
Zero-Shot Reranking with Large Language Models and
Precomputed Ranking Features: Opportunities and Limitations

Maria Movin∗
Spotify AB

Stockholm, Sweden
mariamovin@spotify.com

Claudia Hauff
Spotify AB

Delft, Netherlands
claudiah@spotify.com

Abstract
LLMs have been explored for their use in IR as end-to-end rankers,
rerankers and assessors. Recently, the exploration of the prompt-
and-predict paradigm for reranking in combination with highly
performant LLMs have drawn the attention of researchers. Instead
of training or fine-tuning a reranker, LLMs are prompted in a zero-
shot manner to produce relevance scores, pairwise preferences,
or reranked lists. Existing research, though, has been confined to
unstructured text corpora, leaving a gap in our understanding: to
what extent do the findings of zero-shot LLM rerankers established
on plain text corpora hold for datasets containing predominantly
precomputed ranking features as is common in industrial settings?
We explore this question via an empirical study on one public
learning-to-rank dataset (MSLR-WEB10K) and two datasets col-
lected from an audio streaming platform’s search logs. Our results
paint a differentiated picture: On average, there remains a signif-
icant performance gap: prompting the high-capacity LLM GPT-4
results in up to 16% lower NDCG@10 compared to the traditional
supervised learning-to-rank (LTR) approach LambdaMART on the
public MSLR-WEB10K dataset. However, when focusing only on a
subset of hard queries—i.e. queries where the LTR approach ranks
a non-relevant document at the top—the zero-shot LLM reranking
outperforms the LTR baseline. We confirm the same trends on two
proprietary audio search datasets. We also provide insights into
prompt design choices and their impact on LLM reranking. We
show that LLMs remain brittle, with the same strategies sometimes
helping or hurting depending on the model size and dataset.

CCS Concepts
• Information systems→ Learning to rank; Languagemodels.

Keywords
Zero-Shot Ranking; Large Language Models; Learning to Rank
ACM Reference Format:
Maria Movin and Claudia Hauff. 2025. Zero-Shot Reranking with Large
Language Models and Precomputed Ranking Features: Opportunities and
Limitations. In Proceedings of the 48th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’25), July 13–18,
2025, Padua, Italy. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3726302.3730119
∗Also with Department of Computer and Systems Sciences, Stockholm University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1592-1/2025/07
https://doi.org/10.1145/3726302.3730119

1 Introduction
Large language models (LLMs) have been explored for their use
in information retrieval (IR) as possible rerankers [46, 54] (often
starting with a simple lexical retrieval as first retrieval stage) and
as assessors [16, 51]. While there is still a debate around their
utility for the latter [15], their effectiveness as rerankers has been
empirically established. Recently, the exploration of the prompt-
and-predict paradigm [29] for (re)ranking in combination with
highly performant LLMs such as GPT-4 and Flan-T5 have drawn
the attention of researchers [39, 40, 42, 49, 54, 55]. These models are
already instruction fine-tuned and can be considered zero-shot or
few-shot (re)rankers. Thus, instead of fine-tuning a cross-encoder [8,
35, 38] or bi-encoder [18, 22, 24, 53] which requires a considerable
amount of training data, we no longer require a training step and
instead rely on the LLM as-is for (re)ranking.

Although the initial results of zero-shot LLM-based rerankers
are promising, existing research has been largely limited to a few
corpora, predominantly MS MARCO [1] and smaller corpora such
as TREC-COVID [44] andNQ [25] available in the BEIR [50] bench-
mark. Importantly, these corpora contain very little structured data.
Concretely,MSMARCO consists only of plain text passages, TREC-
COVID comprises biomedical literature with some metadata and
structure, and NQ includes questions and correspondingWikipedia
pages with minimal structure. In contrast, many real-world datasets,
especially those in industrial settings, contain significant amounts
of structured information or consist entirely of precomputed rank-
ing features. In what is by now called “traditional” machine learning,
the effective use of LTRmodels with hundreds or thousands of input
features requires significant machine learning expertise. But what
if it were possible to simply prompt an LLM with those features
and get similarly good results? Formally, in our work, we explore
to what extent the findings of zero-shot LLM rerankers estab-
lished on plain text corpora hold for datasets consisting of
hundreds of precomputed ranking features. This examination
is crucial, as many ranking problems solved in practical applications
leverage extracted features extensively (which in turn led to the
establishment of the LTR subfield [31] in IR), and understanding
how LLMs handle these features can provide insights into both their
versatility and potential limitations. We focus our investigation on
the top-𝑘 reranking task, which can be explained by the industrial
setups we consider. In these setups, a multi-stage ranking cascade
is typically employed, where successively more expensive rankers
rerank the top-𝑘 ranking from the previous stage [27, 30, 52].

To answer our question, we conducted experiments on three
datasets with precomputed ranking features: (i) the public LTR
dataset MSLR-WEB10K [41], which includes 136 named features

https://doi.org/10.1145/3726302.3730119
https://doi.org/10.1145/3726302.3730119
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3726302.3730119


SIGIR ’25, July 13–18, 2025, Padua, Italy Maria Movin and Claudia Hauff

(e.g. body stream length, anchor min of tf*idf )1; and (ii) two propri-
etary LTR datasets, Audio24 and Audio24-Hard, each containing
300 features derived from search logs of a large audio streaming
platform. We note here that although a number of additional LTR
datasets have been released over the years (e.g. the Istella22 [10]
and Yahoo! Learning to Rank Challenge [4] datasets), they are typ-
ically distributed in a purely numerical form where each feature
name is represented by a numeric ID without any semantic context.
Such datasets are not suitable for our purposes2.

We employ the high-capacity API-only accessible GPT-4 (gpt-
4-turbo-2024-04-09) [37] and the open-source Llama-3.1 8B model
(Llama-3.1-8B-Instruct) [17] in a zero-shot setting as rerankers.
We choose a high capacity proprietary model and an open-source
modestly-sized model as two ends of the spectrum that practition-
ers might be interested in applying commonly. We compare the
effectiveness of prompting techniques within each type since the
focus is on understanding the effectiveness of prompting using
an LLM for re-ranking. Besides addressing our main question, we
also investigate how prompt variations and feature characteristics
impact LLM reranking. For prompt variations, we examine the in-
fluence of different ranking paradigms, the role of initial document
ordering, and the effectiveness of in-context learning. For feature
characteristics, we explore the impact of feature groupings (feature
source and data type), the number of features, encoding strate-
gies (e.g., float features vs. bucketized features), the importance of
feature names, and feature ordering.

Overall, our results paint a differentiated picture. A high-capacity
LLM can indeed act as listwise zero-shot reranker for data consist-
ing of hundreds of precomputed ranking features. In terms of its
effectiveness though, across both public and private datasets we
find that, on average, a considerable gap remains, with prompting
GPT-4 underperforming compared to the traditional supervised
LTR approach LambdaMART by up to 16% wrt. NDCG@10 on the
public MSLR-WEB10K dataset. However, when focusing only on
the subset of hard samples, i.e. the subset of samples where the LTR
approach does rank an non-relevant result at the top, we find the
LLM-based reranking to improve over the LTR baseline by 22%.

Beyond thismain finding, we provide several insights into prompt
design choices and their impact on LLM reranking. The results show
that using a subset of features often provides better performance
than using all features, that LLMs struggle to recover from a poor
initial ranking in the listwise case, and that ordering features by
their importance is the most reliable strategy compared to reverse
or random ordering. However, LLMs remain brittle, with the same
strategies sometimes helping or hurting depending on the model
size and dataset, highlighting the complexity of this problem. For ex-
ample, factors such as ranking paradigms, in-context learning, and
feature characteristics show mixed results, with their effectiveness
varying across different setups.

2 Related Work
The landscape of neural IR research has changed rapidly in the last
few years. Initially the focus was on the fine-tuning of the highly

1To our knowledge, the only other LTR dataset with named features isMSLR-WEB30K,
of which MSLR-WEB10K is a sample.
2We provide empirical evidence for this claim in Table 5.

effective (but high-latency) cross-encoder models [8, 35, 38], or the
less performant but more scalable bi-encoder models [18, 22, 24, 53]
for ad-hoc reranking as well as the generation of training data [2, 9,
20] and knowledge distillation [40, 49]. Recently though, attention
has shifted towards employing pre-trained LLMs for reranking in
a zero-shot manner which does not require any additional fine-
tuning or training step: in the prompt-and-predict [29] paradigm, all
focus is on the prompt and how best to utilize it. A clear advantage
of such an approach is little to no need for task-specific training
data (i.e. relevance judgments) which can be difficult to obtain in
domain-specific scenarios. Existing works have explored various
dimensions of this problemwhich we now discuss in turn. Note that
below we only consider approaches that do not require additional
fine-tuning or training in line with our research focus.

Ranking paradigms. For ranking problems, LLM prompts primar-
ily take one of three forms (pointwise, pairwise or listwise). In the
pointwise setup the input is one query-document pair and the LLM
is tasked with outputting one or more tokens that can be turned
into a relevance label; e.g. [14, 46] rank documents by the average
log-likelihood of generating the query tokens conditioned on each
document with the instruction Please write a question based on this
passage. A different approach to query generation is relevance gen-
eration where the LLM is tasked with outputting a specific token
(e.g. True or False), and the probability of decoding True is used
as relevance score [32, 55]. In contrast, pairwise rerankers [42] are
much more resource-intensive, as the LLM’s preference over pairs
of documents needs to be repeatedly requested to derive a final
ranking. Lastly, in the listwise setup, e.g. [32, 39, 40, 49], the LLM
prompt contains a query and a list of documents, and the model
is tasked with generating an ordered list of document identifiers
from most to least relevant wrt. the query (permutation genera-
tion). As LLMs may have a limited context window, this setup is
often combined with a sliding window approach (also called pro-
gressive reranking): instead of reranking the top-𝑘 documents at
once, partial lists are extracted, ranked and subsequently combined
in a final ranking [32, 49, 55]. In a zero-shot unsupervised setting,
for the best-in-class LLMs listwise approaches outperform point-
wise approaches but they remain less performant than supervised
approaches.

Zero-shot vs. in-context learning. Beyond the query and document
information, additional context can be provided in an LLM prompt:
demonstrations of (successfully) completed tasks [13] which pro-
vide the LLM with additional information about the label space
and the distribution of the input tokens as well as examples of
the correct input and output formats [33]. In IR, the zero-shot set-
ting has been more popular [40, 46, 54] where beyond the item
information and instruction no additional context is provided. One
exception is [14] who show that a small number (4) of cleverly cho-
sen demonstrations can be effective in a pointwise ranking setup,
outperforming the zero-shot setup by 2-5% depending on theMS
MARCO query set and Flan-T5 model employed. At the same time
however, the results on several BEIR datasets were less consistent.

Structured data. While the utility of structured data (or more
concretely precomputed ranking features) for zero-shot LLM-based
rerankers has not been extensively explored in the context of IR,



Zero-Shot Reranking with LLMs and Precomputed Features SIGIR ’25, July 13–18, 2025, Padua, Italy

a few works have considered structured data for other tasks, in-
cluding text-to-SQL, table question answering, cell lookup, and fact
verification [5, 12, 21, 26, 48]. In particular, Sui et al. [48] found that
LLMs possess basic structural understanding capabilities but are
far from perfect. They demonstrated that carefully chosen input
designs, such as the input format and content order, improve LLM
performance on various tabular tasks. They also found that adding
just one demonstration to the prompt significantly enhances perfor-
mance across all tested tabular tasks. Furthermore, Jiang et al. [21]
proposed an invoking-linearization-generation procedure where
the structured data is turned into sentences, and then appended to
an LLM’s prompt before generating the task output.

Datasets. The widely used MS MARCO passage dataset in com-
bination with the TREC Deep Learning query sets [6, 7] has repeat-
edly been shown to be amenable to zero-shot LLM-based top-100
reranking. Sun et al. [49] for instance reported a nearly 50% im-
provement in NDCG@10 over BM25 when employing GPT-4-based
listwise prompting. An earlier work [32] using GPT-3 reported a
31% improvement over BM25 on the same dataset. Next to MS
MARCO, several other corpora available in the BEIR benchmark
are commonly employed [32, 42, 49, 55], but as already pointed out
in Section 1, these corpora are as unstructured asMS MARCO.

3 Reranking using LLMs
3.1 Zero-shot reranking
We now describe the different prompt instantiations (cf. Figure 1)
we employ in our experiments:

pointwise.yes_no For the pointwise prompt, we follow the ap-
proach of [28, 32, 36, 55] to determine the relevance score of
each document. We task the LLM with generating whether the
document is relevant by outputting either YES or NO. We then
extract the logits of only the last generated token and consider
the probability of generating YES as the document’s relevance
score. To score 𝑛 documents, 𝑛 prompts are created.

pairwise.sliding-𝑘 An exhaustive approach where all pairs of top-
𝑛 documents for a given query are compared requires 𝑂 (𝑛2)
prompts. As this is extremely inefficient, we follow the pairwise
sliding window approach proposed by Qin et al. [42] as it showed
similar effectiveness to the more computationally heavy scor-
ing of all possible document pairs and aggregating the wins to
compute an overall ranking. Effectively, we run the first pass of
the bubble sort algorithm 𝑘 ≪ 𝑛 times but always starting at the
back of the ranking; this requires 𝑂 (𝑘 × 𝑛) prompts. Given an
initial ranking 𝑅 = [𝑑1, 𝑑2, . . . , 𝑑𝑖 , . . . , 𝑑𝑛], we start with the last
ordered pair (𝑑𝑛−1, 𝑑𝑛) and prompt the LLM for its preference,
randomizing the order of the two documents for each prompt.We
order the document pair according to the expressed preference
in place and continue with (𝑑𝑛−2, 𝑑𝑛−1).

listwise.generation In this setting the entire document list is added
to the prompt, and the LLM is instructed to return the best possi-
ble reordering, and thus requiring only a single prompt, making
it the most efficient of the three approaches. Given the substantial
context capacities of our selected LLMs, splitting our rankings
into multiple subrankings is unnecessary. At the same time, we
note that smaller LLMs (at most a few billion parameters) often

Pointwise
I will provide you with a JSON containing a search result item together
with a set of features for that item. Based on the features you should
decide if the item is relevant. Use the features provided to determine
the relevance of the item.
JSON: {json}

{
"QualityScore2": 0.75,
"max of tf*idf - title": 2.1,
...

}
Is the search item relevant to the query? Answer with YES or NO,
nothing else. MAKE SURE the output is either YES or NO.

Pairwise
I will provide you with a JSON containing 2 search result items together
with a set of features for each item. Each item has an identifier (’1’ or
’2’) as key. Use the features provided to determine the relevance of the
items.
JSON 1: {json1}

JSON 2: {json2}

Which search item is more relevant to the query? Only respond with
the identifier of the more relevant item. MAKE SURE the output is only
the numerical identifier.

Listwise

I will provide you with a JSON containing {num} search result items
together with a set of features for each item. Each item has a numerical
identifier as key. Rank the result items based on their relevance. Use
the features provided to determine the relevance of each item.
JSON: {json}

Rank the {num} search result items above based on their relevance.
All the result items should be included and listed using identifiers, in
descending order of relevance. The output format should be [] > [] > [],
e.g., [4] > [0] > [2] > [1]. Only respond with the ranking results, do not
add any word or explain. MAKE SURE the output format is [] > [] > []
.. and that all identifiers are present in the list.

Figure 1: Zero-shot prompting: pointwise takes a single docu-
ment as input, pairwise a pair and listwise a list of documents.
Each document is represented by its key-value pairs; keys
are the feature names (cf. concrete examples). In the feature
space, the query-document similarity is already encoded and
thus the prompts contain no textual query.

struggle with this more complex prompt, outputting incomplete
lists or incorrectly formatted lists [42].

For both listwise.generation and pairwise.sliding-𝑘 we need to
establish a specific initial ranking of the documents we want the
LLM to rerank. A typical approach is to consider the ranking order
established by a cheaper ranker such as BM25 [45].

Lastly, we need to consider how the precomputed ranking fea-
tures are represented. Previous research on structured data rea-
soning with GPT has shown that representing structured data in



SIGIR ’25, July 13–18, 2025, Padua, Italy Maria Movin and Claudia Hauff

markup languages, such as HTML or JSON, outperforms represen-
tations in natural language with separators [48]. Based on these
findings, we have chosen JSON as the format for our data. Further-
more, we explore different methods to encode numerical features
in the prompt, such as using textual buckets (e.g., low, mid, high)
or numerical buckets. In addition, we investigate the selection of a
subset of features to include and consider how the order of feature
presentation can be adjusted to optimize performance.

3.2 In-context learning
Adding demonstrations of successful predictions has been shown to
improve pointwise reranking for unstructured data [14]. We extend
this to the structured data case by randomly selecting training
samples and adding one relevant and one non-relevant item to
the pointwise.yes_no prompt. These examples provide the model
with contextual guidance to distinguish between relevant and non-
relevant items, enabling us to evaluate whether in-context learning
improves performance in pointwise reranking tasks that utilize
precomputed ranking features.

4 Experimental Setup
4.1 Datasets
As discussed in Section 1, to answer our research question we re-
quire LTR datasets that contain information about the computed
features. However, this information is rarely provided; for this
reason we experimented with MSLR-WEB10K [41] and two propri-
etary LTR datasets derived from the search logs of a large audio
streaming service. Incorporating proprietary datasets allows us to
evaluate performance on data that we can confidently say the LLMs
did not have access to during pretraining.

4.1.1 MSLR-WEB10K. The dataset consists of 10kweb search queries
and extracted feature vectors from query-url pairs—for each query,
on average 120 documents are available—along with manually
graded relevance judgments on a 5-point scale. The 136-dimensional
feature vector contains a range of standard LTR features (all of them
floats) that cover: (i) 13 document features such as SiteRank and
QualityScore), (ii) 120 query-doc features including LMIR.DIR and
BM25 across different parts of the document including the body,
anchor and title, and (iii) 3 interaction features such as Query-
url click count. Although some feature names—such as LM.DIR—
may not appear intuitive, we hypothesize that a large pre-trained
LLM has enough exposure to IR documentation in the pre-training
dataset to interpret those feature names.

MSLR-WEB10K is preprocessed into five folds, and we used Fold
1 for our experiments. We used the training sets (S1-S3), along with
the validation set (S4), to train and validate the supervised LTR
baseline model, as described in more detail in Section 4.3. The test
set (S5) was used for evaluation and in our LLM experiments. It
consists of 2,000 queries. For each query, we limited our experiments
to the top 20 ranked documents, as determined by the BM25 - Title
feature. This feature achieves the highest NDCG@10 among all
individual features when evaluated on the validation set (S4). Table 1
presents the distribution of relevance labels for these top-20 ranked
documents.

Table 1: Distribution of relevance labels 1 to 4 across the
top-20 documents ranked according to theMSLR-WEB10K
feature BM25 - Title (test set S5 in Fold 1).

Relevance Label 1 2 3 4

Mean # in Top-20 6.92 3.50 0.48 0.21

4.1.2 Audio24 and Audio24-Hard. TheMSLR-WEB10K dataset was
released more than 10 years ago and may not represent “modern”
LTR datasets too well. Therefore, we also consider proprietary
datasets (train, validation and two test sets) from a large audio
streaming platform, consisting of search logs enriched with rele-
vance labels extracted from user interactions (an item is considered
relevant if it was streamed by the user issuing the query). Each
item is represented by 300 features: 17 textual (e.g. entity name and
entity type) and 283 numerical features (e.g. popularity and artist
follower count). These features are a subset of the full set employed
in the audio streaming platform’s search system.

For some analyses, we used the three dedicated feature groupings
already listed before: document features, query-doc features,
and interaction features. For each grouping, we selected the
twenty most important features of that type from the overall feature
set (based on feature importance ranking, cf. Section 4.3).3

We collected the data in April 2024; it is a random selection of
queries issued by US-based users that had a stream success within
the top-74 items as ranked by the production ranker. The collected
data was segmented into training and validation sets, comprising
90k and 22k queries (and their top-7 ranked items), respectively,
adhering to an 80/20 split. We used this data to train a supervised
LTR model, used as a baseline in our experiments (see Section 4.3).

We compiled two distinct test sets—Audio24 and Audio24-Hard—
with 1000 queries each. While Audio24 consists of randomly drawn
queries (and their top-7 ranked items and stream successes),Audio24-
Hard consists only of queries where the success items were ranked
below the top position. As the ranker of the production system
is already of high quality—due to years of improving and experi-
menting on the ranker(s)—the Audio24-Hard dataset specifically
evaluates the effectiveness of zero-shot LLM rerankers on those
challenging queries that the current production ranker does not
handle optimally. Another reason for this choice is the potential
bias an LLM reranker might exhibit towards reranking: for the Au-
dio24 dataset, the best course of action for a listwise reranker that
receives the initial document ordering of the production ranking
may be not to rerank the top-ranked documents at all.

We note that we did not compile a separate “hard” test set for
MSLR-WEB10K to keep the folds intact and aid reproducibility.
However, in Section 5.2 we perform an analysis on the subset of
those queries where the LambdaMART baseline did retrieve a non-
relevant document at the top rank.

4.2 LLMs
In our experiments, we evaluated zero-shot reranking using two
distinct LLMs, both equipped with a context window of 128k tokens:
3We resorted to this sampling of features to avoid releasing information on the distri-
bution of feature types in these proprietary datasets.
4On almost all mobile devices the top-7 ranked items appear above the fold.



Zero-Shot Reranking with LLMs and Precomputed Features SIGIR ’25, July 13–18, 2025, Padua, Italy

OpenAI’s GPT-4 (specifically gpt-4-turbo-2024-04-095) [37], and
Meta’s open-source Llama-3.1 (specifically Llama-3.1-8B-Instruct)
[17], a smaller 8-billion-parameter model that has been pre-trained
and instruction-fine-tuned on both natural and synthetic data.

We selected a high-capacity proprietary and an open-source
modestly-sized model to represent two ends of the spectrum that
practitioners might consider. We do not directly compareGPT-4 and
Llama-3.1. Instead, we evaluate prompting using each model sepa-
rately, comparing the effectiveness against the supervised Lamb-
daMART baseline. By focusing on individual comparisons to Lamb-
daMART, we assess the capabilities of each model in isolation.

The large context window is essential for our experiments, par-
ticularly for listwise reranking, which has significant token require-
ments. For example, on theMSLR-WEB10K dataset, including 20
documents in the prompt results in a prompt size nearing 40k to-
kens. Similarly, for the Audio24 datasets, adding just 7 documents
to the prompt requires approximately 30k tokens.

4.3 Baseline LTR Approach
Today’s large-scale search systems typically rely on LTR in the later
stages of a multi-stage retrieval pipeline. LambdaMART [3] is a
state-of-the-art feature-based LTR approach that is widely deployed.
Compared to LLMs, LambdaMART’s approach is significantly more
efficient in terms of computational resources and training time.
LambdaMART is effectively implemented in the LightGBM pack-
age [23], as demonstrated by Qin et al. [43] who showed in 2021
that neural LTR lagged behind “traditional” LTR approaches.

We trained LambdaMART models using all available float fea-
tures (i.e., all available features forMSLR-WEB10K and 283 available
features for the Audio24 datasets) with the following hyperparame-
ter settings: num_leaves: 31, learning_rate: 0.05, feature_fraction:
0.9, bagging_fraction: 0.8, bagging_freq: 5, and steps: 100.

For some of our analyses, we also utilized LightGBM’s feature
importance ranking, which is based on the number of times a feature
is used to split data during the creation of the decision trees.

4.4 Metrics
For theMSLR-WEB10K dataset we used the commonly employed
NDCG@10 [19] metric which is particularly suitable here given
the graded relevance judgments. In contrast, Audio24 and Audio24-
Hard contain binary labels (stream success or not) and most often
(>80%) only a single success item exists in the top-k ranking. Thus,
we rely on Mean Reciprocal Rank (MRR). Due to the proprietary
nature of the datasets, we do not report absolute metric numbers
but instead we present the metrics’ percentage change from the
baseline LTR model LambdaMART as also done in other works
involving proprietary industry data, e.g. [34, 47, 51].

5 Results
Recall, that our main question is to what extent the findings of
zero-shot LLM rerankers established on plain text corpora hold for
datasets consisting of hundreds of precomputed ranking features.
We answer this question in Sections 5.1 and 5.2, and present our
main results in Table 2. Our further analyses of the problem space

5Initial experiments were conducted in May 2024, and for consistency and comparabil-
ity across all experiments, we used the same GPT version throughout the study.

are divided into two areas: (i) the impact prompt variations have
on an LLM’s effectiveness as zero-shot rereanker (Section 5.3) and
(ii) the impact feature characteristics have (Section 5.4).

5.1 Can zero-shot LLM rerankers deal with
precomputed ranking features?

The high-capacity model GPT-4 can indeed rerank docu-
ments represented by hundreds of precomputed ranking
features in a zero-shot manner, but the effectiveness gap to
the supervised baseline remains high (Table 2). For the MSLR-
WEB10K dataset, the GPT-4-based reranking performs 4.0% better
than a pure lexical reranker (cf. rows 2a/G3c) and 11.4% better than
a random reordering of the top-20 documents (cf. rows 2b/G3c). At
the same time, GPT-4-based reranking performs 15.6% worse than
our supervised LTR baseline (cf. rows 1a/G3a). For the Audio24
dataset, we observe similar trends with GPT-4-based reranking
performing 8.6% worse than LambdaMART (cf. rows 1a/G3a).

Turning to zero-shot reranking with the open-source model
Llama-3.1, it demonstrates the ability to extract useful information
from the features, achieving a 5.3% improvement over a randomly
ordered top-20 baseline forMSLR-WEB10K (cf. rows 2b/L3c). On the
Audio24 dataset, Llama-3.1-based reranking performs significantly
worse than the supervised LambdaMART baseline (-26.5%, cf. row
L3c).

5.2 Do LLMs improve rankings on hard queries?
GPT-4- and Llama-3.1-based reranking outperform Lamb-
daMART in challenging scenarios like Audio24-Hard, where
traditional supervised rankers struggle. The Audio24 dataset
represents a general sampling of queries, while Audio24-Hard is
specifically constructed from cases where the production ranker
failed to place themost relevant item at the top. This makesAudio24-
Hard valuable for evaluating the potential of LLM-based rerankers
in scenarios with room for improvement. Our experiments show
that LLMs can capitalize on this opportunity, with GPT-4-based
reranking outperforming the LambdaMART baseline by 4.5% on
Audio24-Hard (cf. rows 1a/G5b). This demonstrates the ability of
LLMs to provide meaningful reranking in more challenging cases.

We conducted a similar evaluation with the MSLR-WEB10K
dataset. By filtering out cases where LambdaMART placed a non-
relevant item at the top, we created a subset of the test set (S5, cf.
Section 4.1.1) that mimics the challenges of Audio24-Hard (𝑛 = 566).
On this filtered set, GPT-4-based reranking achieved an NDCG@10
score of 0.431, compared to 0.354 for LambdaMART. This again
confirms that LLMs excel when traditional ML-based rerankers fail.

In addition, we conducted a human evaluation on Audio24-Hard,
comparing the rankings from GPT-4 (cf. row G5b) with those of
LambdaMART (cf. row 1a). Two annotators independently assessed
200 rankings, choosing between "Ranking 1," "Ranking 2," or "Don’t
Know." To ensure the evaluation reflected a realistic user-facing sce-
nario, the rankings were presented using a subset of string features
visible to users in the mobile app of the audio streaming service.

The results show a consistent preference forGPT-4-based rerank-
ings, which are favored in ∼30% of cases, compared to less than
20% for LambdaMART. A notable proportion of cases (∼50%) fall
into the "Don’t Know" category, highlighting the complexity of the



SIGIR ’25, July 13–18, 2025, Padua, Italy Maria Movin and Claudia Hauff

Table 2: Results shown for the high-capacityGPT-4 and themodestly-sized Llama-3.1 8Bmodel. The results should be interpreted
only within each model’s section. Prev refers to the first-stage ranking: (i) BM25-title score for MSLR-WEB10K, (ii) production
ranking for Audio24 datasets, and (iii) a random ordering within the top-k. ForMSLR-WEB10K and Audio24, results are stat.
significant compared to the baseline (row 1a) using a pairwise t-test. For Audio24-Hard, significance is denoted by ∗ for p<0.05
and ∗∗ for p<0.001. Baseline values for Audio24 and Audio24-Hard are proprietary, so results are shown as percentage changes.

Data Feature MSLR10K (k: 20) Audio24 (k: 7) Audio24-Hard (k: 7)
Method Prev Type Source NDCG@10 Rel MRR@7 Rel MRR@7

Supervised Methods

(1a) LambdaMART — Float All 0.648 private private
(1b) LambdaMART — Float Document 0.587 -13.2 % +0.02 %
(1c) LambdaMART — Float Query-Doc 0.587 -17.9 % -0.02 %
(1d) LambdaMART — Float Interaction 0.554 -3.49 % -0.03 %

Zero-shot Methods

(2a) BM25 — — — 0.526 — —
(2b) Random — — — 0.491 — —

GPT-4

D
at
a
Ty

pe

(G3a) listwise.generation Random Float — 0.544 -8.62 % +0.50 %
(G3b) listwise.generation BM25/Prod Float — 0.532 -28.9 % +4.47 %∗

(G3c) pairwise.sliding-4 BM25/Prod Float — 0.547 -21.5 % -2.20 %
(G3d) pointwise.yes_no — Float — 0.540 -14.9 % +0.54 %

(G4a) listwise.generation Random String — — -17.9 % +1.34 %
(G4b) listwise.generation Prod String — — -9.28 % +2.93 %
(G4c) pairwise.sliding-4 Prod String — — -21.1 % +1.04 %
(G4d) pointwise.yes_no — String — — -22.2 % +1.08 %

(G5a) listwise.generation Random All — — -9.21 % +2.71 %
(G5b) listwise.generation Prod All — — -11.1 % +4.51 %∗

(G5c) pairwise.sliding-4 Prod All — — -22.8 % +1.68 %
(G5d) pointwise.yes_no — All — — -20.8 % +1.49 %

Fe
at
ur

e
So

ur
ce

(G6a) listwise.generation Random Float Document 0.515 -23.1 % +4.43 %∗

(G6b) listwise.generation BM25/Prod Float Document 0.518 -25.3 % +4.16 %
(G6c) pairwise.sliding-4 BM25/Prod Float Document 0.513 -18.8 % +3.81 %
(G6d) pointwise.yes_no — Float Document 0.511 -21.8 % +0.97 %

(G7a) listwise.generation Random Float Query-Doc 0.532 -20.4 % -0.70 %
(G7b) listwise.generation BM25/Prod Float Query-Doc 0.530 -19.7 % -0.67 %
(G7c) pairwise.sliding-4 BM25/Prod Float Query-Doc 0.539 -23.4 % -0.71 %
(G7d) pointwise.yes_no — Float Query-Doc 0.531 -23.7 % -0.08 %

(G8a) listwise.generation Random Float Interaction 0.532 -6.47 % -0.75 %
(G8b) listwise.generation BM25/Prod Float Interaction 0.544 -6.05 % +0.51 %
(G8c) pairwise.sliding-4 BM25/Prod Float Interaction 0.545 -3.03 % -1.42 %
(G8d) pointwise.yes_no — Float Interaction 0.532 -11.3 % +3.33 %

Llama-3.1

D
at
a
Ty

pe

(L3a) listwise.generation Random Float — 0.505‡ -27.7 % -3.97 %
(L3b) listwise.generation BM25/Prod Float — 0.507‡ -57.1 % -23.8 %∗∗

(L3c) pairwise.sliding-4 BM25/Prod Float — 0.517 -27.6 % +1.97 %
(L3d) pointwise.yes_no — Float — 0.496 -46.0 % -9.45 %∗

(L4a) listwise.generation Random String — — -37.3 % -4.99 %∗

(L4b) listwise.generation Prod String — — -51.9 % -18.1 %∗∗

(L4c) pairwise.sliding-4 Prod String — — -32.8 % +0.08 %
(L4d) pointwise.yes_no — String — — -44.1 % -7.41 %∗

(L5a) listwise.generation Random All — — -26.5 % -2.34 %
(L5b) listwise.generation Prod All — — -52.0 % -19.6 %∗∗

(L5c) pairwise.sliding-4 Prod All — — -29.8 % -3.81 %
(L5d) pointwise.yes_no — All — — -44.7 % -5.90 %∗

Fe
at
ur

e
So

ur
ce

(L6a) listwise.generation Random Float Document 0.492† -34.0 % -3.69 %
(L6b) listwise.generation BM25/Prod Float Document 0.506† -54.4 % -19.9 %∗∗

(L6c) pairwise.sliding-4 BM25/Prod Float Document 0.510 -31.7 % -0.87 %
(L6d) pointwise.yes_no — Float Document 0.492 -45.4 % -2.94 %

(L7a) listwise.generation Random Float Query-Doc 0.492‡ -37.9 % -1.82 %
(L7b) listwise.generation BM25/Prod Float Query-Doc 0.511‡ -55.8 % -20.6 %∗∗

(L7c) pairwise.sliding-4 BM25/Prod Float Query-Doc 0.522 -32.1 % -5.10 %∗

(L7d) pointwise.yes_no — Float Query-Doc 0.486 -44.6% -9.09 %∗∗

(L8a) listwise.generation Random Float Interaction 0.531† -26.2 % -0.85 %
(L8b) listwise.generation BM25/Prod Float Interaction 0.523† -57.1 % -22.1 %∗∗

(L8c) pairwise.sliding-4 BM25/Prod Float Interaction 0.529 -30.6 % -0.83 %
(L8d) pointwise.yes_no — Float Interaction 0.511 -44.3 % -6.52 %∗

† : Runs with less than 80 % successful rankings. ‡ : Runs with less than 30 % successful rankings.



Zero-Shot Reranking with LLMs and Precomputed Features SIGIR ’25, July 13–18, 2025, Padua, Italy

task.6 Annotator agreement stands at 70 %, indicating reasonable
consistency. These findings suggest that zero-shot reranking using
GPT-4 performs particularly well in scenarios such as Audio24-
Hard, where traditional rankers face significant challenges.

5.3 Prompt Variations
5.3.1 What ranking paradigm is effective? When comparing the
different ranking paradigms we find GPT-4 to perform best in the
pairwise.sliding-4 setting forMSLR-WEB10K and the listwise.generation
setting for the Audio24 datasets (cf. rows G3a-c). For Llama-3.1, the
pairwise.sliding-4 prompt is most effective across all datasets (cf. row
L3c). Pointwise reranking generally performs worst. Overall,
we cannot point to a clear winning ranking paradigm.

In line with [42], we find that the modestly-sized Llama-3.1
model struggles to correctly generate permutations of document
identifiers for the majority of listwise.generation prompts on the
MSLR-WEB10K dataset (marked with † and ‡ in Table 2), where
we rerank the top-20 documents. However, smaller lists are less
problematic as for the Audio24 datasets (top-7 documents), Llama-
3.1’s success rate for listwise.generation prompts exceeds 95%.

5.3.2 Does the initial document orderingmatter in the listwise prompt?
Previous research on plain text corpora has demonstrated that the
initial ranking significantly influences the outcomes in the listwise
paradigm, particularly when LLMs are employed [42, 49, 55]. To
investigate if this also holds for documents represented by precom-
puted ranking features we explored two initial rankings: a random
reordering of the top-k documents and a BM25-based ordering
(MSLR-WEB10K) and a production ranker ordering (Audio24 and
Audio24-Hard) respectively.We find that document ordering in-
deed impacts the reranking effectiveness but inconsistently:
for MSLR-WEB10K, GPT-4 performs better with a random top-k
ordering (row G3a) when prompting it with all available features,
but the BM25 ordering leads to the best results when prompting
only with the interaction features (row G8b). We observe similar in-
consistencies across the two Audio24 datasets. What is consistent is
the fact that if we provide an intentionally very poor initial ranking,
e.g. the reverse of the production ranking as shown in Figure 2 for
GPT-4 (specifically Listwise-Pre-Rev), the LLM is not able to recover
a good reranking and the effectiveness drops significantly (e.g., for
MSLR-WEB10K, from an NDCG@10 of 0.53 to 0.49) compared to
an initial high quality ranking (i.e. Listwise-Pre).

5.3.3 Does in-context learning help? Next, we investigated the
effect of in-context learning, which has demonstrated improved
effectiveness over zero-shot methods in pointwise unstructured
data reranking [14] and structured data reasoning [48]. Specifi-
cally, we tested a two-shot setup: as example we included two
query-document pairs with one document being relevant and one
non-relevant to the selected example query (randomly selected
from the training folds). For each list of documents to score, we
used the same two examples. For each new list of documents to
score we randomly selected two new examples from the training
folds. For MSLR-WEB10K (which has multiple levels of relevance),
we considered documents with a relevance label of 1 to 4 as relevant.

6Annotator 1 preferences: GPT-4: 34.5%, LambdaMART: 12%, Don’t know: 53%; Anno-
tator 2 preferences: GPT-4: 25.5%, LambdaMART: 18%, Don’t know: 56.5%

On the Audio24 dataset, adding in-context examples significantly
improved GPT-4-based reranking, increasing the relative MRR@7
score from -14.9% to -5.6% (though still below the baseline’s effec-
tiveness). However, no improvements were observed for GPT-4-
based reranking on theMSLR-WEB10K and Audio24-Hard datasets.
Similarly, Llama-3.1-based reranking did not exhibit any significant
improvements across the evaluated datasets, further highlighting
the variability of in-context learning’s effectiveness with different
LLMs. Overall, our results show that in-context learning can
enhance reranking performance, but its effectiveness varies
significantly across datasets and LLM models.

5.4 Feature Characteristics
So far we focused on the prompt setup, now we explore the impact
different feature setups have on reranking effectiveness.

5.4.1 What feature groupings are effective? We here discuss fea-
ture groups according to the source they are derived from: either
document only, query-document or user interaction features [31].
For the Audio24 datasets we also have features of different data
types available (string vs. float) and thus compare those as well.

First, we consider feature sources for LambdaMART. For MSLR-
WEB10K, using all available features performs best by a large mar-
gin: NDCG@10 of 0.648 when training on all features vs. 0.587 when
only training on the document or the query-doc feature groups (cf.
rows 1a/b/c). A similar trend holds for the Audio24 dataset, though
here training only on interaction features delivers the second best
effectiveness (cf. row 1d). The results are more mixed for Audio24-
Hard: here using fewer features (document-only, cf. row 1b) actually
slightly improves over the model trained on all features. This can
be explained by the fact that we trained a single LambdaMART
model based on data that has the same distribution as the Audio24
dataset as described in Section 4.3.

When we consider our zero-shot LLM rerankers, the inter-
action feature group, though only consisting of three features
forMSLR-WEB10K (query-url click count, url click count and
url dwell time), delivers strong results across the datasets. For
GPT-4-based rerankings, on the MSLR-WEB10K dataset, the high-
est performance is achieved using all available features (NDCG@10
0.547, cf. row G3c), but it is a comparable result to using only in-
teraction features (NDCG@10 0.545, cf row G8c). On the Audio24
dataset, ranking based solely on interaction features leads to better
reranking effectiveness compared to using all available features
(cf. rows G5a/G8c). For Audio24-Hard, prompting GPT-4 using all
features (cf. row G5b) achieves the best performance, followed by
using document features alone (cf. row G6a).

For Llama-3.1-based rerankings, on the MSLR-WEB10K and Au-
dio24 datasets, the interaction feature group delivers the best per-
formance (cf. row L8c). For Audio24-Hard, Llama-3.1 achieves its
best performance when prompted with all float features, but with
interaction features being the best feature source group.

When investigating the split of features by data types for the
Audio24 datasets, we expected string features (like entity type, track
name, artist name or album name) to be more effective than float
features (cf. rows G3*/G4*) given GPT-4’s world knowledge and the



SIGIR ’25, July 13–18, 2025, Padua, Italy Maria Movin and Claudia Hauff

(a) MSLR-WEB10K (b) Audio24 (c) Audio24-Hard

Figure 2: Overview of the impact of differently sized feature subsets, with features ordered by their importance (based on a
LambdaMART ranking) and the most important features added first. Listwise-Pre refers to GPT-4’s listwise.generation with
BM25 (MSLR-WEB10K) or the production ranker (Audio24, Audio24-Hard) as initial ranking. Listwise-Pre-Rev is the reversed
ranking of Listwise-Pre.

(a) MSLR-WEB10K (b) Audio24 (c) Audio24-Hard

Figure 3: Impact of feature ordering on ranking performance for three datasets:MSLR-WEB10K (a, NDCG@10), Audio24 (b,
Relative MRR@7) and Audio24-Hard (c, Relative MRR@7), using the Listwise-Rand and Pointwise approaches. Each boxplot
shows performance across 12 feature orderings, with gray and black dots indicating runs where features are ordered by
LambdaMART’s importance ranking and its reverse, respectively.

type of queries in the Audio24 and Audio24-Hard datasets (for ex-
ample: frank ocean, the weeknd, and relaxing reggae). This, however,
is not the case, indicating the complexity of the ranking problem.

Table 3: Feature importance ranking for MSLR-WEB10K: list
of the five most and least important features.

Most Important Least Important

Outlink number Boolean model - body
PageRank Boolean model - anchor
BM25 - title Boolean model - title
QualityScore2 Boolean model - url
URL click count Boolean model - whole document

Table 4: Performance comparison of different feature bucket
configurations on MSLR-WEB10K. NDCG@10 scores are re-
ported for float features (cf. rows G3a/b/d in Table 2), textual
buckets (LMH: Low, Mid, High), and numerical buckets: (0-2),
(0-4), and (0-9). The best-performing bucket configuration
for each approach is highlighted in bold.

LLM Prev Float LMH (0-2) (0-4) (0-9)

listwise.generation GPT-4 Rand. 0.544 0.519 0.513 0.521 0.526
listwise.generation GPT-4 BM25 0.532 0.526 0.531 0.528 0.533
pointwise.yes_no GPT-4 — 0.540 0.521 0.506 0.514 0.528

Table 5: Impact of informative feature names on the MSLR-
WEB10K dataset. We report NDCG@10 for the original fea-
ture names (Named, corresponding to rows G3a/b/d in Ta-
ble 2) and runs where we replaced the names by numerical
IDs (Integer). All differences between Named and Integer are
statistically significant based on the paired t-test (p < 0.001).

LLM Prev Type Named Integer

listwise.generation GPT-4 Rand. Float 0.544 0.511
listwise.generation GPT-4 BM25 Float 0.532 0.512
pointwise.yes_no GPT-4 — Float 0.540 0.503

5.4.2 Does the number of features matter? To answer this question
we ordered features by their importance wrt. the trained Lamb-
daMARTmodel (as discussed in Section 4.3) and explore their added
utility for the rerankers. ForMSLR-WEB10K the five most impor-
tant and least important features can be found in Table 3.

Based on this feature ranking, we retrained LambdaMART with
different subsets of features (1, 5, 10, 50, 100, 136 forMSLR-WEB10K
and 1, 5, 10, 50, 100, 150, 283 for Audio24 and Audio24-Hard) and
prompted GPT-4 with the same feature subsets. The results can be
found in Figure 2, where we compare LambdaMART and different
GPT-4-based ranking variants: the pointwise.yes_no variant (equiv-
alent to Pointwise) and three listwise.generation variants: Listwise-
Rand, Listwise-Pre, and Listwise-Pre-Rev (initial random ordering of



Zero-Shot Reranking with LLMs and Precomputed Features SIGIR ’25, July 13–18, 2025, Padua, Italy

the top-k documents, ordered by BM25 or the production ranker,
and reverse-ordered by BM25 or the production ranker, respec-
tively)7.

As expected, based on how we derived the feature importance,
LambdaMART consistently benefits from the addition of features,
reaching 95% of its top effectiveness with just five features. Our
unsupervised zero-shot LLM rerankers, however, do not show con-
sistent improvements, even when provided with only the most
important features. For MSLR-WEB10K, approximately 50 features
are needed to consistently surpass the BM25 baseline (for both
Listwise-Rand and Pointwise). On the Audio24 dataset, depending
on the initial ranking, between 100 and 150 features yield the high-
est effectiveness for Listwise-Pre and Listwise-Rand, with similar
trends observed for Audio24-Hard.

For almost all settings (except for Pointwise in Figure 2a), includ-
ing a subset of the features yields better performance compared
to including all features. This indicates the importance of feature
selection for LLM reranking. This finding aligns with earlier studies
on question-answering tasks using structured data, which also high-
light the significance and complexity of feature selection [21, 26].
Our results suggest that while the number of features is cru-
cial, traditional feature importance approaches may not be
particularly suitable for zero-shot LLM rerankers.

5.4.3 Does bucketizing the features help? One may argue that a
feature value like ‘0.5354‘ by itself is not informative enough for
a zero-shot LLM-based reranker and additional context of how to
interpret the value (e.g. is it particularly low or high; is it bounded)
is likely to lead to a more effective reranker. We thus examined the
impact of encoding features into different bucket configurations, as
shown in Table 4: we compare the direct use of float features with
the use of textual buckets where each float feature is converted into
a text label low/medium/high, depending on the feature value and
the use of numerical buckets where each feature value is converted
into an integer either 0-2, 0-4 or 0-9 respectively. To ensure the LLM
could interpret the bucketed values, the prompt was also updated
to include a description of the bucketing strategy, explaining what
each bucket represents. For MSLR-WEB10K, the results indicate
that GPT-4 generally performs better when prompted with float
features directly, achieving the highest NDCG@10 scores for list-
wise.generation, with random ordered input (0.544, cf. row G3a)
and pointwise.yes_no (0.540, cf. row G3d). For listwise.generation
with BM25 ranked input, however, bucketization with 10 numerical
buckets slightly outperforms float features, achieving an NDCG@10
of 0.533 compared to 0.532 for float features (cf. row G3b). We ob-
serve no improvements on either of the Audio24 datasets. Overall,
bucketization—whether textual or numerical—typically leads
to lower performance for most configurations compared to
directly using float features.

5.4.4 Are the feature names important? To evaluate the importance
of feature names, we replaced feature names by numerical identi-
fiers. Table 5 demonstrates that GPT-4 performs worse when using
numerical identifiers compared to named features (i.e., NDCG@10
0.544 with named vs. 0.511 with identifiers for listwise.generation)

7pairwise.sliding-4was excluded from the deep-dive experiments due to its significantly
higher computational cost.

but still better than random (0.491, cf. row 2b) on theMSLR-WEB10K
dataset. Thus, our results show that feature names are cru-
cial when GPT-4 is prompted in a zero-shot manner using
precomputed ranking features.

5.4.5 Does the feature ordering matter? So far, we have varied
document ordering and the number of features. Next, we explore
how ordering input features within a document affects reranking
performance.

We focusedGPT-4-based reranking and used as initial documents
ordering a random, but fixed, order of the top-k documents (i.e.
each query has a fixed random order of the documents). The same
feature subsets as in Section 5.4.1 were used. Once a feature subset
was fixed, each prompt was executed twelve times with a different
ordering of the features within a document: ten random feature
orders (kept consistent across documents), one ordering based on
feature importance, and one based on the reverse feature importance.
Due to the large number of prompts, this analysis was conducted
on a sample of 500 queries forMSLR-WEB10K and 100 queries each
for Audio24 and Audio24-Hard.

The results, summarized in Figure 3, reveal one clear signal:
overall, it appears best to rank the features in the order of
their importance, with the most important features appearing
first within a document. In 22 out of 34 cases—aggregated across
all datasets and both pointwise and listwise rankings—the effec-
tiveness of the importance-based feature ordering exceeded 75% of
the random reorderings, as illustrated by the position of the gray
importance order marker above the upper quartile lines.

6 Conclusions
We set out to explore to what extent the findings of zero-shot
LLM rerankers established on plain text corpora hold for datasets
containing predominantly or exclusively precomputed ranking fea-
tures. We conducted experiments on a public LTR dataset and two
proprietary datasets collected from an audio streaming platform’s
search logs. On average across both public and private datasets
we find that zero-shot LLM-based rerankers do not outperform a
high-quality learning-to-rank baseline such as LambdaMART (and
in fact significantly underperforms it). However, for the subset of
hard queries (i.e. queries where the LTR approach fails to place a
relevant document at rank 1), we do find zero-shot ranking using
a high-capacity LLM such as GPT-4 to be outperforming Lamb-
daMART by up to 4.5%. We also explored what impact different
prompt and feature choices have on the LLM-based reranker’s ef-
fectiveness. We found that different design choices often lead to
inconsistent results and that it takes considerable effort to arrive
at settings that consistently yield improvements. Overall, we have
to conclude that the vision of simply prompting an LLM with all
available precomputed features is premature.

Our findings guide the way to future work: as zero-shot LLM
rerankers outperform LTR on retrospectively found to be hard
queries, query performance prediction may be a way towards com-
bining an LTR and LLM-based ranking setup. Given the impact
different feature choices have, automatic prompt optimization [11]
is another avenue to explore. And lastly, we need to address the
shortage of LTR datasets that can act as benchmarks to further
investigate LLM-based rerankers.



SIGIR ’25, July 13–18, 2025, Padua, Italy Maria Movin and Claudia Hauff

References
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong

Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al.
2016. MS MARCO: A human generated machine reading comprehension dataset.
arXiv preprint arXiv:1611.09268 (2016).

[2] Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. 2022.
Inpars: Unsupervised dataset generation for information retrieval. In SIGIR 2022.
2387–2392.

[3] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[4] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.
In Proceedings of the learning to rank challenge. PMLR, 1–24.

[5] Wenhu Chen. 2023. Large Language Models are few(1)-shot Table Reasoners. In
Findings of EACL 2023. 1120–1130.

[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview
of the TREC 2020 deep learning track. (2020).

[7] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2019. Overview of the TREC 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2019).

[8] Zhuyun Dai and Jamie Callan. 2019. Deeper text understanding for IR with
contextual neural language modeling. In SIGIR 2019. 985–988.

[9] Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov,
Kelvin Guu, Keith Hall, and Ming-Wei Chang. 2023. Promptagator: Few-shot
Dense Retrieval From 8 Examples. In ICLR 2023.

[10] Domenico Dato, Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, and
Nicola Tonellotto. 2022. The Istella22 dataset: Bridging traditional and neural
learning to rank evaluation. In SIGIR 2022. 3099–3107.

[11] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin
Shu, Meng Song, Eric Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing Discrete
Text Prompts with Reinforcement Learning. In EMNLP 2022. 3369–3391.

[12] Haoyu Dong and Zhiruo Wang. 2024. Large Language Models for Tabular
Data: Progresses and Future Directions. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Washington DC, USA) (SIGIR ’24). 2997–3000.

[13] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey on in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[14] Andrew Drozdov, Honglei Zhuang, Zhuyun Dai, Zhen Qin, Razieh Negin Rahimi,
Xuanhui Wang, Dana Alon, Andrew McCallum, Mohit Iyyer, Don Metzler, and
Kai Hui. 2023. PaRaDe: Passage Ranking using Demonstrations with Large
Language Models. In Findings of EMNLP 2023.

[15] Guglielmo Faggioli, Laura Dietz, Charles LAClarke, Gianluca Demartini, Matthias
Hagen, Claudia Hauff, Noriko Kando, Evangelos Kanoulas, Martin Potthast,
Benno Stein, et al. 2023. Perspectives on large language models for relevance
judgment. In ICTIR 2023. 39–50.

[16] Naghmeh Farzi and Laura Dietz. 2024. Pencils down! automatic rubric-based
evaluation of retrieve/generate systems. In Proceedings of the 2024 ACM SIGIR
International Conference on Theory of Information Retrieval. 175–184.

[17] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. 2024. The Llama 3
Herd of Models. arXiv:2407.21783 https://arxiv.org/abs/2407.21783

[18] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. Transactions on Machine Learning
Research (2022).

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[20] Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo,
Jakub Zavrel, and Rodrigo Nogueira. 2023. Inpars-v2: Large language mod-
els as efficient dataset generators for information retrieval. arXiv preprint
arXiv:2301.01820 (2023).

[21] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen.
2023. StructGPT: A General Framework for Large Language Model to Reason
over Structured Data. In EMNLP 2023. 9237–9251.

[22] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In EMNLP 2020. 6769–6781.

[23] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).

[24] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In SIGIR 2020. 39–48.

[25] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A
Benchmark for Question Answering Research. Transactions of the Association for

Computational Linguistics 7 (2019), 452–466.
[26] Younghun Lee, Sungchul Kim, Tong Yu, Ryan A Rossi, and Xiang Chen. 2024.

Learning to Reduce: Optimal Representations of Structured Data in Prompting
Large Language Models. (2024). arXiv:2402.14195

[27] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu,
and Qianli Ma. 2021. Embedding-based product retrieval in taobao search. In
KDD 2021. 3181–3189.

[28] Percy Liang, Rishi Bommasani, Tony Lee, et al. 2023. Holistic Evaluation of
Language Models. Transactions on Machine Learning Research (2023).

[29] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[30] Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade ranking for opera-
tional e-commerce search. In KDD 2017. 1557–1565.

[31] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[32] Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-Shot
Listwise Document Reranking with a Large Language Model. arXiv:2305.02156

[33] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?. In EMNLP 2022. 11048–11064.

[34] Bhaskar Mitra and Nick Craswell. 2015. Query auto-completion for rare prefixes.
In CIKM 2015. 1755–1758.

[35] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[36] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Document
Ranking with a Pretrained Sequence-to-Sequence Model. In Findings of EMNLP
2020. 708–718.

[37] OpenAI, Josh Achiam, Steven Adler, et al. 2024. GPT-4 Technical Report.
arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[38] Aleksandr V. Petrov, Sean MacAvaney, and Craig Macdonald. 2024. Shallow
Cross-Encoders for Low-Latency Retrieval. In ECIR 2024. Springer, 151–166.

[39] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankVicuna:
Zero-Shot Listwise Document Reranking with Open-Source Large Language
Models. arXiv:2309.15088

[40] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankZephyr:
Effective and Robust Zero-Shot Listwise Reranking is a Breeze! arXiv:2312.02724

[41] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[42] Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming
Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Ben-
dersky. 2024. Large Language Models are Effective Text Rankers with Pairwise
Ranking Prompting. arXiv:2306.17563

[43] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuan-
hui Wang, Mike Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In ICRL 2021.

[44] Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, Kyle Lo, Ian
Soboroff, Ellen Voorhees, Lucy Lu Wang, and William R Hersh. 2021. Searching
for scientific evidence in a pandemic: An overview of TREC-COVID. Journal of
Biomedical Informatics 121 (2021), 103865.

[45] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[46] Devendra Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih,
Joelle Pineau, and Luke Zettlemoyer. 2022. Improving Passage Retrieval with
Zero-Shot Question Generation. In EMNLP 2022. 3781–3797.

[47] Yi Su, Xiangyu Wang, Elaine Ya Le, Liang Liu, Yuening Li, Haokai Lu, Benjamin
Lipshitz, Sriraj Badam, Lukasz Heldt, Shuchao Bi, Ed H. Chi, Cristos Goodrow,
Su-Lin Wu, Lexi Baugher, and Minmin Chen. 2024. Long-Term Value of Explo-
ration: Measurements, Findings and Algorithms. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining (WSDM ’24). 636–644.

[48] Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. 2024. Table
Meets LLM: Can Large Language Models Understand Structured Table Data? A
Benchmark and Empirical Study. In The 17th ACM International Conference on
Web Search and Data Mining (WSDM ’24).

[49] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? Investi-
gating Large Language Models as Re-Ranking Agents. In EMNLP 2023. 14918–
14937.

[50] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In NeurIPS 2021.

[51] Paul Thomas, Seth Spielman, Nick Craswell, and Bhaskar Mitra. 2024. Large
Language Models can Accurately Predict Searcher Preferences. In Proceedings of
the 47th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Washington DC, USA) (SIGIR ’24). Association for Computing
Machinery, New York, NY, USA, 1930–1940.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.14195
https://arxiv.org/abs/2305.02156
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2312.02724
http://arxiv.org/abs/1306.2597
https://arxiv.org/abs/2306.17563


Zero-Shot Reranking with LLMs and Precomputed Features SIGIR ’25, July 13–18, 2025, Padua, Italy

[52] Yuan Wang, Peifeng Yin, Zhiqiang Tao, Hari Venkatesan, Jin Lai, Yi Fang, and
PJ Xiao. 2023. An empirical study of selection bias in pinterest ads retrieval. In
KDD 2023. 5174–5183.

[53] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In ICLR 2021.

[54] Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and
Michael Bendersky. 2024. Beyond Yes and No: Improving Zero-Shot LLM Rankers

via Scoring Fine-Grained Relevance Labels. arXiv:2310.14122
[55] Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. 2024.

A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with
Large Language Models. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Washington
DC, USA) (SIGIR ’24). Association for Computing Machinery, New York, NY, USA,
38–47.

https://arxiv.org/abs/2310.14122

	Abstract
	1 Introduction
	2 Related Work
	3 Reranking using LLMs
	3.1 Zero-shot reranking
	3.2 In-context learning

	4 Experimental Setup
	4.1 Datasets
	4.2 LLMs
	4.3 Baseline LTR Approach
	4.4 Metrics

	5 Results
	5.1 Can zero-shot LLM rerankers deal with precomputed ranking features?
	5.2 Do LLMs improve rankings on hard queries?
	5.3 Prompt Variations
	5.4 Feature Characteristics

	6 Conclusions
	References

