
LogUI : Contemporary Logging Infrastructure
for Web-Based Experiments

David Maxwell and Claudia Hauff

Delft University of Technology
Delft, The Netherlands

{d.m.maxwell,c.hauff}@tudelft.nl

Abstract. Logging user interactions is fundamental to capturing and
subsequently analysing user behaviours in the context of web-based In-
teractive Information Retrieval (IIR). However, logging is often imple-
mented within experimental apparatus in a piecemeal fashion, leading to
incomplete or noisy data. To address these issues, we present the LogUI
logging framework. We use (now ubiquitous) contemporary web technolo-
gies to provide an easy-to-use yet powerful framework that can capture
virtually any user interaction on a webpage. LogUI removes many of the
complexities that must be considered for effective interaction logging.

Keywords: Logging · Framework · Experimental Infrastructure

1 Introduction

Contemporary web applications are complex and ubiquitous [17]. At their heart,
a series of manipulations are undertaken on the Document Object Model (DOM)1,
where HTML elements are created and modified during the lifespan of a web-
page. Web-based experimental apparatus is commonplace within the IIR com-
munity to examine an interface’s usability and the behaviours exhibited by those
who use it. Vital to these studies is the concept of logging user interactions. In-
teraction logs are generated by capturing and recording a user’s interactions (or
events) with webpage(s) during a search and/or browsing session.

Researchers often work on their own web-based apparatus, including their
own logging infrastructure. Anecdotal observations highlight that logging is often
achieved in a piecemeal fashion, often considered to be an afterthought leading
on from the implementation of the main system. However, this is undesirable.
Infrastructure can be complex to implement [1], with researchers forgetting to
log key events, or misunderstanding implementation nuances. This can lead to
low quality logs, with missing and/or noisy data—with the potential for post-
hoc frustrations when interpreting the data. While attempts have been made to
develop logging infrastructure over the years (refer to §2), we have failed to find
an easy-to-use (and affordable) solution that considers the necessary complexities
to generate clean logs—and is able to exploit contemporary web technologies.

1 The DOM is the tree-like structure of HTML elements that constitute a webpage.

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/HTML

2 D. Maxwell and C. Hauff

As such, we present in this paper the LogUI framework. The framework
can capture and record high-quality, fine-grained user interaction data over the
course of a search and/or browsing session. It can be easily integrated within any
existing web application that is run on a contemporary web browser/framework,
meaning support on both desktop and mobile platforms is possible.

2 Existing Approaches

While a large number of IIR studies report measures such as click depths (on
Search Engine Result Pages (SERPs)), mouse trails and movements, dwell times,
keypresses, and so forth, descriptions about how the underlying data are cap-
tured are seldom provided. Indeed, logging apparatus is often implemented in
situ within the wider experimental system. A number of logging tools (and asso-
ciated literature) exist. Phillips and Dumas [16] presented a number of criteria
that effective logging infrastructure must comply with.

The mid-2000s to the mid-2010s saw a shift in focus from platform-specific [14,
16,21] to web-based experimental apparatus, including interaction logging infras-
tructure that focused on examining the DOM. Examples of solutions from this
period included MLogger [10], PooDLE [5], Search-Logger [18], Wrapper [13],
UsaProxy [3,4], the framework by Hall and Toms [11], WHOSE [12], and YAS-
FIIRE [20]. Some of these solutions required additional software to be installed
(such as browser toolbars), while others made use of an intermediatary proxy
server to inject logging code, as used in subsequent studies [2, 6, 7, 15].

Despite advancements, these approaches were less than ideal [8]. A sec-
ond browser war led to a rise in prominence for client-side scripting (i.e., EC-
MAScript, or JavaScript), and in turn increased the capabilities of browsers.
Existing solutions became redundant, with new, JavaScript-only solutions such
as ALF [9]. In the commercial space, tools such as Google Analytics, Hotjar ,
Matomo, and eTracker Analytics are available. While useful, these tools offer
either coarse-grained logging (for SEO); are prohibitively expensive; are not de-
signed to be loosely coupled (leading to integration difficulties); or use outdated
technologies. A more recent solution is UXJs [19], but it may still have issues
when integrating with modern web applications using frameworks such as React.
These modern frameworks use JavaScript to ‘draw’ elements on a webpage; the
fine-grained logging solutions mentioned above do not cater for elements drawn
after the page initially loads. We believe that there is therefore a pertinent need
for logging apparatus supported by researchers within the IIR community.

3 The LogUI Framework

With a high-level overview of LogUI shown in Figure 1, we now present a brief
discussion of the framework’s architecture, highlighting the main components.
This includes: the client; what can be logged; the server; and ease of integration.
Note that all circled numbers (e.g., 1) pertain to the component highlighted
with the same number as in Figure 1.

https://analytics.google.com/
https://www.hotjar.com
https://matomo.org/
http://www.etracker.com/

LogUI Demonstration Paper 3

Client (Web Application)
Web Browser/Framework

LogUI Server

LogUI Client Configuration

Worker

StoreContainer

Data Analysis

“Log whenever is clicked”

Captured Event
WebSocket

1

2
3

4
5

6

7

8

Application Server

WorkerBrowser
Request

Fig. 1. Architecture diagram of the LogUI framework. Refer to §3 for a detailed
explanation, along with descriptions of the eight highlighted components.

LogUI Client Library: The LogUI client is a JavaScript library that pro-
vides advanced functionality for the tracking of events associated with a specific
element on a webpage, or associated with the webpage as a whole. To clarify, an
event pertains to a specific action—such as the click of a user’s mouse—on a spe-
cific element—such as a snippet as presented on a SERP. Events pertaining to
the page as a whole could be, for example, the resizing of the web browser’s view-
port, tracking mouse movements, the scrolling of the page, or the web browser no
longer being the user’s active window (losing focus). As previously mentioned,
LogUI can be used in a contemporary web browser2; web-based application
frameworks such as Electron are also supported if required.

Given an existing web application (such as experimental apparatus) where
fine-grained event logging is required 1 , one can integrate LogUI by including
the compiled LogUI client library 2 . A configuration object must be supplied
to LogUI 3 . This tells the client library what elements on the page should
be logged—and for what events (see below). When an event occurs 4 , the
LogUI client then packages up the data for the event (along with any specified
metadata, see below) 5 , and sends the packaged data down the established
Websocket connection to the listening LogUI server worker process 6 .3

Loggable Elements and Events: Standardised CSS Selectors are used in the
configuration object 3 to allow for the selection of any element within the DOM.
Any standardised DOM events can also be used (such as mouseover or keyup).
As mentioned, page-wide events can also be logged. Changes to the DOM are

2 LogUI has been tested with Chrome, Edge, Firefox, Opera, and Safari.
3 Note that the Application Server and LogUI Server are two entirely different pro-

cesses, and can be run on separate computers (with CORS support enabled).

https://www.electronjs.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

4 D. Maxwell and C. Hauff

also incorporated, with LogUI watching for new elements matching a given CSS
selector, and applying the necessary events.4 We also include so-called grouping,
where one or more events can be chained together to act as a single, managable
event (e.g., mouseover and mouseout events would constitute a grouped hover

event). This means that additional logic can be added to avoid logging noisy
events, such as when scrolling. This is a novel and non-trivial feature, and while
it affords additional complexity, it results in cleaner logs.

Metadata: One or more pieces of metadata may be required to be packaged
with a logged event.5 LogUI provides numerous metadata sourcers, allowing for
the extraction of data from different locations (e.g., the attribute of the element,
or localstorage). We also include sourcers for frameworks like React, allowing
one to extract a prop or state value from the associated component.

LogUI Server: The server authenticates a LogUI client, and receives the
packaged event data 6 . It is then placed in backing storage 7 (with session
IDs, allowing for filtering/merging). Captured data for search/browsing sessions
can be then downloaded and used for data analysis 8 . The server is implemented
within a containerised environment to aid portability.

Integration with Web Applications: LogUI can be seamlessly integrated
within existing web applications. As it examines the DOM only, it is framework
agnostic. The client is self-contained, meaning it does not interfere with other
libraries. Logging is as easy as 1-2-3 : (1) include the client library within the
web application; (2) specify what elements and events to log; and (3) start a
server instance to receive the logged events. The framework provides support for
web applications on a single webpage, or over multiple webpages. Interactions
over multiple pages can therefore be counted as a single session. A simple API
is also provided to start and stop the library, or reset the session as required.

Availability: Code is open source and available from GitHub. The client is ac-
cessible at https://github.com/logui-framework/client/, with server code
at https://github.com/logui-framework/server/. Documentation for both
components are also available in the respective repository.

4 Summary

We have described our new logging framework, LogUI. The complexity that the
framework handles (along with the relative simplicity of using it) will provide
a powerful new tool for researchers to deploy when logging user interactions
as part of IIR experiments. We aim to continue developing the framework to
support more advanced features6, and will promote its use in a wide variety of
experimental apparatus, leading to increased productivity for researchers.

Acknowledgements This research has been supported by NWO projects SearchX
(639.022.722) and Aspasia (015.013.027).

4 LogUI therefore supports contemporary client-side web application frameworks.
5 Metadata examples could include the docid for a document presented on a SERP,

or, more generally, the condition a participant is assigned to in an A/B test.
6 Features could include a UXJs-style [19] analysis interface, or screen capturing.

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://github.com/logui-framework/client/
https://github.com/logui-framework/server/

LogUI Demonstration Paper 5

References

1. Alexander, J., Cockburn, A., Lobb, R.: AppMonitor: A tool for recording user
actions in unmodified Windows applications. Behavior Research Methods 40(2),
413–421 (2008)

2. Apaolaza, A., Harper, S., Jay, C.: Longitudinal Analysis of Low-Level Web Inter-
action through Micro Behaviours. In: Proc. 26th ACM HT. p. 337–340 (2015)

3. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the User’s Every Move: User Activity
Tracking for Website Usability Evaluation and Implicit Interaction. In: Proc. 15th

WWW. p. 203–212 (2006)
4. Atterer, R.: Logging usage of AJAX applications with the “UsaProxy” HTTP

proxy. In: Workshop on Logging Traces of Web Activity, Proc. 15th WWW (2006)
5. Bierig, R., Gwizdka, J., Cole, M.J.: A user-centered experiment and logging frame-

work for interactive information retrieval. In: Workshop on Understanding the
User, Proc. 32nd ACM SIGIR. pp. 8–11 (2009)

6. Bigham, J., Cavender, A.: Evaluating existing audio captchas and an interface
optimized for non-visual use. In: Proc. 27th ACM CHI. p. 1829–1838 (2009)

7. Bilal, D., Gwizdka, J.: Children’s eye-fixations on google search results. Proc.
ASIS&T 53(1), 1–6 (2016)

8. Dekel, U.: A Framework for Studying the Use of Wikis in Knowledge Work Using
Client-Side Access Data. In: Proc. 3rd WikiSym. p. 25–30 (2007)

9. Doolan, M., Azzopardi, L., Glassey, R.: ALF: A Client Side Logger and Server
for Capturing User Interactions in Web Applications. In: Proc. 35th ACM SIGIR.
p. 1003 (2012)

10. Edmonds, A., White, R.W., Morris, D., Drucker, S.M.: Instrumenting the Dynamic
Web. J. Web Eng. 6(3), 244–260 (2007)

11. Hall, M., Toms, E.: Building a common framework for IIR evaluation. In: Proc.
4th CLEF. pp. 17–28 (2013)

12. Hienert, D., van Hoek, W., Weber, A., Kern, D.: Whose – a tool for whole-session
analysis in iir. In: Proc. 37th ECIR. pp. 172–183 (2015)

13. Jansen, B.J., Ramadoss, R., Zhang, M., Zang, N.: Wrapper: An Application for
Evaluating Exploratory Searching Outside of the Lab. In: Workshop on Evaluating
Exploratory Search Systems, In Proc. 29th ACM SIGIR (2006)

14. Kukreja, U., Stevenson, W.E., Ritter, F.E.: RUI: Recording user input from inter-
faces under Windows and Mac OS X. Behavior Research Methods 38(4), 656–659
(2006)

15. Lassila, M., Pääkkönen, T., Arvola, P., Kekäläinen, J., Junkkari, M.: Unobtrusive
Mobile Browsing Behaviour Tracking Tool. In: Proc. 4th IIiX. p. 278–281 (2012)

16. Philips, B.H., Dumas, D.J.S.: Usability Testing: Identifying Functional Require-
ments for Data Logging Software. Proc. Human Factors Society Annual Meeting
34(4), 295–299 (1990)

17. Rossi, G., Urbieta, M., Distante, D., Rivero, J.M., Firmenich, S.: 25 Years of Model-
Driven Web Engineering. What we achieved, What is missing. CLEI Elec. J. 19(3),
5–57 (2016)

18. Singer, G., Norbisrath, U., Vainikko, E., Kikkas, H., Lewandowski, D.: Search-
Logger: Analyzing Exploratory Search Tasks. In: Proc. 26th ACM SAC. p. 751–756
(2011)

19. Soĺıs-Mart́ınez, J., Espada, J.P., González Crespo, R., Pelayo G-Bustelo, B.C.,
Cueva Lovelle, J.M.: UXJs: Tracking and Analyzing Web Usage Information With
a Javascript Oriented Approach. IEEE Access 8, 43725–43735 (2020)

6 D. Maxwell and C. Hauff

20. Wei, X., Zhang, Y., Gwizdka, J.: Yasfiire: Yet another system for iir evaluation.
In: Proc. 5th IIiX. p. 316–319 (2014)

21. Westerman, S.J., Hambly, S., Alder, C., Wyatt-Millington, C.W., Shryane, N.M.,
Crawshaw, C.M., Hockey, G.R.J.: Investigating the human-computer interface us-
ing the Datalogger. Behavior Research Methods, Instruments, & Computers 28(4),
603–606 (1996)

	LogUI: Contemporary Logging Infrastructure for Web-Based Experiments

