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ABSTRACT
A main weakness of the open online learning movement is
retention: a small minority of learners (on average 5−10%,
in extreme cases < 1%) that start a so-called Massive Open
Online Course (MOOC) complete it successfully. There are
many reasons why learners are unsuccessful, among the most
important ones is the lack of self-regulation: learners are often
not able to self-regulate their learning behavior. Designing
tools that provide learners with a greater awareness of their
learning is vital to the future success of MOOC environments.
Detecting learners’ loss of focus during learning is particu-
larly important, as this can allow us to intervene and return
the learners’ attention to the learning materials. One techno-
logical affordance to detect such loss of focus are webcams—
ubiquitous pieces of hardware available in almost all laptops
today. In recent years, researchers have begun to exploit eye
tracking and gaze data generated from webcams as part of
complex machine learning solutions to detect inattention or
loss of focus. Those approaches however tend to have a high
detection lag, can be inaccurate, and are complex to design and
maintain. In contrast, in this paper, we explore the possibility
of a simple alternative—the presence or absence of a face—to
detect a loss of focus in the online learning setting. To this
end, we evaluate the performance of three consumer and pro-
fessional eye/face-tracking frameworks using a benchmark
suite we designed specifically for this purpose: it contains a
set of common xMOOC user activities and behaviours. The
results of our study show that even this basic approach poses a
significant challenge to current hardware and software-based
tracking solutions.
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INTRODUCTION
MOOCs have gained a lot of popularity over the past years
and are now being offered to millions of learners on various
platforms such as Coursera, Udacity and edX, among oth-
ers. A major motivation behind MOOCs is the provision of
ubiquitous learning to learners of all walks of life across the
globe. Yet, despite their popularity, MOOCs suffer from low
levels of learner engagement and learner retention, as only
a very small percentage of learners who start a course actu-
ally complete it successfully; on average 5−10% of learners
succeed, in extreme cases this metric can drop below 1% [9].

One reason why learners fail to complete MOOCs can be
found in the design of the platforms. They tend to be rather
basic (as a large amount of effort goes towards platform main-
tenance and scalability) and thus the delivery of course con-
tent does not always follow the latest educational findings.
This setup contributes to the lack of self-regulation (in plan-
ning, motivation, goal setting) learners tend to exhibit, espe-
cially those without a higher education background [6]. In the
MOOC context, loss of focus (during video watching, quiz
submissions, etc.) is a core challenge, as it can have disastrous
effects on learning efficiency [22]. Therefore, technological
interventions which can detect a learner’s loss of attention and
can subsequently guide the learner’s focus back to the course
content could be of great value.

In recent years, a number of works have investigated inat-
tention prediction based on various signals, including heart-
rate data [28], EEG data [29], skin conductance and tempera-
ture [4] as well as computer mouse pressure data [27]. While
insightful, none of these approaches can be applied at scale
in an online learning environment in the near future and thus,
most of the existing research on inattention detection relies
on eye-tracking data, including [1, 2, 3, 13, 17, 21, 30]. Here,
the eye-mind link [18] is exploited as the eye gaze usually
correlates well with a person’s focus.

A major issue of existing eye tracking based inattention detec-
tion approaches is the lack of real-time detection capabilities
(thirty to sixty second delays are common) [30]. An additional
point of concern in our setting are the privacy requirements of
MOOC environments—to ensure a learner’s privacy all nec-
essary computations should be conducted within the learner’s
browser environment (the alternative approach of streaming
a learner’s webcam data to a high-performant server has se-
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vere privacy implications, while requiring the installation of
dedicated software packages hampers usability)1.

In this paper, we explore a significantly simpler alternative
approach towards detecting a loss of focus whilst learning in
a MOOC environment: we use the departure of a user’s face
from the webcam’s viewport as a proxy for learner inattention—
a user whose face is not aimed at the screen is unlikely to
pay attention to a video playing on it. It turns out, that
even this deceptively simple detection task is challenging
in a MOOC environment where we have to consider widely
varying consumer-grade hardware and browser software. In
this paper we conduct an extensive study involving two open-
source browser-based software frameworks for gaze and face
detection, WebGazer.js and tracking.js, as well as a third
hardware-based solution (a Tobii eye tracker) to determine an
upper performance bound. Both software-based frameworks
can be integrated into current MOOC environments, and per-
form all their processing on the user’s computer without the
need for a server infrastructure or additional browser plugins.
We benchmark the ability of the three frameworks to reliably
detect a user’s focus towards the screen content (using the
presence/abscence of a face as proxy) across a variety of com-
mon MOOC user activities such as watching a MOOC video
whilst leaning on one’s hand, checking the weather report on
a smart-phone or drinking coffee.

We address the following research questions in our work:

RQ1 Which activities—that lead to different face positions
in front of the screen—are typical for MOOC learners?
To this end, we compile a benchmark suite of fifty typi-
cal MOOC learner activities, partitioned into activities
that are indicative of (i) focus, (ii) certain loss of focus
and (iii) likely loss of focus.

RQ2 How reliable can current software frameworks detect
the presence or absence of a face under typical MOOC
conditions?
We conduct an extensive lab study involving
tracking.js and WebGazer.js as well as a profes-
sional eye tracker (our upper bound in terms of perfor-
mance). A total of twenty study participants execute
the benchmark suite of activities in a controlled envi-
ronment.

We find that in our setup, tracking.js performs significantly
better than WebGazer.js, achieving a median detection accu-
racy of 62% across all fifty tasks (for the most difficult task

1In order to investigate to what extent current MOOC learners are
technologically able and willing to allow the MOOC platform to
access their webcam feed (a necessity to make our vision of webcam-
based attention tracking a reality) we conducted a preliminary study:
we developed a working privacy-aware webcam intervention (i.e.
none of the webcam data leaves a learner’s computer) and deployed
it to more than 800 learners in an engineering MOOC offered by TU
Delft on the edX platform; we found 78% of learners had the tech-
nological capabilities (hardware, including a webcam, of sufficient
quality) to run the intervention and 31% enabled it as learning sup-
port technology. Among those learners not enabling the intervention,
about a quarter had privacy concerns, indicating that our vision is
realistic for a significant number of MOOC learners.

detection accuracy was 17%), with the professional hardware-
based eye tracker achieving a median accuracy of 72.5% (the
most difficult task resulted in 27% accuracy). The observed de-
tection delay is below two seconds for tracking.js, making
it a viable choice for webcam-based attention detection (using
face detection as a proxy). At the same time, the reported
accuracy numbers suggest that current software and hardware
solutions still struggle to provide a consistently high detection
quality across all tasks.

RELATED WORK: ATTENTION LOSS IN LEARNING
Different data collection methods have been used to study
the loss of attention or focus of students in traditional class-
rooms since the 1960s, such as the observation of inattention
behaviors [8], the retention of course content [12], using di-
rect probes in class [23, 10] and relying on self-reports from
students [5]. A common belief was that learners’ attention
may decrease considerably after 10-15 minutes of the lecture,
which was supported by [23]. However, Wilson and Korn [26]
later challenged this claim and argued that more research is
needed. In a recent study, Bunce et al. [5] asked learners
to report their attention loss voluntarily during 9-12 minute
course segments. Three buttons were placed in front of each
learner, representing attention lapses of 1 minute or less, of
2-3 minutes and of 5 minutes or more. During the lectures, the
learners were asked to report their loss of attention by pressing
one of three buttons once they noticed their attention loss. This
led Bunce et al. [5] to conclude that learners start losing their
attention early on in the lecture and may cycle through several
attention states within the 9-12 minute course segments.

In online learning environments, attention loss may be even
more frequent. Risko et al. [19] used three one hour video-
recorded lectures with different topics (psychology, eco-
nomics, and classics) in their experiments. While watching the
videos, participants were probed four times throughout each
video. The attention-loss frequency among the participants
was found to be 43%. Additionally, Risko et al. [19] found a
significant negative correlation between test performance and
loss of attention. Szpunar et al. [24] investigated the impact
of interpolated tests on learners’ loss of attention within on-
line lectures. The study participants were asked to watch a
21-minute video lecture (4 segments with 5.5 minutes per seg-
ment) and report their loss of attention in response to random
probes (one probe per segment). In their experiments, the loss
of attention frequency was about 40%. Loh et al. [11] also
employed probes to measure learners’ loss of attention and
found a positive correlation between media multitasking activ-
ity and learners’ loss of attention (average frequency of 32%)
whilst watching video lectures. Based on these considerably
high loss of attention frequencies we conclude that reducing
loss of attention in online learning is an important approach to
improve learning outcomes.

In a typical in-class setting a teacher has the ability to de-
tect and re-gain learner attention through various pedagogical
approaches. This is not applicable in MOOC environments
due to the nature of online learning. Various technological
approaches have been explored to detect and record signals
of user (in)attention in the past besides eye tracking, includ-



ing heart-rate tracking through mobile cameras [28], brain
activities through EEG analysis [29], skin conductance and
temperature [4], posture and body pressure sensing and pres-
sure applied on a computer mouse [27]. As already implied,
most of the existing research though focuses on either face or
eye-gaze detection [1, 2, 3, 13, 17, 21, 30].

Inspired by the eye-mind link effect [18], a number of pre-
vious studies [2, 3, 13] focused on the automatic detection
of learners’ loss of attention by means of gaze data. In [2,
3], Bixler and D’Mello investigated the detection of learners’
loss of attention during computerized reading. To generate
the ground truth, the study participants were asked to man-
ually report their loss of attention when an auditory probe
(i.e. a beep) was triggered. Based on those reports, the loss
of attention frequency ranged from 24.3% to 30.1%. During
the experiment, gaze data was collected using a dedicated
eye tracker. In [13], Mills et al. asked the study participants
to watch a 32 minute, non-educational movie and self-report
their loss of attention. In order to detect loss of attention au-
tomatically, statistical features and the relationship between
gaze and video content were considered. In contrast to [2,
3], the authors mainly focused on the relationship between a
participant’s gaze and areas of interest, i.e. specific areas in
the video a participant should be interested in. In [30], Zhao
et al. presented a method for detecting inattention similar to
the studies in [13], but adapted and optimized for the MOOC
setting.

All mentioned approaches relying on the eye-mind link share
two common issues: they are usually unable to provide real-
time feedback as they are trained on eye-gaze recordings with
sparse manually provided labels (e.g., most approaches have
a label frequency of 30-60 seconds, which directly translates
into a detection delay of similar length), and the reported ac-
curacy is too low for practical application (e.g., [30] reports
detection accuracies of 14%-35% depending on training and
video). As a result, we choose a different approach as dis-
cussed in the following sections.

EYE AND FACE TRACKING FRAMEWORKS
Recall that we employ face presence and absence as proxies of
learner attention and inattention respectively. Next to explicit
face tracking software frameworks, eye-tracking frameworks
are suitable for our work as well, as in the absence of a face,
no eye tracking is possible.

In order to determine an upper performance bound, we use
the professional high-end hardware eye tracker Tobii X2-30
Compact2. Tobii uses its own proprietary analytic software
Tobii Studio to analyze the gathered eye tracking data.

Although there exist a number of different eye and face track-
ing software solutions, our choice is limited by the typical
MOOC environment (which runs within the browser, and thus
we require browser-based software frameworks), privacy as-
pects (all computations have to be performed on the user’s
device) and the variety of hardware capabilities we can expect
MOOC learners’ devices to have (the computations should not
2https://www.tobiipro.com/product-listing/
tobii-pro-x2-30/

require too many resources). Evidently, JavaScript-based so-
lutions fit the task description. Libraries such as CCV.js,
clmtrackr, headtrackr, ObjectDetect, tracking.js,
and WebGazer.js are thus potential candidates. After an
initial testing phase of all mentioned frameworks we settled on
two suitable ones: WebGazer.js [15]3 and tracking.js4.

WebGazer.js
WebGazer.js is an open-source eye tracking library written
in JavaScript that is able to infer eye-gaze locations in real-
time. Use-case specific extensions, e.g. to track users’ web
search behaviour [16] exist as well. WebGazer.js can be
configured with different components to track gaze, pupils,
or faces. We used the clmtrackr component5, a face fitting
library (referred to as CLM in the following), which has pre-
viously been used among others in works on camera-based
emotion detection [20], and intelligent public displays in city
environments [14]. CLM tracks a face and the coordinate posi-
tions of a face model, as shown in Figure 1. Using this face
model, Webgazer can extrapolate the user’s gaze (i.e., the point
of the screen on which a user’s gaze focuses) by estimating the
face’s distance and orientation from the screen. A weakness of
CLM is its “agressive” face-fitting algorithm that often attempts
to fit a model even when no face is present. This leads to many
potential problems where random background elements (like
posters, plants, furniture) are mistaken for faces, and some-
times even preferred over a real user’s face clearly visible in
the camera’s viewport.

Figure 1. Face fitting model generated by CLM. This example shows a
common face fitting error due to hand positioning.

tracking.js
tracking.js is a JavaScript-based face tracking library (TJS
in the following), which has been employed, among others,
in security systems for identity verification [7] and object
recognition tasks [25]. With respect to eye and face tracking,
this library offers a significantly less powerful feature set than
both Tobii and CLM, as it can only detect the presence and
location of the boundary box of an object—in our case the
face—in a video stream (see Figure 2). While it can also be
employed to track the eyes’ locations (but not the gaze), we
do not use that feature in this study. We hypothesize that the

3https://webgazer.cs.brown.edu
4https://trackingjs.com
5https://github.com/auduno/clmtrackr
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simplicity of TJS leads to more reliable face presence and face
absence detection.

Figure 2. Face Boundary Box detected by tracking.js

Detecting Face-miss events
We define a face-miss event to be an event of a user’s face
turning or moving away from the computer screen. The dif-
ferences in the three evaluated frameworks (Tobii, CLM, TJS)
leads to different heuristics for detecting a face-miss:

• Tobii: A face-miss event is detected if the proprietary
Tobii Studio software cannot determine gaze point coordi-
nates. This usually represents a problem with detecting the
users’ eyes by the tracker hardware (e.g., they are not within
the camera viewport, they are closed, or obstructed by an
object). At times, while the eyes can be found by Tobii, no
gaze coordinates can be determined as the gaze direction is
unclear. We cannot distinguish this case from a case where
there is no face at all. In our experience, the presence of
gaze coordinates is a very reliable proxy for the presence of
a face (low false positive rate), while the lack of coordinates
does not necessarily imply the absence of a face.

• CLM: Similar to Tobii, we define a face-miss event as
the software’s inability to fix exact gaze coordinates, which
also means a failure in reliable face detection in case of CLM.
In contrast to Tobii, due to the aggressiveness of the face
fitting algorithm, CLM is is quite prone to detect faces where
in reality there are none present (high false positive rate).

• TJS: We define a face-miss event as the library’s inability
to fix a face boundary box in the webcam’s video stream.
We do not try to track eyes or gaze.

The video or eye tracker stream is continuously processed
while it is recorded. The Tobii system relies on dedicated
hardware support for this task (which partially contributes
to its high retail price), and is thus able to guarantee a sam-
pling rate of 30 samples per second mostly independent of
the computer hardware. For the webcam-based solutions, im-
age processing of the video stream needs to be handled by
the system’s CPU and within the browser’s environment. As
a result, only low sampling rates are possible without over-
whelming low-end computer systems. For this reason, we
fix the sampling rate to 4 samples per second. However, due
to the unreliability of the JavaScript timer events under high
system loads, the standard deviation of the targeted sampling
time of 250ms is 48ms in our experiments (described further

in Section User Study). Furthermore, we have extreme cases
where the sampling times increased up to 1157ms, i.e., less
than one sample per second. Therefore, Tobii should be able
to react with significantly lower delays than the webcam-based
frameworks.

USER STUDY
In order to evaluate the suitability of the chosen webcam toolk-
its for face and gaze tracking, we developed a benchmark
set of tasks, which we argue represent common behaviours
of online learners in front of their laptops. For each of the
tasks we define the desired behaviour: the eye-tracking de-
vices should either report the loss of the face/gaze (in the case
of face-miss tasks) or keep detecting the face/gaze (in the
case of face-hit tasks). We exclude mobile learners from
these tasks as desktop learners are still the vast majority of
learners in today’s MOOC environments6.

We designed a total of fifty tasks together with a small sample
of regular MOOC learners (graduate students in our research
lab). These tasks are—to some extent—abstract versions of
the behaviour MOOC learners exhibit when watching lec-
ture videos, one of the most common activities in so-called
xMOOCs (i.e. MOOCs that are heavily relying on video lec-
tures to convey knowledge, in contrast to cMOOCs which rely
on learners’ self-formed communities and peer teaching). The
task descriptions we developed are shown in Table 3. They
fall under three broad categories:

• face-miss tasks describe those user behaviours that should
result in the loss of a detected face/gaze. Twenty-one tasks
belong to this category; examples include Take a sip from
the cup [next to you] while turning away from the camera
or Look straight up to the ceiling for 8 seconds.

• likely-face-miss tasks should result in our frameworks
reporting a mix of face hit and face miss samples. Two
examples among the fourteen tasks in this category are Lean
back and put your hands behind your neck for 5 seconds
and Draw a square on the paper.

• Lastly, face-hit tasks describe user behaviours that should
not influence our frameworks’ ability to detect the face,
though they may influence gaze detection. Fifteen tasks
belong to this category, for example Reposition yourself in
the chair and Stare at the camera for 3 seconds.

We developed a dedicated Web application as testing ground.
The fifty tasks are presented as virtual “cue cards” to study
participants and both TJS and CLM are included as webcam-
based eye tracking solutions. The design of the application
is modular, additional frameworks can easily be evaluated as
well. We have open-sourced our application at https://github.
com/trx350/xMOOC_benchmark.

The opening screen of the application is shown in Figure 3; an
example task cue card is shown in Figure 4. The task order is
randomized. The procedure for each task Qi is the same: the
task description is shown and five seconds later a bell sound
6Concretely, based on a sample of twenty edX MOOCs offered at
TU Delft, fewer than 20% of learners accessed the course content via
mobile devices.

https://github.com/trx350/xMOOC_benchmark
https://github.com/trx350/xMOOC_benchmark


Figure 3. Opening screen of the user study

Figure 4. Example task “cue card” of the user study.

indicates the start of the task at time tQi
start : at the sound of the

bell the participant is expected to perform the task. Another
bell sound (different to the one indicating the start) indicates to
the participant when the task has been finished at time tQi

end , and
this is followed by the next task description. Task durations
differ, depending on the specific task, e.g. Q31 requires a
participant to look at a certain angle for 5 seconds while Q39
asks a participant to check his or her phone for 10 seconds.

Study setup
We conducted all our experiments on a Dell Inspiron 5759
laptop (with built-in webcam situated in the center of the
top screen bezel) with a 17-inch screen and a 1920× 1080
resolution running Windows 10. The Tobii eye tracker was
placed on the lower screen bezel.

The study was conducted across a one week period: twenty
participants were recruited among TU Delft’s graduate stu-
dents and staff members via email lists. The participants did
not receive compensation and spent less than an hour on this
study. Among the twenty participants, nine wore glasses and
two had contact lenses. In ten of the sessions the background
behind the test subject had a uniform (light) color, in another
10 cases a poster or photographic background was observed.
We recorded these settings in our study as we had conducted
preliminary experiments which indicated that eye trackers (es-
pecially the software-based ones) can be mislead by noisy
backgrounds.

As this is a controlled study, in order to facilitate the proper
execution of the tasks, the participants were provided with the
necessary tools to perform all necessary behaviours, including
a sheet of paper and a pen (required for Q22, Q24 & Q25), a
cup (Q41 & Q42) and a phone (Q39).

The Tobii requires a calibration step which participants con-
cluded at the start of the study. The CLM framework can also
be calibrated in a light-weight manner: five red dots are shown
on the screen that have to be clicked one after the other. To
test the effect of the calibration we randomly switched on the
calibration step for eight of the twenty learners.

To prepare the participants for the tasks, each participant was
trained on two tasks before the start of the actual study. The
participants were reminded repeatedly to only start executing
a task’s required behaviour after the sound of the bell and to
keep executing the behaviour until the ending sound occurred.

Detection accuracy
For every task and participant, we determine the eye trackers’
face-hit/face-miss predictions from the collected logs be-
tween the tQi

start and tQi
end timestamps. As the eye trackers vary

in their sampling rate they all produce a differing amount of
labels (face-hit, face-miss) for each sample interval. We eval-
uate the accuracy of the produced labels by computing the
percentage of correct predictions (as defined by the type of
task) in the task interval. For example, in a five second task
slot the webcam-based approach takes a sample once every
250ms (on average), and thus we collect approximately 20
predictions. For a face-miss task, if 14 of the 20 predictions
are a miss, the detection accuracy will be 70%. Lastly, we
average the accuracy for each task across all participants.

Table 1. Tobii’s delay between the start of a face-miss/likely-face-miss
task and the first face-miss event. The data is averaged across all partic-
ipants of a single task.

Delay % of tasks
1 sec 53%
2 sec 28%
3 sec 6%
4 sec 3%
5+ sec 9%

Table 2. Overview of the impact of the participants’ background on
TJS’s and Tobii’s accuracy.

Accuracy in %
Background # TJS Tobii

Solid light 10 61.5 68.6
Poster/photo 10 55.7 67.8

RESULTS
In this section we report the outcomes of our user study along
three dimensions: (i) accuracy across tasks, (ii) reaction times
and (iii) the influence of the participants’ background on the
accuracy levels.



Accuracy
The first question we consider is the accuracy of the three
eye trackers under investigation across the fifty tasks of our
benchmark suite. Table 3 lists the detection accuracy for
each task, aggregated across the twenty study participants.
As expected, Tobii achieves the highest accuracy, with an
average of 68.2% across all tasks. Among the two software
solutions, TJS clearly outperforms CLM, achieving an average
accuracy of 58.6% compared to CLM’s 35.4%. If we were only
to focus on the tasks where face misses and likely face misses
form the ground truth, CLM’s accuracy would drop to 9.6%.
The reason for this poor performance is CLM’s approach to face
and gaze detection: it will try to match anything in the video
frame to a potential face area, a separate face detection phase
is not performed. This also explains its high accuracies in the
face hits tasks. Note that the calibration step performed by
some of our participants for CLM did not result in a different
outcome.

The comparison between Tobii and TJS shows a relatively
small performance gap between the Webcam-based eye tracker
and the high-end device. While Tobii outperforms TJS in 39
of the 50 tasks, in many instances the difference in accuracies
is rather small. Using Tobii as a reference point, TJS is able
to conform with 77.8% of Tobii’s detected labels.

Due to the clear performance differences between TJS and
CLM, in further analyses we focus exclusively on TJS and its
performance compared to Tobii.

Reaction Times
As one of the potential reasons for TJS’s lag in performance
compared to Tobii we investigated the reaction times of both
users and frameworks. More specifically, we measured the
delay between the instructed start time of the task (i.e., the
timestamp tQi

start ) and the first time a framework detects a face-
miss. This time delta of course consists of both the user
delay (i.e., the time it took for the study participant to finally
start performing the task, which for some tasks—e.g. Q23 &
Q46—showed a considerable delay) and the actual detection
delay imposed by the framework. We averaged the delays of
all participants for a task and report the percentage of tasks
whose average delay is up to 1 second, up to 2 seconds, etc. in
Table 1. For the majority of tasks, Tobii is able to detect the
first face-miss within a second of the start of the task.

The Tobii eye tracker runs with a very high fixed sampling
rate of 30 samples per second, and is mostly unaffected by the
current CPU load of the host machine. Therefore, we make the
assumption that the delays in Table 1 represent the user delay.
In contrast, TJS and CLM can have very low sampling rates
depending on the current system load (we aim at 4 samples
per second, but we also experienced significantly lower rates).
By comparing the times of detecting the first face-miss of both
TJS and CLM with Tobii, we can obtain an intuition of the
delays imposed by those frameworks. For TJS, this resulted in
a delay of 0.6±1.1 seconds, and for CLM in 1.3±1.0 seconds.
While these detection delays are not instantaneous, the delays
are short enough for practical applications.

Background as an Influencing Factor
As we conducted the user study in different rooms on different
times of the day, we also recorded our participants with vari-
ous backgrounds. In Table 2 we partitioned our participants
according to the background they sat in front of during the
study. All participants reported their background to be either
of a solid light color (as present in many offices) or contain
a poster and/or photo. This factor had an impact on the eye
trackers’ accuracy: while Tobii’s accuracy remained unaf-
fected by the background, the TJS eye tracker considerably
degraded when the background was noisy.

SUMMARY AND DISCUSSION
In this paper, we have introduced the presence or absence of
a face in a learner’s webcam viewport as a simple proxy of
learner attention or inattention in order to enable real-time
attention tracking in a standard MOOC environment. This in
turn will stimulate and support self-regulated learning.

We compared three potential technical solutions for this task:
using the high-end professional Tobii X2-30 Compact hard-
ware eye tracker, and using two software-based solutions that
analyze the video stream of a consumer-grade webcam. We
conducted a lab study with twenty participants, who had to
perform a controlled benchmark suite of fifty realistic tasks,
which introduced several challenging factors such as body
movement, partially covering the face, noisy backgrounds,
and crooked body postures. This benchmark suite and the
accompanying Web application allows for a standardized and
fair comparison of different approaches for face-hit and
face-miss detection, and we provide it under an open-source
license to foster future research.

Our experiments showed that the professional dedicated hard-
ware solution outperforms the open-source software-based
solutions both in respect to detection performance and pro-
cessing speed, but is of course unsuitable for a large-scale de-
ployment outside of a controlled lab setting. For the software-
based solutions which can indeed run on typical hardware
used by MOOC learners, the complicated CLM gaze tracking
as employed by WebGazer.js introduces many complica-
tions, resulting in poor detection performance both for the
presence and absence of a user’s face. In contrast, the face
tracking library TJS shows significantly higher performance
for nearly all benchmark tasks. Additionally, both software
libraries incur an additional time delay of around 1-2 seconds
over the nearly instantaneous detection response of the hard-
ware solution. With careful design, this delay should be easily
manageable in a future MOOC learner attention detection
component.

In our future work, we plan an implementation of an atten-
tion tracker suitable for a large-scale MOOC deployment on
the basis of the TJS framework. Beyond purely technical or
methodical challenges, this allows us to tackle additional inter-
esting research questions: Would MOOC learners be willing to
accept and use such an attention detection tool? What are the
reasons why they would like/or refuse to use such technology?
And of course finally, if learners accept the use of such tools,
does this indeed positively impact their learning outcomes?
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Table 3. Overview of all fifty benchmark tasks, and the accuracy (in %) of CLM, TJS and Tobii averaged across the 20 participants in our user study.
For “(LIKELY) FACE MISS“ tasks we report the percentage of detected face misses, i.e. the eye tracker flags frames as not containing a face. For
“FACE HIT” tasks we report the percentage of detected face hits. A higher percentage indicate a better performance. The best performance per task
is shown in bold. ‡ Note that for tasks Q1 and Q2 Tobii’s camera was not covered and the detection reflects participants’ hand moving through Tobii’s
camera viewport to cover the webcam on the top bezel of the experimental laptop; for task Q43 there was no gaze to detect for Tobii.

Accuracy in %
QID Task CLM TJS Tobii

FACE MISS Tasks

Q1 Cover the camera for 2 seconds 12 45 7‡

Q2 Cover the camera for 5 seconds 28 73 17‡

Q3 Cover your face with both hands for 5 seconds 17 67 75
Q4 Look what is under your table (3 sec) 3 64 81
Q5 Stand up for 5 seconds 10 68 71

Q20 Tilt your head to the right for 3 seconds 15 59 38
Q21 Check if there is a HDMI port on the laptop 12 56 77
Q26 Look straight up to the ceiling for 8 seconds 12 72 92
Q27 Tilt your head back for 5 seconds (face ceiling) 10 68 84
Q28 Tilt your head back for 2 seconds (face ceiling) 5 51 66
Q29 Look down for 3 seconds 4 35 78
Q32 Look left for 2 seconds 7 50 72
Q33 Look left for 8 seconds 14 69 88
Q35 Look over your right shoulder 13 50 72
Q36 Look right for 10 seconds 13 77 90
Q37 Look right for 3 seconds 14 64 79
Q38 Look right for 5 seconds 7 63 83
Q39 Check your phone for 10 seconds 7 42 89
Q40 Check your phone, return after the ding 13 37 87
Q42 Take a sip from the cup while turning away from the camera, return after the ding 5 40 51
Q47 Look up and return immediately 8 49 68

LIKELY FACE MISS Tasks
Q6 Lean back and put your hands behind your neck for 5 seconds 2 67 63
Q7 Lean closer to the screen and immediately back 3 17 27

Q13 Rapidly lean back and forth until the ding sounds 6 37 57
Q18 Tilt your body to the left and stay for 3 seconds 13 50 57
Q19 Tilt your body to the right and return immediately 6 41 55
Q22 Draw a square on the paper 9 45 67
Q23 Write down 5 keys left from letter A, focus back to the screen only after the ding 4 19 61
Q24 Write down a sentence about weather 15 47 73
Q25 Write down I love Intellieye! 10 45 78
Q30 Look half-left and return 7 36 64
Q31 Look half-right and stay for about 5 seconds 7 42 77
Q41 Face the camera and take a sip from the cup until you hear the ding 8 30 35
Q46 Cover the left side of your face with left hand over cheek and eye 8 38 43
Q48 Look around in the room to every direction 10 63 82

FACE HIT Tasks
Q8 Open browser and navigate to www.weather.com. Return after the ding. (15sec) 94 97 80
Q9 Open new browser tab and return to this after the ding 95 89 87

Q10 Open some program window (e.g. My computer) on top of study window and return
after the ding

99 87 94

Q11 Feeling sleepy? Yawn and cover your mouth with a hand. (3 sec) 94 66 64
Q12 Grab the tip of your nose for 3 seconds 100 64 71
Q14 Reposition yourself in the chair 98 77 61
Q15 Scratch the top of your head (or nape) for 3 seconds 94 69 85
Q16 Scratch the lower part of your left leg for 2 seconds 93 79 64
Q17 Slowly lean back and stay for about 2 seconds 96 32 38
Q34 Look on the top right corner of your screen for 5 seconds 95 86 96
Q43 Rest your eyes for 5 seconds (close them) 95 84 14‡

Q44 Scratch your left cheek for 3 seconds 95 74 89
Q45 Sit still and face the camera for 5 seconds 94 87 90
Q49 Grab your ears with both of your hands for 3 seconds 95 76 85
Q50 Stare at the camera for 3 seconds 95 89 88
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