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Abstract. Neural ranking models are traditionally trained on a series
of random batches, sampled uniformly from the entire training set. Cur-
riculum learning has recently been shown to improve neural models’ ef-
fectiveness by sampling batches non-uniformly, going from easy to dif-
ficult instances during training. In the context of neural Information
Retrieval (IR) curriculum learning has not been explored yet, and so it
remains unclear (1) how to measure the di�culty of training instances
and (2) how to transition from easy to di�cult instances during training.
To address both challenges and determine whether curriculum learning
is beneficial for neural ranking models, we need large-scale datasets and
a retrieval task that allows us to conduct a wide range of experiments.
For this purpose, we resort to the task of conversation response ranking:
ranking responses given the conversation history. In order to deal with
challenge (1), we explore scoring functions to measure the di�culty of
conversations based on di↵erent input spaces. To address challenge (2)
we evaluate di↵erent pacing functions, which determine the velocity in
which we go from easy to di�cult instances. We find that, overall, by
just intelligently sorting the training data (i.e., by performing curriculum
learning) we can improve the retrieval e↵ectiveness by up to 2%1.
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1 Introduction

Curriculum Learning (CL) is motivated by the way humans teach complex con-
cepts: teachers impose a certain order of the material during students’ educa-
tion. Following this guidance, students can exploit previously learned concepts
to more easily learn new ones. This idea was initially applied to machine learning
over two decades ago [8] as an attempt to use a similar strategy in the training
of a recurrent network by starting small and gradually learning more di�cult
examples. More recently, Bengio et al. [1] provided additional evidence that cur-
riculum strategies can benefit neural network training with experimental results
on di↵erent tasks such as shape recognition and language modelling. Since then,
empirical successes were observed for several computer vision [14,49] and natural
language processing (NLP) tasks [36,42,60].

1 The source code is available at https://github.com/Guzpenha/transformers_cl.

https://github.com/Guzpenha/transformers_cl
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In supervised machine learning, a function is learnt by the learning algorithm
(the student) based on inputs and labels provided by the teacher. The teacher
typically samples randomly from the entire training set. In contrast, CL im-
poses a structure on the training set based on a notion of di�culty of instances,
presenting to the student easy instances before di�cult ones. When defining a
CL strategy we face two challenges that are specific to the domain and task at
hand [14]: (1) arranging the training instances by a sensible measure of di�-

culty, and, (2) determining the pace in which to present instances—going over
easy instances too fast or too slow might lead to ine↵ective learning.

We conduct here an empirical investigation into those two challenges in
the context of IR. Estimating relevance—a notion based on human cognitive
processes—is a complex and di�cult task at the core of IR, and it is still un-
known to what extent CL strategies are beneficial for neural ranking models. This
is the question we aim to answer in our work.

Given a set of queries—for instance user utterances, search queries or ques-
tions in natural language—and a set of documents—for instance responses, web
documents or passages—neural ranking models learn to distinguish relevant from
non-relevant query-document pairs by training on a large number of labeled
training pairs. Neural models have for some time struggled to display significant
and additive gains in IR [53]. In a short time though, BERT [7] (released in late
2018) and its derivatives (e.g. XLNet [56], RoBERTa [25]) have proven to be re-
markably e↵ective for a range of NLP tasks. The recent breakthroughs of these
large and heavily pre-trained language models have also benefited IR [55,54,57].

In our work we focus on the challenging IR task of conversation response
ranking [50], where the query is the dialogue history and the documents are
the candidate responses of the agent. The set of responses are not generated
on the go, they must be retrieved from a comprehensive dialogue corpus. A
number of deep neural ranking models have recently been proposed for this
task [43,52,61,50,62], which is more complex than retrieval for single-turn inter-
actions, as the ranking model has to determine where the important information
is in the previous user utterances (dialogue history) and how it is relevant to
the current information need of the user. Due to the complexity of the relevance
estimation problem displayed in this task, we argue it to be a good test case for
curriculum learning in IR.

In order to tackle the first challenge of CL (determine what makes an instance
di�cult) we study di↵erent scoring functions that determine the di�culty of
query-document pairs based on four di↵erent input spaces: conversation history
{U}, candidate responses {R}, both {U ,R}, and {U , R, Y}, where Y are rele-
vance labels for the responses. To address the second challenge (determine the
pace to move from easy to di�cult instances) we explore di↵erent pacing func-

tions that serve easy instances to the learner for more or less time during the
training procedure. We empirically explore how the curriculum strategies per-
form for two di↵erent response ranking datasets when compared against vanilla
(no curriculum) fine-tuning of BERT for the task. Our main findings are that
(i) CL improves retrieval e↵ectiveness when we use a di�culty criteria based on
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a supervised model that uses all the available information {U , R, Y}, (ii) it is
best to give the model more time to assimilate harder instances during training
by introducing di�cult instances in earlier iterations, and, (iii) the CL gains
over the no curriculum baseline are spread over di↵erent conversation domains,
lengths of conversations and measures of conversation di�culty.

2 Related Work

Neural Ranking Models Over the past few years, the IR community has seen
a great uptake of the many flavours of deep learning for all kinds of IR tasks
such as ad-hoc retrieval, question answering and conversation response ranking.
Unlike traditional learning to rank (LTR) [24] approaches in which we manu-
ally define features for queries, documents and their interaction, neural ranking
models learn features directly from the raw textual data. Neural ranking ap-
proaches can be roughly categorized into representation-focused [17,38,47] and
interaction-focused [13,48]. The former learns query and document representa-
tions separately and then computes the similarity between the representations.
In the latter approach, first a query-document interaction matrix is built, which
is then fed to neural net layers. Estimating relevance directly based on interac-
tions, i.e. interaction-focused models, has shown to outperform representation-
based approaches on several tasks [27,16].

Transfer learning via large pre-trained Transformers [46]—the prominent
case being BERT [7]—has lead to remarkable empirical successes on a range
of NLP problems. The BERT approach to learn textual representations has
also significantly improved the performance of neural models for several IR
tasks [55,54,37,33,57], that for a long time struggled to outperform classic IR
models [53]. In this work we use the no-CL BERT as a strong baseline for the
conversation response ranking task.

Curriculum Learning Following a curriculum that dictates the ordering and
content of the education material is prevalent in the context of human learn-
ing. With such guidance, students can exploit previously learned concepts to
ease the learning of new and more complex ones. Inspired by cognitive science
research [35], researchers posed the question of whether a machine learning algo-
rithm could benefit, in terms of learning speed and e↵ectiveness, from a similar
curriculum strategy [8,1]. Since then, positive evidence for the benefits of cur-
riculum training, i.e. training the model using easy instances first and increasing
the di�culty during the training procedure, has been empirically demonstrated
in di↵erent machine learning problems, e.g. image classification [14,11], machine
translation [30,21,60] and answer generation [23].

Processing training instances in a meaningful order is not unique to CL. An-
other related branch of research focuses on dynamic sampling strategies [22,4,39,2],
which unlike CL that requires a definition of what is easy and di�cult before
training starts, estimates the importance of instances during the training pro-
cedure. Self-paced learning [22] simultaneously selects easy instances to focus
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on and updates the model parameters by solving a biconvex optimization prob-
lem. A seemingly contradictory set of approaches give more focus to di�cult
or more uncertain instances. In active learning [6,44,4], the most uncertain in-
stances with respect to the current classifier are employed for training. Similarly,
hard example mining [39] focuses on di�cult instances, measured by the model
loss or magnitude of gradients for instance. Boosting [2,59] techniques give more
weight to di�cult instances as training progresses. In this work we focus on CL,
which has been more successful in neural models, and leave the study of dynamic
sampling strategies in neural IR as future work.

The most critical part of using a CL strategy is defining the di�culty metric
to sort instances by. The estimation of instance di�culty is often based on our
prior knowledge on what makes each instance di�cult for a certain task and thus
is domain dependent (cf. Table 1 for curriculum examples). CL strategies have
not been studied yet in neural ranking models. To our knowledge, CL has only
recently been employed in IR within the LTR framework, using LambdaMart [3],
for ad-hoc retrieval by Ferro et al. [9]. However, no e↵ectiveness improvements
over randomly sampling training data were observed. The representation of the
query, document and their interactions in the traditional LTR framework is dic-
tated by the manually engineered input features. We argue that neural ranking
models, which learn how to represent the input, are better suited for applying
CL in order to learn increasingly more complex concepts.

Table 1: Di�culty measures used in the curriculum learning literature.

Di�culty criteria Tasks

sentence length machine translation [30], language generation [42], reading
comprehension [58]

word rarity machine translation [30,60], language modeling [1]

external model confidence machine translation [60], image classification [49,14], ad-
hoc retrieval [9]

supervision signal intensity facial expression recognition [12], ad-hoc retrieval [9]

noise estimate speaker identification [34], image classification [5]

human annotation image classification [45] (through weak supervision)

3 Curriculum Learning

Before introducing our experimental framework (i.e., the scoring functions and
the pacing functions we investigate), let us first formally introduce the specific IR
task we explore—a choice dictated by the complex nature of the task (compared
to e.g. ad-hoc retrieval) as well as the availability of large-scale training resources
such as MSDialog [32] and UDC [26].

Conversation Response Ranking Given a historical dialogue corpus and a
conversation, (i.e., the user’s current utterance and the conversation history)



Curriculum Learning Strategies for IR 5

the task of conversation response ranking [50,52,43] is defined as the ranking of
the most relevant response available in the corpus. This setup relies on the fact
that a large corpus of historical conversation data exists and adequate replies
(that are coherent, well-formulated and informative) to user utterances can be
found in it [51]. Formally, let D = {(U

i

,R
i

,Y
i

)}N
i=1 be an information-seeking

conversations data set consisting of N triplets: dialogue context, response candi-
dates and response labels. The dialogue context U

i

is composed of the previous
utterances {u1

, u

2
, ..., u

⌧} at the turn ⌧ of the dialogue. The candidate responses
R

i

= {r1, r2, ..., rk} are either the true response (u⌧+1) or negative sampled can-
didates2. The relevance labels Y

i

= {y1, y2, ..., yk} indicate the responses’ binary
relevance scores, 1 if r = u

⌧+1 and 0 otherwise. The task is then to learn a rank-
ing function f(.) that is able to generate a ranked list for the set of candidate
responses R

i

based on their predicted relevance scores f(U
i

, r).

training step s = 0 ...
...

sample mini-batch B from fpace(s)  fraction of sorted D 

sort D by fscore

s = 500

s = T = 1000 ...

during training

before training

Fig. 1: Our curriculum learning framework is defined by two functions. The scor-
ing function f

score

(instance) defines the instances’ di�culty (darker/lighter blue
indicate higher/lower di�culty). The pacing function f

pace

(s) indicates the per-
centage of the dataset available for sampling according to the training step s.

Curriculum Framework When training neural networks, the common train-
ing procedure is to divide the dataset D into D

train

,D
dev

,D
test

and randomly
(i.e., uniformly—every sample has the same likelihood of being sampled) sample
mini-batches B = {(U

i

,R
i

,Y
i

)}k
i=1 of k instances from D

train

where k ⌧ N ,
and perform an optimization procedure sequentially in {B1, ...,BM

}. The CL
framework employed here is inspired by previous works [49,30]. It is defined
by two functions: the scoring function which determines the di�culty of in-
stances and the pacing function which controls the pace with which to transition
from easy to hard instances during training. More specifically, the scoring func-
tion f

score

(U
i

,R
i

,Y
i

), is used to sort the training dataset. The pacing function
f

pace

(s) determines the percentage of the sorted dataset available for sampling

2 In a production setup the ranker would either retrieve responses from the entire
corpus or re-rank the responses retrieved by a recall-oriented retrieval method.
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according to the current training step s (one forward pass plus one backward
pass of a batch is considered to be one step). The neural ranking model samples
uniformly from the initial f

pace

(s)⇤ |D
train

| instances sorted by f

score

, while the
rest of the dataset is not available for sampling. During training f

pace

(s) goes
from � (percentage of initial training data) to 1 when s = T . Both � and T are
hyperparameters. We provide an illustration of the training process in Figure 1.

Table 2: Overview of our curriculum learning scoring functions.

Input

Space

Name Definition Di�culty

notion

baseline random f

score

= Uniform(0, 1)

(U) #
turns

f

score

(U) = |U| information
spread#Uwords

f

score

(U) =
P|U|

i=0 word count(u
i

)

|U|

(R) #Rwords

f

score

(R) =
P|R|

i=0 word count(r
i

)

|R| distraction in
responses

(U ,R)
�

SM

f

score

(U ,R) =

r
P|R|

i=0(SM(U,r

i

)�SM(U,R))2

|R|�1 responses
heterogeneity

�

BM25 f

score

(U ,R) =

r
P|R|

i=0(BM25(U,r

i

)�BM25(U,R))2

|R|�1

(U ,R,Y)
BERT

pred

f

score

(U ,R,Y) =

� (BERT pred(U , r+
i

)�BERT pred(U , r�
i

)) model
confidence

BERT

loss

f

score

(U ,R,Y) =
P|R|

i=0 BERT loss(U,r

i

)

|R|

Scoring Functions In order to measure the di�culty of a training triplet
composed of (U

i

,R
i

,Y
i

), we define pacing functions that use di↵erent parts of
the input space: functions that leverage (i) the text in the dialogue history {U}
(ii) the text in the response candidates {R} (iii) interactions between them, i.e.,
{U ,R}, and, (iv) all available information including the labels for the training
set, i.e., {U ,R,Y}. The seven3 scoring functions we propose are defined in Table
2; we now provide intuitions of why we believe each function to capture some
notion of instance di�culty.

• #
turns

(U) and #Uwords

(U): The important information in the context can be
spread over di↵erent utterances and words. Bigger dialogue contexts means
there are more places where the important part of the user information need
can be spread over. #Rwords

(R): Longer responses can distract the model as
to which set of words or sentences are more important for matching. Previous

3 The function random is the baseline—instances are sampled uniformly (no CL).
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work shows that it is possible to fool machine reading models by creating
longer documents with additional distracting sentences [18].

• �

SM

(U ,R) and �

BM25(U ,R): Inspired by query performance prediction lit-
erature [40], we use the variance of retrieval scores to estimate the amount
of heterogeneity of information, i.e. diversity, in the response candidate. Ho-
mogeneous ranked lists are considered to be easy. We deploy a semantic
matching model (SM) and BM25 to capture both semantic correspondences
and keyword matching [19]. SM is the average cosine similarity between the
first k words from U (concatenated utterances) with the first k words from
r using pre-trained word embeddings.

• BERT

pred

(U ,R,Y) and BERT

loss

(U ,R,Y) : Inspired by CL literature [14],
we use external model prediction confidence scores as a measure of di�culty4.
We fine-tune BERT [7] on D

train

for the conversation response ranking task.
For BERT

pred

easy dialogue contexts are the ones that the BERT confidence
score for the positive response r

+ candidate is higher than the confidence
for the negative response candidate r

�. The higher the di↵erence the easier
the instance is. For BERT

loss

we consider the loss of the model to be an
indicator of the di�culty of an instance.

Pacing function Definition

baseline training f

pace

(s) = 1

step f

pace

(s) =

8
><

>:

�, if s  T ⇤ 0.33

0.66, if s > T ⇤ 0.33, s  T ⇤ 0.66

1, if s > T ⇤ 0.66

root f

pace

(s, n) = min

0

@1,

✓
s

1��

n

T

+ �

n

◆ 1
n

1

A

linear f

pace

(s, n) = root(s, 1)
root n f

pace

(s, n) = root(s, n)

geom progression f

pace

(s) = min

0

B@1, 2

✓
s

log21�log2�

T

+log2�

◆1

CA

Table 3: Overview of our curriculum learning
pacing functions. � and T are hyperparameters.
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Fig. 2: Example with � =
0.33 and T = 1000.

Pacing functions Assuming that we know the di�culty of each instance in
our training set, we still need to define how are we going to transition from easy
to hard instances. We use the concept of pacing functions f

pace

(s); they should
each have the following properties [30,49]: (i) start at an initial value of training
instances f

pace

(0) = � with � > 0, so that the model has a number of instances
to train in the first iteration, (ii) be non-decreasing, so that harder instances

4 We note, that using BM25 average precision as a scoring function failed to outper-
form the baseline.
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are added to the training set, and, (iii) eventually all instances are available for
sampling when it reaches T iterations, f

pace

(T ) = 1.
As intuitively visible in the example in Figure 2, we opted for pacing func-

tions that introduce more di�cult instances at di↵erent paces—while root 10
introduces di�cult instances very early (after 125 iterations, 80% of all training
data is available), geom progression introduces them very late (80% is available
after ⇠ 800 iterations). We consider four di↵erent types of pacing functions, for-
mally defined in Table 3. The step function [1,14,41] divides the data into S fixed
sized groups, and after T

S

iterations a new group of instances is added, where S

is a hyperparameter. A more gradual transition was proposed by Platanios et.
al [30], by adding a percentage of the training dataset linearly with respect to the
total of CL iterations T , and thus the slope of the function is 1��

T

(linear func-
tion). They also proposed root n functions motivated by the fact that di�cult
instances will be sampled less as the training data grows in size during training.
By making the slope inversely proportional to the current training data size, the
model has more time to assimilate di�cult instances. Finally, we propose the
use of a geometric progression that instead of quickly adding di�cult examples,
it gives easier instances more training time.

4 Experimental Setup

Datasets We consider two large-scale information-seeking conversation datasets
(cf. Table 4) that allow the training of neural ranking models for conversation re-
sponse ranking. MSDialog5 [32] contain 246K context-response pairs, built from
35.5K information seeking conversations from the Microsoft Answer community,
a question-answer forum for several Microsoft products. MANtIS6 [29] was created
by us and contains 1.3 million context-response pairs built from conversations
of 14 di↵erent sites of Stack Exchange. Each MANtIS conversation fulfills the fol-
lowing conditions: (i) it takes place between exactly two users (the information
seeker who starts the conversation and the information provider); (ii) it consists
of at least 2 utterances per user; (iii) one of the provider’s utterances contains a
hyperlink, providing grounding; (iv) if the final utterance belongs to the seeker, it
contains positive feedback. We created MANtIS to consider diverse conversations
from di↵erent domains besides technical ones. We include MSDialog [32,52,31]
here as a widely used benchmark.

Implementation Details As strong neural ranking model for our experiments,
we employ BERT [7] for the conversational response ranking task. We follow
recent research in IR that employed fine-tuned BERT for retrieval tasks [28,55]
and obtain strong baseline (i.e., no CL) results for our task. The best model
by Yang et. al [52], which relies on external knowledge sources for MSDialog,
achieves a MAP of 0.68 whereas our BERT baselines reaches a MAP of 0.71 (cf.

5
MSDialog is available at https://ciir.cs.umass.edu/downloads/msdialog/

6
MANtIS is available at https://guzpenha.github.io/MANtIS/

https://ciir.cs.umass.edu/downloads/msdialog/
https://guzpenha.github.io/MANtIS/
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Table 4: Dataset used. U is the dialogue context, r a response and u an utterance.

MSDialog MANtIS

Number of domains 75 14

Train Valid Test Train Valid Test

Number of (U , r) pairs 173k 37k 35k 904k 199k 197k
Number of candidates per U 10 10 10 11 11 11
Average number of turns 5.0 4.8 4.4 4.0 4.1 4.1
Average number of words per u 55.8 55.8 52.7 98.2 107.2 110.4
Average number of words per r 67.3 68.8 67.7 91.0 100.1 94.6

Table 5). We fine-tune BERT7 for sentence classification, using the CLS token8;
the input is the concatenation of the dialogue context and the candidate response
separated by SEP tokens. When training BERT we employ a balanced number
of relevant and non-relevant context and response pairs9. We use cross entropy
loss and the Adam optimizer [20] with learning rate of 5e� 5 and ✏ = 1e� 8.

For �
SM

, as word embeddings we use pre-trained fastText10 embeddings with
300 dimensions and a maximum length of k = 20 words of dialogue contexts
and responses. For �

BM25, we use default values11 of k1 = 1.5, b = 0.75 and
✏ = 0.25. For CL, we fix T as 90% percent of the total training iterations—this
means that we continue training for the final 10% of iterations after introducing
all samples—and the initial number of instances � as 33% of the data to avoid
sampling the same instances several times.

Evaluation To compare our strategies with the baseline where no CL is em-
ployed, for each approach we fine-tune BERT five times with di↵erent random
seeds—to rule out that the results are observed only for certain random weight
initialization values—and for each run we select the model with best observed
e↵ectiveness on the development set. The best model of each run is then ap-
plied to the test set. We report the e↵ectiveness with respect to Mean Average
Precision (MAP) like prior works [50,52]. We perform paired Student’s t-tests
between each scoring/pacing-function variant and the baseline run without CL.

5 Results

We first report the results for the pacing functions (Figure 3) followed by the
main results (Table 5) comparing di↵erent scoring functions. We finish with an
error analysis to understand when CL outperforms our no-curriculum baseline.

7 We use the PyTorch-Transformers implementation https://github.com/

huggingface/pytorch-transformers and resort to bert-base-uncased with de-
fault settings.

8 The BERT authors suggest CLS as a starting point for sentence classification
tasks [7].

9 We observed similar results to training with 1 to 10 ratio in initial experiments.
10

https://fasttext.cc/docs/en/crawl-vectors.html

11
https://radimrehurek.com/gensim/summarization/bm25.html

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://fasttext.cc/docs/en/crawl-vectors.html
https://radimrehurek.com/gensim/summarization/bm25.html
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Pacing Functions In order to understand how CL results are impacted by
the pace we go from easy to hard instances, we evaluate the di↵erent proposed
pacing functions. We display the evolution of the development set MAP (aver-
age of 5 runs) during training on Figure 3 (we use development MAP to track
e↵ectiveness during training). We fix the scoring function as BERT

pred

; this is
the best performing scoring function, more details in the next section. We see
that the pacing functions with the maximum observed average MAP are root 2
and root 5 for MSDialog and MANtIS respectively12. The other pacing functions,
linear, geom progression and step, also outperform the standard training base-
line with statistical significance on the test set and yield similar results to the
root 2 and root 5 functions.

Our results are aligned with previous research on CL [30], that giving more
time for the model to assimilate harder instances (by using a root pacing func-
tion) is beneficial to the curriculum strategy and is better than no CL with
statistical significance on both development and test sets. For the rest of our
experiments we fix the pacing function as root 2, the best pacing function for
MSDialog. Let’s now turn to the impact of the scoring functions.

Scoring Functions The most critical challenge of CL is defining a measure
of di�culty of instances. In order to evaluate the e↵ectiveness of our scoring
functions we report the test set results across both datasets in Table 5. We
observe that the scoring functions which do not use the relevance labels Y are not
able to outperform the no CL baseline (random scoring function). They are based
on features of the dialogue context U and responsesR that we hypothesized make
them di�cult for a model to learn. Di↵erently, for BERT

loss

and BERT

pred

we observe statistically significant results on both datasets across di↵erent runs.
They di↵er in two ways from the unsuccessful scoring functions: they have access

12 If we increase the n of the root function to bigger values, e.g. root 10, the results
drop and get closer to not using CL. This is due to the fact that higher n generate
root functions with a similar shape to standard training, giving the same amount of
time to easy and hard instances (cf. Figure 2).
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Table 5: Test set MAP results of 5 runs using di↵erent curriculum learning
scoring functions. Superscripts †

/

‡ denote statistically significant improvements
over the baseline where no curriculum learning is applied (f

score

= random) at
95%/99% confidence intervals. Bold indicates the highest MAP for each line.

MSDialog

run random #
turns

#Uwords

#Rwords

�

SM

�

BM25 BERT

pred

BERT

loss

1 0.7142 0.7220 † 0.7229 † 0.7182 0.7239 †‡ 0.7175 0.7272

†‡ 0.7244 †‡

2 0.7044 0.7060 0.7053 0.6968 0.7032 0.7003 0.7159

†‡ 0.7194 †‡

3 0.7126 0.7215 † 0.7163 0.7171 0.7174 0.7159 0.7296

†‡ 0.7225 †‡

4 0.7031 0.7065 0.7043 0.6993 0.7026 0.6949 0.7154 †‡
0.7204

†‡

5 0.7148 0.7225 † 0.7203 0.7169 0.7171 0.7134 0.7322 †‡
0.7331

†‡

AVG 0.7098 0.7157 0.7138 0.7097 0.7128 0.7084 0.7241 0.7240

SD 0.0056 0.0086 0.0086 0.0106 0.0095 0.0101 0.0079 0.0055

MANtIS

1 0.7203 0.7192 0.7198 0.7194 0.7166 0.7200 0.7257 †‡
0.7268

†‡

2 0.6984 0.6993 0.6989 0.6996 0.6964 0.7009 0.7067

†‡ 0.7051 †‡

3 0.7200 0.7197 0.7134 0.7206 0.7153 0.7153 0.7282

†‡ 0.7221
4 0.7114 0.7117 0.7002 0.6978 0.7140 0.7084 0.7240

†‡ 0.7184 †‡

5 0.7156 0.7174 0.7193 † 0.7162 0.7147 0.7185 0.7264

†‡ 0.7258 †‡

AVG 0.7131 0.7135 0.7103 0.7107 0.7114 0.7126 0.7222 0.7196

SD 0.0090 0.0085 0.0102 0.0111 0.0084 0.0079 0.0088 0.0088

to the training labels Y and the di�culty of an instance is based on what a
previously trained model determines to be hard, and thus not our intuition.

Our results bear resemblance to Born Again Networks [10], where a student
model which is identical in parameters and architecture to the teacher model
outperforms the teacher when trained with knowledge distillation [15], i.e., us-
ing the predictions of the teacher model as labels for the student model. The
di↵erence here is that instead of transferring the knowledge from the teacher
to the student through the labels, we transfer the knowledge by imposing a
structure/order on the training set, i.e. curriculum learning.

Error Analysis In order to understand when CL performs better than random
training samples, we fix the scoring (BERT

pred

) ad pacing function (root 2 ) and
explore the test set e↵ectiveness along several dimensions (cf. Figures 4 and 5).
We report the results only for MSDialog, but the trends hold for MANtIS as well.

We first consider the number of turns in the conversation in Figure 4. CL
outperforms the baseline approach for the types of conversations appearing most
frequently (2-5 turns in MSDialog). The CL-based and baseline e↵ectiveness
drops for conversations with a large number of turns. This can be attributed to
two factors: (1) employing pre-trained BERT in practice allows only a certain
maximum number of tokens as input, so longer conversations can lose important
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Fig. 5: Test set MAP for MSDialog across di↵erent domains (left) and instances’
di�culty (right) according to #Rwords

for curriculum learning and the baseline.

information due to truncating; (2) for longer conversations it is harder to identify
the important information to match in the history, i.e information spread.

Next, we look at di↵erent conversation domains in Figure 5 (left), such as
physics and askubuntu—are the gains in e↵ectiveness limited to particular do-
mains? The error bars indicate the confidence intervals with confidence level of
95%. We list only the most common domains in the test set. The gains of CL are
spread over di↵erent domains as opposed to concentrated on a single domain.

Lastly, using our scoring functions we sort the test instances and divide them
into three buckets: first 33% instances, 33%–66% and 66%–100%. In Figure 5
(right), we see the e↵ectiveness of CL against the baseline for each bucket using
#Uwords

(the same trend holds for the other scoring functions). As we expect,
the bucket with the most di�cult instances according to the scoring function
is the one with lowest MAP values. Finally, the improvements of CL over the
baseline are again spread across the buckets, showing that CL is able to improve
over the baseline for di↵erent levels of di�culty.

6 Conclusions

In this work we studied whether CL strategies are beneficial for neural rank-
ing models. We find supporting evidence for curriculum learning in IR. Simply
reordering the instances in the training set using a di�culty criteria leads to
e↵ectiveness improvements, requiring no changes to the model architecture—a
similar relative improvement in MAP has justified novel neural architectures in
the past [50,61,62,43]. Our experimental results on two conversation response
ranking datasets reveal (as one might expect) that it is best to use all available
information (U ,R,Y) as evidence for instance di�culty. Future work directions
include considering other retrieval tasks, di↵erent neural architectures and an
investigation of the underlying reasons for CL’s workings.
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