our diagnostic dataset that fulfil our

requirements. We then score each query/document pair with our BERT model

6

and determine whether the score order of the documents is in line with the

axiom. If it is, we consider our model to have classified this instance correctly.

While Table 1 provides an informal overview of each heuristic, we now for-

mally describe each one in more detail. Due to the space limitations, we focus on

a mathematical notation which is rather brief. For completeness, we first state

the original axiom and then outline how we extend and relax it in order to create

a diagnostic dataset from it. For axioms TFC1, TFC2, LNC2 and M-TDC we follow

the process described in [25]. We make use of the following notation: Q is a query

and consists of terms q1, q2, ...; Di is a document of length |Di| containing terms

di1 , di2 , ...; the count of term w in document D is c(w,D); lastly, S(Q,D) is the

retrieval score the model assigns to D for a given Q. Apart from the proximity

heuristic TP, the remaining heuristics are based on the bag-of-word assumption,

i.e., the order of terms in the query and documents do not matter.

6 Note, that scoring each document independently for each query is an architectural
choice, there are neural architectures that take a query/doc/doc triplet as input and
output a preference score.
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TFC1—Original Assume Q = {q} and |D1| = |D2|. If c(q,D1) > c(q,D2), then

S(Q,D1) > S(Q,D2).

TFC1—Adapted In order to extract query/document/document triples from ac-

tual corpora, we need to consider multi-term queries and document pairs of ap-

proximately the same length. Let Q = {q1, q2, .., q|Q|} and |D1|� |D2|  abs(�).
S(Q,D1) > S(Q,D2) holds, when D1 has at least the same query term count

as D2 for all but one query term (and for this term D1’s count is higher), i.e.,

c(qi, D1) � c(qi, D2) 8qi 2 Q and

P
qi2Q c(qi, D1) >

P
qi2Q c(qi, D2).

TFC2—Original Assume Q = {q} and |D1| = |D2| = |D3|. If c(q,D1) > 0,

c(q,D2)� c(q,D1) = 1 and c(q,D3)� c(q,D2) = 1, then S(Q,D2)�S(Q,D1) >

S(Q,D3)� S(Q,D2).

TFC2—Adapted Analogous to TFC1, queries can contain multiple terms and docu-

ments only have to have approximately the same length. Let Q = {q1, q2, .., q|Q|}
and maxDi,Dj2{D1,D2,D3}(|Di| � |Dj |  abs(�)). If every document contains

at least one query term, and D3 has more query terms than D2 and D2 has

more query terms than D1, and the di↵erence of query terms count between

D2 and D1 should be the same as between D3 and D2, for all query terms, i.e.P
q2Q c(q,D3) >

P
q2Q c(q,D2) >

P
q2Q c(q,D1) > 0 and c(q,D2)� c(q,D1) =

c(q,D3)� c(q,D2)8q 2 Q, then S(Q,D2)� S(Q,D1) > S(Q,D3)� S(Q,D2).

M-TDC—Original Let Q = {q1, q2}, |D1| = |D2|, c(q1, D1) = c(q2, D2) and

c(q2, D1) = c(q1, D2). If idf(q1) � idf(q2) and c(q1, D1) > c(q1, D2), then

S(Q,D1) � S(Q,D2).

M-TDC—Adapted Again, Let Q contain multiple terms and |D1|� |D2|  abs(�).
D1, D2 also di↵er in at least one query term count (9qi 2 Q, such that c(qi, D1) 6=
c(qi, D2)). If, for all query term pairs the conditions hold that c(qi, D1) 6=
c(qj , Dj), idf(qi) � idf(qj), c(qi, D1) = c(qj , D2), c(qj , D1) = c(qi, D2), c(qi, D1) >

c(qi, D2) and c(qi, Q) � c(qj , Q), then S(Q,D1) � S(Q,D2).

LNC1—Original Let Q be a query and D1, D2 be two documents. If for some

q

0
/2 Q, c(q

0
, D2) = c(q

0
, D1) + 1 and for any q 2 Q c(q,D2) = c(q,D1), then

S(Q,D1) � S(Q,D2).

LNC1—Adapted The axiom can be used with no adaptation.

LNC2—Original Let Q be a query. 8k > 1, if D1 and D2 are two documents

such that |D1| = k · |D2|, and 8q 2 Q, c(q,D1) = k · c(q,D2), then S(Q,D1) �
S(Q,D2).

LNC2—Adapted The axiom can be used with no adaptation.
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TP—Original Let Q = {q1, q2, ...q|Q|} be a query and D

0
a document generated

by switching the position of query terms in D. Let �(Q,D) be a function that

measures the distance of query terms qi 2 Q inside a document D. If �(Q,D) >

�(Q,D

0
), then S(Q,D) < S(Q,D

0
).

TP—Adapted Let � (D,Q) = min(q1,q22Q\D,q1 6=q2)Dis(q1, q2;D) be a function

that computes the minimum distance between every pair of query terms in D.

If � (D1, Q) < � (D2, Q), then S(Q,D1) > S(Q,D2).

For the following semantic axioms, let us define the function �(t1, t2) as

the cosine distance between the embeddings of terms t1 and t2. We also define

�

0
(T1, T2), where T can be either a document D or a query Q, as an extension

to �, defined by �

0
(T1, T2) = cos(

P
i2T1

ti

|T1| ,

P
i2T2

ti

|T2| ), the cosine distance between

the average term embeddings for each document.

STMC1—Original Let Q = {q} be a one-term query, D1 = {d11} and D2 = {d21}
be two single term documents, such that d11 6= d21 , q 6= d11 and q 6= d21 . If

�(q, d11) > �(q, d21), then S(Q,D1) > S(Q,D2).

STMC1—Adapted We allow D1 and D2 to be arbitrarily long, covering the same

number of query terms (i.e. |D1
T
Q| = |D2

T
Q|). Assume {Di} � {Q} be the

document Di without query terms, If �

0
({D1}� {Q}, Q) > �

0
({D2}� {Q}, Q),

then S(Q,D1) > S(Q,D2).

STMC2—Original Let Q = {q} be a one-term query and d a non-query term such

that �(d, q) > 0. If D1 = {q} and |D2| = k, (k � 1), composed entirely of d’s

(i.e.vc(d,D2) = k), then S(Q,D1) � S(Q,D2).

STMC2—Adapted We allow Q to be a multiple query term, D1 to contain non-

query terms andD2 to contain query terms. If

P
ti,ti /2Q c(ti, D2) >

P
qi2Q c(q1, D1) >

0, �

0
({D1}� {Q}, {D2}� {Q}) > � then S(Q,D1) � S(Q,D2).

STMC3—Original Let Q = {q1, q2} be a two-term query and d a non-query term

such that �(d, q2) > 0. If |D1| = |D2| > 1, c(q1, D1) = |D1|, c(q1, D2) = |D2|� 1

and c(d,D2) = 1, then S(Q,D1)  S(Q,D2).

STMC3—Adapted LetD1 andD2 be two arbitrary long documents that covers the

same number of query terms (i.e. |D1
T
Q| = |D2

T
Q|). If |D1|� |D2|  abs(�),P

qi2Q c(qi, D1) >
P

qi2Q c(qi, D2) and �

0
({D2}�{Q}, Q) > �

0
({D1}�{Q}, Q),

then S(Q,D1) > S(Q,D2).

4 Experiments

We create diagnostic datasets for each of these axioms by extracting instances of

queries and documents that already exist in the dataset. In this section, we ex-

plain how these datasets were generated and how we employed them to evaluate

BERT.
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Table 1. Overview of retrieval heuristics employed in our work. The diagnostic datasets
for heuristics marked with a blue background were first discussed in [25]. The naming
of the heuristics is largely taken from the papers proposing them.

Heuristic Informal description
Instance

Term frequency constraints

TFC1 [9] The more occurrences of a query term a document has, the higher its
retrieval score.

TFC2 [9] The increase in retrieval score of a document gets smaller as the abso-
lute query term frequency increases.

M-TDC [9,30] The more discriminating query terms (i.e., those with high IDF value)
a document contains, the higher its retrieval score.

Length normalization constraints

LNC1 [9] The retrieval score of a document decreases as terms not appearing in
the query are added.

LNC2 [9] A document that is duplicated does not have a lower retrieval score
than the original document.

Semantic term matching constraints

STMC1 [11] A document’s retrieval score increases as it contains terms that are
more semantically related to the query terms.

STMC2 [11] The document terms that are a syntactic match to the query terms
contribute at least as much to the document’s retrieval score as the
semantically related terms.

STMC3 [11] A document’s retrieval score increases as it contains more terms that
are semantically related to di↵erent query terms.

Term proximity constraint

TP [31] A document’s retrieval score increases as the query terms appearing in
it appear in closer proximity.

4.1 TREC 2019 Deep Learning Track

In order to extract diagnostic datasets, we used the corpus and queries for the

Document Ranking Task from the TREC 2019 Deep Learning track

7
. This is

the only publicly available ad-hoc retrieval dataset that was built specifically for

the training of deep neural models, with 3,213,835 web documents and 372,206

queries (367,013 queries in the training set and 5,193 in the development set).

The queries and documents, while stripped of HTML elements, are not neces-

sarily well-formed as seen in the following examples from the training set:

– what is a flail chest

– a constitution is best described as a(n) .

– )what was the immediate impact of the success of the manhattan

project?

7 https://microsoft.github.io/TREC-2019-Deep-Learning/

https://microsoft.github.io/TREC-2019-Deep-Learning/
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The queries consist on average of 5.89(±2.51) words while documents consist

on average of 1084.88(±2324.22) words.

Most often, one relevant document exists per query (1.04 relevant docu-

ments on average). These relevance judgements were made by human judges on

a passage-level: if a passage within a document is relevant, the document is con-

sidered relevant. Unlike other TREC datasets, like Robust04, there is no topic

description or topic narrative.

At the time of this writing, the relevance judgements for the test queries were

not available. Therefore, we split the development queries further, in a new dev
and test dataset, in a 70%�30% fashion. In the rest of this paper, when we refer

to the test or dev dataset, we are referring to this split. The train split remains

the same as the original dataset.

4.2 Retrieval and Ranking

We begin by indexing the document collection using the Indri toolkit

8
, and

retrieve the top-100 results using a traditional retrieval model with just one hy-

perparameter, namely, QL, with Indri’s default setting (Dirichlet smoothing [42]

and µ = 2500). Finally, for BERT, we employ Hugging Face’s library

9
of Distil-

BERT [28], a distilled version of the original BERT model, with fewer parameters

(66 million instead of 340 million), and thus more e�cient to train, but with very

similar results.

We fine-tuned our BERT

10
model with 10 negative samples for each positive

sample from the training dataset, randomly picked from the top-100 retrieved

from QL. We set the maximum input length to 512 tokens. For fine-tuning we

used the sequence classification model. It is implemented by adding a fully-

connected layer on top of the [CLS] token embedding, which is the specific

output token of the BERT model that our fine-tuning is based upon.

Given the limitation of BERT regarding the maximum number of tokens,

we limited the document length to its first 512 tokens, though we note that

alternative approaches exist (e.g., in [40] the BERT scores across a document’s

passages/sentences are aggregated). In Table 3, we report the retrieval e↵ective-

ness in terms of nDCG and MRR for the documents limited to 512 tokens. We

rerank the top-100 retrieved documents based on its first 512 tokens. It is clear

that BERT is vastly superior to QL with a 40% improvement in nDCG and 25%

improvement in MRR.

4.3 Diagnostic Datasets

Given the adapted axioms defined in Section 3, we now proceed on describing

how to extract actual datasets from our corpus.

8 https://www.lemurproject.org/indri.php
9 https://github.com/huggingface/transformers

10 Code for fine-tuning DistilBERT and generating the diagnostic datasets is available
at https://github.com/ArthurCamara/bert-axioms

https://www.lemurproject.org/indri.php
https://github.com/huggingface/transformers
https://github.com/ArthurCamara/bert-axioms
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Table 2. Overview of the number of instances in each diagnostic dataset (row I), the
number of instances within each diagnostic dataset that contain a relevant document
(row II) and the fraction of instances among all of row II where the order of the
documents according to the axiom is in line with the relevance judgments. LNC2 is
based on new documents, thus, it does not have a fraction of agreement

TFC1 TFC2 M-TDC LNC1 LNC2 TP STMC1 STMC2 STMC3

Diagnostic dataset size 119,690 10,682 13,871 14,481,949 7452 3,010,246 319,579 7,321,319 217,104
Instances with a relevant document 1,416 17 11 138,399 82 20,559 19,666 70,829 1,626
Fraction of instances agreeing with relevance 0.91 0.29 0.82 0.50 - 0.18 0.44 0.63 0.35

TFC1, TFC2, M-TDC, LNC1 We add tuples of queries and documents {q, di, dj} (or

{q, di, dj , dk} for TFC2) for every possible pair of documents {di, dj} in the top

100 retrieved by QL that follow the assumptions from Section 3, with � = 10.

We also compute IDF for M-TDC on the complete corpus of documents, tokenized

by WordPiece [38].

LNC2 We create a new dataset, appending the document to itself k 2 Z times

until we reach up to 512 tokens

11
. In contrast to Rennings et al. [25] we only

perform this document duplication for our test set, i.e., BERT does not “see”

this type of duplication during its training phase. On average, the documents

were multiplied k = 2.6408± 1.603 times, with a median of k = 2.

TP We simply add to our dataset every pair of documents {q, di, dj} in the

top 100 retrieved documents by QL for a given topic that follow the stated TP

assumptions.

STMC1,STMC2, STMC3 We define � as the cosine distance between the embeddings

of the terms and �

0
as the cosine distance between the average embeddings. We

trained the embeddings using GLoVe [23] on the entire corpus. For STMC3, we

set � = 0.2.

4.4 Results

In Table 2 we list the number of diagnostic instances we created for each diag-

nostic dataset. In addition, we also performed a sanity check on the extent to

which the document order determined by each axiom corresponds to the rele-

vance judgements. Although only a small set of instances from each diagnostic

dataset contains a document with a relevant document (row II in Table 2) we

already see a trend: apart from TFC1 and M-TDC where 91% and 82% of the di-

agnostic instances have an agreement between axiomatic ordering and relevance

ordering, the remaining axioms are actually not in line with the relevance order-

ing for most of the instances. This is a first indication that we have to consider

an alternative set of axioms, better fit for such a corpus, in future work.

In Table 3 we report the fraction of instances both QL and BERT fulfil for

each diagnostic dataset. As expected, QL correctly (as per the axiom) ranks the

11 Note that we only append the document to itself if the final size does not exceed
512.
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document pairs or triples most of the time, with the only outlier being TP, where

QL performs essentially random—again, not a surprise given that QL is a bag-of-

words model. In contrast—with the exception of LNC2, where BERT’s ranking is

essentially the opposite of what the LNC2 axiom considers correct (with only 6%

of the instances ranked correctly)—BERT has not learnt anything that is related

to the axioms as the fraction of correctly ranked instances hovers around 50%

(which is essentially randomly picking a document order). Despite this lack of

axiomatic fulfilment, BERT clearly outperforms QL, indicating that the existing

axioms are not suitable to analyse BERT.

The reverse ranking BERT proposes for nearly all of the LNC2 instances can

be explained by the way the axiom is phrased. It is designed to avoid over

penalising documents, and thus a duplicated document should always have a re-

trieval score that is not lower than the original document. The opposite argument

though could be made too (and BERT ranks accordingly), that a duplicated doc-

ument should not yield a higher score than the original document as it does not

contain novel/additional information. As we did not provide LNC2 instances in

the training set, BERT is not able to rank according to the axiom, in line with

the findings of other neural approaches as shown by Rennings et al. [25].

Finally, we observe that, counter-intuitively, BERT does not show a perfor-

mance better than QL for semantic term matching constraints. For instance, one

may expect that BERT would fare quite well on STMC1, given its semantic nature.

However, our results indicate that BERT is actually considers term matching as

one of its key features. In order to further explore this tension between semantic

and syntactic term matching, we split the queries in our test set by their term

overlap between the query and the relevant document (if several relevant docu-

ments exist for a query, we randomly picked one of them). If a query/document

has no (or little) term overlap, we consider this as a semantic match.

Table 3. Overview of the retrieval e↵ectiveness (nDCG columns) and the fraction of
diagnostic dataset instances each model ranks correctly.

nDCG MRR TFC1 TFC2 M-TDC LNC1 LNC2 TP STMC1 STMC2 STMC3

QL 0.2627 0.3633 0.99 0.70 0.88 0.50 1.00 0.39 0.49 0.70 0.70
DistilBERT 0.3633 0.4537 0.61 0.39 0.51 0.50 0.00 0.41 0.50 0.51 0.51

The results of this query split can be found in Figure 1. We split the query

set roughly into three equally sized parts based on the fraction of query terms

appearing in the relevant document (as an example, if a query/document pair

has a fraction of 0.5, half of all query terms appear in the document). We report

results for all queries (Figure 1 (left)), as well as only those where the relevant

document appears in the top-100 QL ranking (Figure 1 (right)). We find that

BERT outperforms QL across all three splits, indicating that BERT is indeed

able to pick up the importance of syntactic term matching. At the same time,

as expected, BERT is performing significantly better than QL for queries that
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require a large amount of semantic matching. That brings into question on why,

then, the axiomatic performance across our semantic axiomatic datasets does not

reflect that. One hypothesis is that the semantic similarity we measure (based on

context-free word embeddings) is di↵erent to the semantic similarity measured

via contextual word embeddings. This in itself is an interesting avenue for future

work, since it brings a new question on what that semantic relationship is, and

how to accurately measure it.

Fig. 1. The test queries are split into three sets, depending on the fraction of term
overlap between the query and its corresponding relevant document. On the left, we
plot all queries, on the right only those queries for which the relevant document appears
in the top-100 ranked documents of the QL ranking.

5 Discussion & Conclusion

In this paper, we set out to analyze BERT with the help of the recently pro-

posed diagnostic datasets for IR based on retrieval heuristics approach [25]. We

expected BERT to perform better at fulfilling some of the proposed seman-

tic axioms. Instead, we have shown that BERT, while significantly better than

traditional models for ad-hoc retrieval, does not fulfil most retrieval heuristics,

created by IR experts, that are supposed to produce better results for ad-hoc

retrieval models. We argue that based on these results, the axioms are not suit-

able to analyse BERT and it is an open question what type of axioms would be

able to capture some performance aspects of BERT and related models. In fact,

how to arrive at those additional axioms, based on the knowledge we have now

gained about BERT is in itself an open question.
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