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ABSTRACT
Massive Open Online Courses (MOOCs) have become an attractive
opportunity for people around the world to gain knowledge and
skills. Despite the initial enthusiasm of the first wave of MOOCs
and the subsequent research efforts, MOOCs today suffer from re-
tention issues: many MOOC learners start but do not finish. A main
culprit is the lack of oversight and directions: learners need to be
skilled in self-regulated learning to monitor themselves and their
progress, keep their focus and plan their learning. Many learners
lack such skills and as a consequence do not succeed in their cho-
sen MOOC. Many of today’s MOOCs are centered around video
lectures, which provide ample opportunities for learners to become
distracted and lose their attention without realizing it. If we were
able to detect learners’ loss of attention in real-time, we would be
able to intervene and ideally return learners’ attention to the video.
This is the scenario we investigate: we designed a privacy-aware
system (IntelliEye) that makes use of learners’ Webcam feeds to
determine—in real-time—when they no longer pay attention to the
lecture videos. IntelliEye makes learners aware of their atten-
tion loss via visual and auditory cues. We deployed IntelliEye
in a MOOC across a period of 74 days and explore to what extent
MOOC learners accept it as part of their learning and to what extent
it influences learners’ behaviour. IntelliEye is open-sourced at
https://github.com/Yue-ZHAO/IntelliEye.
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1 INTRODUCTION
In 2011, theMOOC revolution began: Stanford University offered the
first MOOC on Artificial Intelligence followed by more than 160,000
learners worldwide. The idea of MOOCs quickly spread. A major
motivation behind MOOCs is the provision of ubiquitous learning
to people from all walks of live. Today, MOOCs are being offered by
many world-renowned universities on platforms such as Coursera,
FutureLearn and edX1, reaching millions of learners. At the same
time, the initial predictions of this revolution have not come to
pass—MOOCs today suffer from a lack of retention with usually
less than 10% (in extreme cases < 1%) of learners succeeding [9].
Examining the current nature of MOOCs reveals an important clue
as to why they fail to realize their potential: although they offer
flexibility, and scale, they do not involve truly novel technologies.
Most MOOCs today revolve around a large number of videos2 and
automatically graded quizzes and little else. This setup (largely
chosen for its inherent scalability), requires learners to be skilled in
self-regulated learning [21], that is, to monitor themselves and their
progress, keep their focus and plan their learning. Many learners
lack such skills and as a consequence do not succeed. In this paper
we present IntelliEye, a system we designed to directly tackle
the “loss of focus” issue during MOOC lecture video watching by
detecting it in real-time and alerting the learner to it. We focus our
efforts on the video watching activity as (i) learners spend a large
portion of their time in a MOOC on it; (ii) learners are prone to lose
their focus even in short lecture videos of six to ten minutes [30], a
common video length in MOOCs; (iii) video watching is a rather
passive activity which provides ample opportunities for learners to
become distracted—and engage in “heavy media multitasking" [13]
by reading their emails, surfing the Web, etc.—and lose their focus
often without realizing it; and (iv) inattention has been shown to be
significantly and negatively correlated with learning efficiency [26].

But how exactly can we detect learners’ loss of focus in real-time
and at scale? And how can we alert the learner to her loss of focus?
One answer to these questions lies in the ubiquitous availability of
Webcams in today’s laptops: IntelliEye employs theWebcam feed
to “observe” learners’ behaviours and activities during their time on
the MOOC platform and intervenes (e.g. by delivering an auditory
signal) if it detects a loss of focus. All of these actions are performed

1https://www.edx.org/
2The MOOC we deploy IntelliEye in contains 104 lecture videos.
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by IntelliEye in a privacy-aware manner: none of the data or
computations leaves a user’s machine. Prior works [1, 2, 18, 30]
exploited eye-tracking to determine a user’s attention state, though
these studies were either conducted with commercial high-quality
hardware eye-tracking devices and/or well-settled experimental lab
conditions [30]. In contrast, in our work we make use of commonly
available Webcams and deploy IntelliEye “in the wild”, to 2, 612
MOOC learners in an actual MOOC, instead of a controlled lab
study.

We conduct our analyses of IntelliEye’s use along three di-
mensions: (1) the technological capabilities of MOOC learners’
hardware, (2) the acceptance of IntelliEye by MOOC learners,
and, (3) the effect of IntelliEye on MOOC learners’ behaviour.
Specifically, we investigate the following research questions:

RQ1 To what extent is MOOC learners’ hardware capable to en-
able the usage of technologically advanced widgets such as
IntelliEye?

RQ2 To what extent do MOOC learners accept technology that is
designed to aid their learning but at the same time is likely
to be perceived as privacy-invading (even though it is not)?
Are certain types of MOOC learners (e.g. young learners, or
highly educated ones) more likely to accept this technology
than others?

RQ3 What impact does IntelliEye have on learners’ behaviours
and actions? Towhat extent does IntelliEye affect learners’
video watching behaviour?

Our main findings can be summarized as follows:

• We find that most learners (78%) use hardware and software
setups which are capable to support such widgets, making the
wide-spread adoption of our approach realistic from a techno-
logical point of view.
• The majority of learners (67%) with capable setups is reluctant
to allow the use of Webcam-based attention tracking techniques,
citing as main reasons privacy concerns and the lack of perceived
usefulness of such a tool.
• Among the learners using IntelliEyewe observe (i) high levels
of inattention (on average one inattention episode occurs every
36 seconds—a significantly higher rate than reported in previous
lab studies) and (ii) an adaptation of learners’ behaviour towards
the technology (learners in conditions that disturb the learner
when inattention occurs exhibit fewer inattention episodes than
learners in a condition that provides less disturbance).

2 RELATEDWORK
Attention Loss in the Learning Process
Identifying and tracking learners’ loss of attention in the classroom
has been explored in a myriad of ways since the 1960s, including
the analysis of students’ notes [7, 15], the observation of inattention
behaviors (by observers, stationed at the back of the classroom) [8],
the retention of course content [16], probes (requiring participants
to record their attention at particular given points in time) [12, 27]
and self-reports (requiring participants to report when they become
aware of their loss of attention) [3]. A common belief was that
learners’ attention decreases considerably after 10-15 minutes into
the lecture [27]. Later, Wilson and Korn [29] challenged this claim

and argued that more research is needed, a call picked up by Bunce
et al. [3] who found that learners start losing their attention early
on in higher-education lectures and may cycle through several
attention states within 9-12 minute course segments.

With the advent of online learning, the issue of attention loss,
how to measure it and how it compares to classroom attention
lapses received renewed attention. Different studies have shown
that in online learning environments (often simulated in lab settings
where participants watch lecture videos), attention lapses may be
even more frequent than in the classroom setting. Risko et al. [23]
used three one hour video-recorded lectures with various topics
(psychology, economics, and classics) in their experiments, probing
participants four times throughout each video. The attention-loss
frequency was found to be 43%. In addition, a significant negative
correlation between test performance and loss of attention was
found. Szpunar et al. [28] studied the impact of interpolated tests
on learners’ loss of attention within online lectures, asking par-
ticipants to watch a 21-minute video lecture (4 segments with 5.5
minutes per segment) and report their loss of attention in response
to random probes (one per segment). In their study, the loss of at-
tention frequency was about 40%. Loh et al. [13] also applied probes
to measure learners’ loss of attention, finding a positive correlation
between media multitasking activity and learners’ loss of attention
(average frequency of 32%) whilst watching video lectures. Based on
these considerably high loss of attention frequencies we conclude
that reducing loss of attention in online learning is an important
approach to improve learning outcomes.

Automatic Detection of Attention Loss
Inspired by the eye-mind link effect [22], a number of previous
studies [1, 2, 18] focused on the automatic detection of learners’
loss of attention by means of gaze data. In [1, 2], Bixler and D’Mello
investigated the detection of learners’ loss of attention during com-
puterized reading. To generate the ground truth, the study par-
ticipants were asked to manually report their loss of attention
when an auditory probe (i.e. a beep) was triggered. Based on those
reports, the loss of attention frequency ranged from 24% to 30%.
During the experiment, gaze data was collected using a dedicated
eye-tracker. Mills et al. [18] asked study participants to watch a 32
minute, non-educational movie and self-report their loss of atten-
tion throughout. In order to detect loss of attention automatically,
statistical features and the relationship between gaze and video
content were considered. In contrast to [1, 2], the authors mainly
focused on the relationship between a participant’s gaze and areas
of interest (AOIs), specific areas in the video a participant should
be interested in. Zhao et al. [30] presented a method to detect inat-
tention similar to the studies in [18], but optimized for a MOOC
setting (including the use of a Webcam alongside a high-quality
eye-tracker). All mentioned approaches relying on the eye-mind
link share two common issues: (i) they are usually unable to provide
real-time feedback as they are trained on eye-gaze recordings with
sparse manually provided labels (e.g., most approaches have a label
frequency of 30-60 seconds, which directly translates into a detec-
tion delay of similar length), and (ii) the reported accuracy is too
low for practical application (e.g., [30] reports detection accuracy
between 14%-35%). Lastly, we note that besides the eye-mind link,



another recent direction is the use of heart rate data (measured for
instance by tracking fingertip transparency changes [20]) to infer
learners’ attention.

MOOC Interventions
We now discuss MOOC interventions, especially those geared to-
wards video watching and towards improving self-regulated learn-
ing. Existing research on MOOC videos is largely concerned with
the question of what makes a MOOC video engaging and attractive
to learners; examples include the overlay of an instructor’s face
over the lecture slides [10], shorter video segments instead of one
long lecture video [6], and the overlay of an instructor’s gaze to
enable learners to more easily follow the video content [25].

Few works have considered the issue of self-regulated learn-
ing in MOOCs, largely because this requires approaches that are
personalized and reactive towards each individual learner. Simply
informing learners about the best strategies for self-regulated learn-
ing at the beginning of a MOOC is not sufficient [11]. Davis et
al. [5] recently designed a visual “personalized feedback system”
that enables learners to learn how well they are doing compared
to successful passers from a previous MOOC edition (in terms of
time spent on the platform, their summative assessment scores and
so on). This comparison, even though this feedback moment was
rare (once a week), enabled learners to self-regulate their learning
better, leading to significantly higher completion rates for learners
exposed to the feedback system. A prior study by Davis et al. [4] had
indicated that non-compliance among learners is a difficult obstacle
in very simple interventions: the authors had included an extra
question in each week of a MOOC, asking learners to write about
their study plans (and thus make learners think about those plans).
Few learners saw the benefit of this question (it was ungraded) and
thus very few complied.

Overall, we have shown that attention lapses are a regular occur-
rence in the classroom and occur with even greater frequency in
online learning, where learners are prone to digital multitasking.We
have also presented some drawbacks of sophisticated eyetracking-
based attention loss detectors (accuracy and timeliness of detec-
tion) and finally we have pointed out the difficulty of bringing
self-regulated learning into the MOOC scenario due to learners’
non-compliance. In response to these findings we have designed
IntelliEye, a robust attention loss (by using face detection as a
proxy) detector that requires no additional actions by the learners
beyond what they usually do on a MOOC platform, provides per-
sonalized feedback, is privacy-aware and detects a loss of attention
in near-real-time (with at most 2 seconds delay).

3 INTELLIEYE

3.1 Architecture
The goal of IntelliEye is to provide real-time feedback on learner’s
attention, and is based on a set of heuristics reliably implementable
on a wide variety of hardware setups: (1) if the browser tab/window
containing the lecture video is not visible to the learner, IntelliEye
triggers an inattention event; (2) we assume a learner is inattentive
if her face cannot be detected for a period of time, i.e. we employ

face tracking as a robust proxy of attention tracking3; (3) if the face
tracking module detects a loss of the face we consider the mouse
movements as a safety check: if no face is detected but the mouse
is being moved, no event is triggered.

The resulting high-level architecture is shown in Figure 1. We
implemented IntelliEye in JavaScript, as the edX platform allows
custom JavaScript to be embedded in course modules—thus pro-
viding us with an easy way to “ship” IntelliEye to all learners
in our MOOC. As visible in Figure 1, IntelliEye resides exclu-
sively on the client to ensure learners’ privacy; usage logs are send
to our dedicated IntelliEye log server for the purpose of eval-
uating IntelliEye, though this communication is not necessary
for IntelliEye to function. This setup requires IntelliEye to be
light-weight and resource-saving as all computations are carried
out on the learner’s device and within the resource limits of a com-
monWeb browser. We now describe the seven architecture modules
that IntelliEye consists off.

Figure 1: IntelliEye’s high-level architecture. The profiling
and loggermodules are always active; the attention tracking
and alerting modules are only enabled if supported setup is
detected and learner has granted access to Webcam feed.

3.1.1 Profiling Module. In order to provide a smooth user expe-
rience for MOOC learners we limit the full usage of IntelliEye
to devices that fulfill certain device setup requirements, a situation
we call supported setup. We rely on the ClientJS4 library to deter-
mine the device type, operating system and browser version of the
learner’s device and activate the inattention tracking modules only
if a supported setup is detected. The requirements are as follows:

(1) The device is not a mobile device and is not running iOS or
Android, due to their incompatibility with IntelliEye.

(2) The browser used is either: Chrome 54+ (i.e. version 54 or
higher), Firefox 45+ or Opera 41+ to ensure the availability
of JavaScript dependencies necessary for IntelliEye.

(3) The device has at least one usable Webcam as detected via
the Media Capture and Streams API.

If the profiling yields an unsupported setup, a log entry is sent to
our IntelliEye log server and no further modules are activated.

The profilingmodule is also responsible for extracting the learner’s
edX user ID, which in turn determines which alert type the learner
receives in our experiments.

3We note that this is a lower-bound for inattention, as learners watching the video
may still not pay attention.
4https://github.com/jackspirou/clientjs
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3.1.2 Face Tracking Module. In IntelliEye, we use face track-
ing to proxy inattention detection, thus aiming at overcoming the
reported shortcomings of gaze tracking with respect to response
time and reliability: if a learner’s face is not visible in front of the
screen when a lecture video is playing, we argue that she is likely
not paying attention.

We initially experimented with two open-source libraries for
this purpose—WebGazer.js5 and tracking.js [14]6 (or TJS for
short)—and investigated their suitability for Webcam-based inat-
tention detection using face tracking in a user study with 20 par-
ticipants [24]. As an upper bound, we also included the high-end
hardware eye-tracker Tobii X2-30 Compact. We evaluated all
three setups using fifty behaviours that learners typically execute
in front of their computer; thirty-five of those behaviours should
lead to a face detection loss (such as Check your phone; Look right
for 10 seconds) and fifteen should not (e.g. Reposition yourself in the
chair; Scratch the top of your head). During the study the partici-
pants were asked to perform each of the fifty tasks in turn. The
study showed that only TJS has a competitive accuracy: it is able to
detect 77.8% (compared to Webgazer.js’s 14.8%) of the face hit/face
miss behaviours that the Tobii X2-30 Compact was identifying
correctly. We also measured the delay in detecting inattention, i.e.
the difference in seconds between the behaviour being performed
by a study participant and the inattention being detected: 0.6± 1.1s
for TJS and 1.3 ± 1.0s for Webgazer.js. Based on these results, we
chose TJS as our face detection library.

The module performs face presence detection (via TJS) from the
Webcam feed every 250ms and reports a boolean (face present or
absent) to the Inattention scoringmodule. We chose this time interval
not to overburden the computational resources of the learner’s
device.

3.1.3 Mouse Tracking Module. This module acts as a sanity
check for the face tracking module: if the face tracking module
reports loss of a face and the learner is still moving the mouse in
the active MOOCwindow, we assume that the face tracking module
misclassified the situation and do not raise an inattention alert. This
module tracks the absence or presence of mouse movements every
250ms and reports it to the Inattention scoring module.

3.1.4 Page Tracking Module. This module tracks the visibility
of the browser window or tab that contains the edX page (and thus
the lecture video) using the document.hidden()Web API call. A
value is produced every 250ms and forwarded to the Inattention
scoring module.

3.1.5 Inattention Scoring Module. This module estimates inat-
tention of a learner by aggregating the data obtained from the
tracking modules based on the heuristics already introduced at the
start of § 3.1: a learner is inattentive if her face is not trackable
unless there is mouse movement and the video player browser
window is visible. The input from the three scoring modules is
aggregated over a sliding time window of five seconds—we chose
this time window based on our user study with 50 typical activities
during MOOC video watching, where we found the longest activity
to take approximately five seconds. Recall that each module has a

5https://webgazer.cs.brown.edu
6https://trackingjs.com

fixed sampling rate of 250 ms, and thus our sliding window takes
into account 20 measurement points from each tracking module.

More formally, the input to this module are the boolean val-
ues (i) for face presence F = (..., fn−20, fn−19, ..., fn ), (ii) mouse
movementM = (...,mn−20,mn−19, ...,mn ), and (iii) page visibil-
ity V = (...,vn−20,vn−19, ...,vn ). To conserve computational re-
sources, the module computes the attention state once a second.
Algorithm 1 outlines the inattention decision process employed
by the Inattention Scoring module. In essence, a weighted score is
computed for the face presence and mouse movement values (lines
3 & 4), giving higher weights to more recent values. The visibility
score of the video window is simply the last recorded value (line
5). Lines 6-9 compute face-tracking trends over time. The role of
the face-tracking trend computation is to minimize the volume of
false positives driven by learner behaviour, in particular sudden
movements, bad position in front of the Webcam, or a temporary
short time failure of TJS in detecting the face in Webcam video
feed. Lines 10-11 show the rules the module employs to determine
inattention based on the predefined threshold (which represents
the minimum accepted score that is considered as attention, in our
case L = 2.92), computed scores and the trend. The threshold and
rules are another outcome of our user study—they led to the high-
est accuracy in distinguishing between attention and inattention
behaviours [24].

Algorithm 1 Inattention detection mechanism in IntelliEye

Require: F ,M,V , L — threshold value, S—scores for F ,M,V
T = (t1, t2, ..., tk ) score queue of the trending functionality;

1: inAttention ← False
2: n ← 20
3: SF ←

∑
i fn−i (n − i)/n

4: SM ←
∑
imn−i (n − i)/n

5: SV ← vn
6: trendF ← 0
7: T .dequeue(t1);T .enqueue(tk ← SF )
8: (tk > tk−1) ⇒ trendF ← 1
9: (tk < tk−1) ∧ (tk−1 < tk−2) ⇒ trendF ← −1
10: Q ← (SF < L ∧ trendF < 1)
11: (Q ∧ SM < L ∧ SV ) ∨ (Q ∧ ¬SV ) ∨ (SF > L ∧ ¬SV ) ⇒

inAttention ← True

Note that the level of thresholding (L) determines the sensitivity
of IntelliEye—lowering the value will make the system less rig-
orous, increasing this value will on the other hand increase system
responsiveness to learner behaviour.

3.1.6 Alert Module. We explored three different mechanisms—
with varying levels of disruption—to raise learners’ awareness about
their detected loss of attention; none of these requiring an action
from the user beyond returning their attention to the video at hand.
In our experiment each learner is assigned to a single alert type,
depending on their edX user ID detected by the Profiling module.
Pausing the video: When attention loss is detected IntelliEye

will pause the currently playing lecture video. Once IntelliEye
detects re-gained attention on the video, playing is resumed.
At what position playing is resumed depends on how long the

https://webgazer.cs.brown.edu
https://trackingjs.com


learner was not paying attention since pausing. The video is
rewound to between 0 and 10 seconds before the attention loss
was detected; we define three different configurations: (i) if the
inattention period is less than 1.5 seconds, the video continues
fromwhere it was paused as it would be annoying for a learner to
review content just seen and available in her short-time memory,
but also to avoid repetitive ’rewind-and-play’ situations; (ii) if the
inattention lasted more than 10 seconds, the video is rewound
10 seconds which is the approximate lower level of human short-
time memory (reported in between 10-30 seconds [17, 19]); and
(iii) in all other cases it is rewound 3 seconds—rewind a little for
rapid recall in case of distraction. This scheme ensures that the
video will restart at a familiar point for the learner. The drawback
of this mechanism is the severity of false alerts as the video will
pause and thus the learner is disturbed if inattention was falsely
determined.

Auditory alert: In this setup, the video keeps playing but an ad-
ditional sound effect (a bell ring) is played repeatedly as long as
inattention is detected. This setup is not as “annoying” as falsely
pausing the video, but can still substantially disturb the learner.

Visual alert: In this version, IntelliEye visually alerts the learner
by repeatedly flashing a red border around the video as long as
inattention is detected. Figure 3 shows an example of this alert.
This scenario is the least intrusive in case IntelliEye falsely
detects inattention. It may also be the least effective, as learn-
ers who look away from the screen or minimize the browser
tab/window will not be able to view the alert.

3.1.7 Logger Module. This module is responsible for logging
IntelliEye’s usage. These logs are sent to our dedicated log server.
Specifically, the following actions lead to logging (for log entries
with categorical values we list all possible values within {...}):
Loading: When IntelliEye is loaded due to a learner accessing

a course subsection7 containing one or more video units we log
(timestamp, alertType {pause, visual, auditory}, userID,

deviceSetup).
Video status change: Every change in the video’s status (e.g. from

paused to play) for a learner with supported setup leads to a log
of the form (videoID, timestamp, videoStatus {play, pause,

seek, end}, videoTime, videoLength, videoSpeed, subtitles

{on, off}, fullScreen {on, off}). The videoTime entry refers
to the point in time within the video the status changed.

IntelliEye status change: When a learnerwith a supported setup
changes the status of IntelliEye (e.g. from disabled to en-
abled), we log (videoID, timestamp, videoTime, videoLength,

IntelliEyeStatus {allow, disallow, start, pause, resume,

end}). Information on the video is logged as most interactions
with IntelliEye occur within the edX video player (cf. §3.2).

Inattention status change: This log event occurs when for a
learner with a supported setup the attention status changes:
(videoID, timestamp, videoTime, videoLength, inattention

{start, stop}). Here, start indicates that inattention has been
detected. The next event is generated when the status changes
back to attention again (stop). As long as the inattention state
is maintained, no further log events are generated.

7A set of course elements semantically belonging together, cf. §4.

Finally, we note that beyond the IntelliEye logs (cf. Figure 1),
we also have access to the official edX logs, which contain informa-
tion on all common actions learners perform within a MOOC on
the edX platform such as quiz submissions, forum entries, clicks,
views, and so on—data we use in some of our analyses.

3.2 User Interface
Having described IntelliEye’s architecture, we now turn to its
user interface. Figure 2 shows IntelliEye’s welcome screen (poten-
tially shown every time a MOOC learner opens a course subsection
with one or more video units), describing its capabilities, and the
positive impact it can have on learning. The learner has four choices:
(i) to enable IntelliEye for this particular video only, (ii) to disable
IntelliEye for this video only, (iii) to enable IntelliEye for all
videos, and, (iv) to disable IntelliEye for all videos. If a learner
opts for (iv), we ask the her for feedback on the decision (“You have
disabled IntelliEye. Please tell us why.").

Once a learner enables IntelliEye, the face tracking module at-
tempts to access the Webcam feed, which in all supported browsers
triggers a dialogue controlled by the browser (Will you allow edx.org
to use your camera?); once the learner chooses Allow, IntelliEye
is fully functioning.

Figure 3 shows how IntelliEye embeds itself in the edX video
player. Here the learner can return to the welcome screen and
change her enable/disable decisions (via the “eye” icon) and switch
IntelliEye on or off on the fly. IntelliEye’s status is visible at
all times: either ’Active’ (IntelliEye is enabled, the video is not
playing at the moment), ’Playing’ (IntelliEye is enabled), or ’Not
Active’ (IntelliEye is disabled). Note that this change in the video
player interface is only visible to learners with a supported setup.
Learners on non-supported setups will receive the original edX
video player without alterations.

Figure 2: IntelliEye welcome screen.



Figure 3: IntelliEye’s video player interface (arrow) embed-
ded in the edX video player widget. Shown here is an exam-
ple video (an introduction to the edX platform) with subti-
tles enabled and a transcript sidebar. The red hue around the
video player is the visual alert we experiment with.

4 MOOC SETTING
We deployed IntelliEye in the MOOC Introduction to Aeronautical
Engineering (AE1110x) offered by TU Delft on the edX platform.
The MOOC’s target population are learners who are looking for a
first introduction to this particular field of engineering. The MOOC
requires around 80-90 hours of work and consists of 104 videos and
332 automatically graded summative assessment questions. The
MOOC is self-paced, that is, the MOOC is available for learners
to enroll for up to 11 months. In contrast to the more common
six to ten week MOOCs, learners can set their own schedule and
their own pace. The MOOC was opened for enrollment on May
1, 2017 and remained so until March 31, 2018. IntelliEye was
deployed for ten weeks (October 5, 2017 to December 17, 2017);
it was available for all videos within the MOOC. A total of 2, 612
different learners visited the MOOC during the deployment period
and were exposed to IntelliEye. We deployed IntelliEye in
three different variants according to the manner of alerting learners
to their lack of attention: video pause, auditory alert and visual alert
(§ 3.1.6). We conducted an inter-subject study: each learner was
randomly assigned (based on their learner ID) to one of the three
conditions. Once assigned, a learner remained in that condition
throughout the experiment. Table 1 shows the distribution of the
2, 612 learners across the three conditions.

Before turning to the analyses section, we introduce the relevant
concepts and definitions:

Course subsection: on the edX platform, a course subsection
refers to a sequence of course units (such as video units, quiz
units and text units) that are grouped together, most likely be-
cause they all relate to the same topic. As an example, one of the
subsections in our MOOC consists of the following sequence:
video→video→text→quiz→video→quiz→text.

Session: refers to a sequence of logs from a single learner (active on
a single device), with nomore than thirty minutes time difference
between consecutive log entries. This means that after thirty
minutes of inactivity in the MOOC, we assume a new “learning”
session starts (if the learner becomes active again). We combine

the logs we retrieved from our IntelliEye log server with those
collected by edX.

Supported session: refers to a session with a supported setup.
Unsupported session: a session without a supported setup.
Video session: a session in which at least one video was being

played by the learner, regardless of the length of video playing.
IntelliEye session: refers to a supported session which is also

a video session, and in which IntelliEye was running (which
means that the learner did accept the terms of use and played a
video while IntelliEye was active).

Non-IntelliEye session: a supported session which is also a
video session, and in which IntelliEye is not active while the
video was playing (this either means that the learner did not
accept the terms of use, or manually disabled IntelliEye).

5 EMPIRICAL EVALUATION
5.1 RQ1: Technological Capabilities
The first question we consider is to what extent our MOOC learn-
ers (who, according to their edX profiles, hail from 138 different
countries) have a supported device setup: according to Table 1, 78%
of learners (across all three alert types) log in at least once with a
device supported in IntelliEye. Among those 563 learners (22%)
who never have a supported session, 223 of them only access the
course with a mobile device (that is 9% of the overall learner pop-
ulation). If we drill down on the 340 learners with unsupported
sessions on non-mobile devices, the most common reason is an
outdated browser we do not support (e.g. Chrome 52, IE 11, Safari
10 and Safari 11), followed by the lack of a Webcam (in 118 cases).
We do not observe a particular skew towards certain countries or
regions; learners from India (104 learners) and learners from the
US (93 learners) have the largest number of unsupported setups,
which are also the two countries where most learners hail from
(484 learners from India and 334 from the US).

Alert Types #Exposed
Learners

#Learners
with 1+

Supported
Sessions

#Learners
with 1+

IntelliEye
Session

#Learners
without

IntelliEye
Session

Video pause 861 681 214 467
Auditory alert 902 703 208 495
Visual alert 849 665 236 429

Total 2612 2049 658 1391
% of total − 78% 25% 53%

Table 1: Learners exposed to IntelliEye. Shown is the num-
ber of learners: (i) in each alert type condition, (ii) with
at least one session with supported setup, (iii) who used
IntelliEye at least once, and (iv) not accepting IntelliEye.

5.2 RQ2: Acceptance of IntelliEye
Having established that our hardware requirements are reasonable,
we now turn to IntelliEye’s acceptance, i.e., are learners willing
to enable a widget which observes them via a Webcam. As Table 1
shows, 32% of learners (658 out of 2049) with at least one supported
session activate IntelliEye at least once.

We had two hypotheses on who engages with our intervention:
(1) younger learners are more likely to engage than older ones,
and (2) more active learners are more likely to engage than less



Figure 4: Distribution of video sessions and unique learners. A learner may be listed in more than one session type.

Number of IntelliEye sessions
None 1-2 3+

Number of learners 1030 623 35

Median age 23 21∗None 22
Median prior
education

Associate
degree High school ∗None High school ∗None

Median av. session
length (min) 27.77 27.44 35.17†None,1−2

Median #sessions 3 3 12‡None,1−2

Median quiz score 3.0 3.0†None 7.0‡None,1−2

Median minutes
video watching 21.78 21.87 102.82‡None,1−2

Median minutes on
platform 94.56 90.83 542.04‡None,1−2

Table 2: Learner attributes partitioned according to the use
of IntelliEye (choices made on welcome page are not con-
sidered in grouping). Only learners with at least one sup-
ported video session are considered. ∗ indicates Student’s
t-test significance at p < 0.05 level. † and ‡ indicate Mann-
Whitney U test significance at p < 0.05 and p < 0.01 levels
respectively.

active ones. To explore these hypotheses we computed various
metrics for three different user groups (learners that do not engage
with IntelliEye, learners that have one or two IntelliEye ses-
sions and learners that have three or more IntelliEye sessions)
as shown in Table 28. We observe significant differences across
almost all metrics (the exception being age) between those learn-
ers not (or hardly) using IntelliEye and those using IntelliEye
three or more times. The number of learners in each group though—
highly skewed with more than 1,600 learners in the not/hardly
using IntelliEye groups and 35 learners in the remaining group—
has to serve here as a point of caution. Based on these results,
IntelliEye appears to be used most often by learners who are
already engaged—a finding which is inline with prior MOOC inter-
ventions, e.g. [4, 5].

Next, we consider the use of IntelliEye across time (Figure 4):
for each day of our experiment we plot the number of learners
exposed to IntelliEye and whether they have IntelliEye or non-
IntelliEye session. The usage of IntelliEye neither increases
nor decreases significantly over time.

8Note that all our analyses consider the 74 days of IntelliEye’s deployment only, i.e.
the number of sessions, the quiz scores, etc. are only computed for that time period.

In Table 3 we take a look at learners’ decisions of enabling or
disabling IntelliEye in subsequent video sessions. Learners that
enabled IntelliEye in a video session, did so again with a prob-
ability of 0.35 (6% of learners chose to enable IntelliEye for all
sessions, 29% chose to enable IntelliEye for just the next video
session). After enabling IntelliEye in a video session, 21% de-
cided to permanently disable IntelliEye in the next session. We
discuss the main reasons for this decision at the end of this section.
Learners that disabled IntelliEye in their video session were very
unlikely to change their decision in the next video session with 97%
of learners sticking to their disable decision.

Next, we consider for how long learners are using IntelliEye
during their video sessions: do they use IntelliEye continuously
or do they disable it after some time? For all the IntelliEye ses-
sions in which IntelliEye is enabled initially (725 sessions from
557 distinct learners), we condense the video session time (which
includes video watching as well as other activities on the platform)
to video watching time only, based on the edX log data. We then
proceed to determine whether IntelliEye was consistently en-
abled throughout, or whether it was disabled in the first, second or
the last third of the video. We find (Table 4) that mostly IntelliEye
is either switched off very early or employed throughout a session.
Few learners disable it well into the video watching experience (be-
yond the first third of the video). Learners that received the pause
alert are more likely to disable IntelliEye than learners in the
other alert groups; learners in the visual alert condition are most
likely to keep IntelliEye enabled, reflecting the various levels of
disturbance the alerts cause.

Decision v(i) Decision v(i + 1)
E D EF DF

IntelliEye enabled 0.29 0.43 0.06 0.21
IntelliEye disabled 0.03 0.68 0.00 0.28

Table 3: IntelliEye usage transition probabilities be-
tween subsequent video sessions; E=Enabled, D=Disabled,
EF=Enabled Forever, DF=Disabled Forever.

As a last analysis of this research question, we focus on the
reasons learners provided when disabling IntelliEye. Of the 938
learners (248 of them have at least one IntelliEye session) who
chose to disable IntelliEye forever, 379 provided us with reasons



for their decision. With an open card sort we sorted the provided
reasons into eight categories shown in Table 5. As the vast majority
of learners reported a single reason, for the few (< 10) learners who
provided a number of reasons we selected the one they were most
vocal about. Most commonly (35%) learners cited themselves as not
needing help to self-regulate their learning (I never lose my attention
because the lecture and the whole course are very interesting.).

22% of the learners mentioned a non-functioning Webcam (e.g.
Because my camera doesn’t work well; Webcam and audio are easily
accessible with WebRTC so I cover and disable it.), followed by 17%
with privacy concerns (e.g. I feel awkward being observed and con-
trolled.; I don’t like the idea of having the webcam on.) and 9% with
IntelliEye not performing as expected 9. Interestingly, conscious
multitasking was mentioned several times (I’m multi-tasking while
doing this.), showing that at least some learners are verymuch aware
of their learning behaviour and what IntelliEye is supposed to do
for them. Among the 27 learners who report being disturbed by the
alerts, 12 learners received the pause and 12 learners the auditory
alert. Overall, this feedback shows that IntelliEye works reason-
ably well (only 34 out of 248 learners using IntelliEye at least
once reported issues) and that the largest issue facing future use
of IntelliEye is learners’ perception of not requiring an attention
tracker during their learning, followed by privacy concerns.

Disabled during Pause Auditory alert Visual alert

1st third of a session 48% 44% 35%
2nd third of a session 6% 10% 7%
Last third of a session 7% 6% 6%
Enabled throughout 39% 39% 52%

Total # sessions 242 207 276

Table 4: Number of sessions with IntelliEye initially en-
abled grouped by the time it is switched off in the session.

Reason #Learners [%]

Attention tracking not perceived as useful/needed 131 35%
Webcam not functioning 83 22%
Privacy concerns 64 17%
IntelliEye not working well 34 9%
Disturbed by alerts 27 7%
Conscious facing away from the screen 14 4%
Hardware/Internet connection too slow 14 4%
Conscious multitasking 6 2%
Uncomfortable feeling 6 2%∑

379 40%

No reason provided 559 60%

Table 5: Reasons provided for disabling IntelliEye forever.

5.3 RQ3: Impact of IntelliEye
We now investigate the impact of IntelliEye on learners over
time and explore whether learners change their video watching
behaviour over time. Specifically, we consider all learners with
at least two IntelliEye sessions (the most active learner in our
dataset has six IntelliEye sessions); for each learner we bin her
9We note that one possible reason is our lack of a calibration step: to make IntelliEye
easy to use and accessible we did not impose one; IntelliEye assumes the learner to
be facing the screen and the Webcam.

sessions into two bins (the first half and the second half). We then
proceed to compute for each bin (i) the average number of minutes
lecture videos were played, (ii) the average attention duration and
inattention duration detected by IntelliEye, and, (iii) the aver-
age number of inattention alerts occurring per minute of video
watching. The results are shown in Table 6. Recall that according
to the literature, inattention occurs frequently in video watching,
though the manner of investigating this (through probes issued at
certain times to study participants) [13, 23, 28] does not allow us
to draw minute-by-minute conclusions. In contrast, in our work
we can now make a statement to this effect: the average number
of inattention alerts varies between 0.84 and 2.86 per minute (the
latter means that on average a learner gets distracted every 21
seconds in the visual alert condition!). Across all conditions, on
average 1.65 inattention alerts are triggered per minute (i.e. one
every 36 seconds on average). Interestingly, learners are quickly
able to adapt their behaviour towards the offered technology: while
the learners in the visual alert type are often alerted (in a manner
that is easy to ignore), the learners in the auditory alert conditions
receive significantly fewer alerts (cf. row Mean #inattention per
min); similarly, learners in the pause and auditory alert conditions
have significantly shorter inattention spans (cf. rowMean avg. inat-
tention duration) than those in the visual condition. As learners
were assigned to the conditions randomly we are confident that
this behavioural adaptation is due to the different types of alerts.

Metrics Alert type
First 50%

IntelliEye
sessions

Last 50%
IntelliEye

sessions

Mean avg. Pausing 11.93(9.46) 15.96(13.38)∗
video playing Auditory alert 13.38(10.43) 16.16(13.17)
length (min) Visual alert 17.15(16.21) 24.68(20.38)†

Mean avg. Pausing 6.71(7.09) 6.70(8.94)
attention Auditory alert 9.38(8.76) 9.04(12.13)
duration (min) Visual alert 9.33(9.40) 12.53(17.35)

Mean avg. Pausing 0.62(1.45)∗ 0.50(1.25)
inattention Auditory alert 0.45(1.94)∗ 1.07(4.93)∗
duration (min) Visual alert 3.69(9.03) 3.46(5.29)

Mean avg. Pausing 1.30(1.96) 1.50(2.13)
#inattention Auditory alert 0.84(2.05)∗ 0.93(2.14)∗
per min Visual alert 2.86(4.31) 2.13(3.24)

Table 6: Overview of the impact of IntelliEye on learn-
ers’ behaviors. There are 37 (pause), 27 (auditory) and 41
(visual) learners in each group. † indicates significance at
p < 0.05 level between the first half and the second half of
the IntelliEye sessions (Mann-Whitney U test). ∗ indicates
significance at p < 0.05 level between the marked group and
the visual alert group (Mann-Whitney U test).

When comparing the statistics for the two session bins (to detect
trends over time), we do not observe a significant decrease over time
in the number of inattention triggers per minute and the duration
of inattention. There are a number of reasons that can explain this
outcome (e.g. as the material becomes more difficult over time,
maintaining the same attention levels may already be a success),
we will leave this investigation to future work.

6 CONCLUSIONS
In this paper, we have tackled an issue that is inhibiting successful
learning in MOOCs: learners’ ability to self-regulate their learning.



We have designed IntelliEye to increase learners’ attention while
watching MOOC lecture videos by alerting learners to their loss of
attention (approximated robustly through face tracking viaWebcam
feeds) in real-time. To re-gain learner attention, we trialed three
types of interventions—pausing the video with automatic resume
once the learner is focusing on the video again, an auditory alert
to call learners to attention, and a visual alert around the video
widget.

To explore the viability and acceptance of learners towards such
an assistive system, IntelliEyewas deployed on the edX platform
in an engineering MOOC across a 74-day period to 2, 612 learners.

In our analyses we focused on three research questions: (1) the
technological capabilities of our MOOC learners’ hardware, (2) the
acceptance of IntelliEye by MOOC learners, and, (3) the effect
of IntelliEye on MOOC learners’ behaviour. We found the vast
majority of learners (78%) to possess hardware capable of running
IntelliEye; we found fewer—though still a considerable number—
learners willing to try such an assistive tool (32% of all learners
with supported setups) and among those that did use IntelliEye
we determined extremely high levels of inattention, on average 1.65
inattention events per minute (i.e. on average inattention arises
every 36 seconds).

Learners learnt to adapt their behaviour as needed: learners in
the pausing/auditory conditions had significantly fewer inattention
events than learners in the non-disruptive visual alert condition.
This though, did not yet translate into learning gains. Learners that
opted not to use IntelliEye often did not see a need for it and
were concerned about their privacy.

Considering the facts that we observe high levels of inattention
and that learners once they make a decision on the tool’s usage do
not change that decision, we need to put more effort into the initial
“sign-up” phase of such a tool in future work.

With IntelliEye being the first of its kind to address the learner
(in)attention problem in MOOCs in real-time and by relying on
non-calibrated common Webcams and open-source face tracking,
we have shown that there is a potential for such a system. In our
future work, we will extend the deployment of IntelliEye to a
larger audience and a wider variety of MOOCs. We will investigate
learner incentives and compliance issues to increase the awareness
and acceptance of our approach.
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