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Chapter 1

Introduction

The ability to make accurate predictions of the outcome of an event or a process is

highly desirable in several contexts of human activity. For instance, when consid-

ering financial benefit, a very desirable prediction would be that of the successful

anticipation of numbers appearing in an upcoming lottery. A successful attempt, in

this context, can only be labeled a lucky guess, as previous lottery results or other

factors such as the number of lottery tickets sold have no impact on the outcome

(assuming a fair draw). Similarly, in terms of financial gain, a prediction on the

stock market’s behavior would also be very desirable. However, in this case, as op-

posed to lottery draws, the outcome can be predicted to some extent based on the

available historical data and current economical and political events [28, 86, 172].

Notably, in both previous instances a rational agent may be highly motivated by the

prospect of financial gain to make a successful guess on a future outcome but only

in the latter are predictions to some extent possible.

In this work, the investigation theme is that of predictions and the factors that

allow a measurable and consistent degree of success in anticipating a certain out-

come. Specifically, two types of predictions in the context of information retrieval

are set in focus. First, we consider users’ attempts to express their information needs

through queries, or search requests and try to predict whether those requests will be

of high or low quality. Intuitively, the query’s quality is determined by the outcome

of the query, that is, whether the results meet the user’s expectations. Depending on

the predicted outcome, action can be taken by the search system in view of improv-

ing overall user satisfaction. The second type of predictions under investigation are

those which attempt to predict the quality of search systems themselves. So, given a

number of search systems to consider, these predictive methods attempt to estimate

how well or how poorly they will perform in comparison to each other.

1.1 Motivation

Predicting the quality of a query is a worthwhile and important research endeavor,

as evidenced by the significant amount of related research activity in recent years.

Notably, if a technique allows for a quality estimate of queries in advance of, or
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during the retrieval stage, specific measures can be taken to improve the overall

performance of the system. For instance, if the performance of a query is considered

to be poor, remedial action by the system can ensure that the users’ information

needs are satisfied by alerting them to the unsuitability of the query and asking for

refinement or by providing a number of different term expansion possibilities.

An intuition of the above may be provided with the following simple example.

Consider the query “jaguar”, which, given a general corpus like the World Wide

Web, is substantially ambiguous. If a user issues this query to a search engine such

as A91, Yahoo!2 or Google3, it is not possible for the search engine to determine the

user’s information need without knowledge of the user’s search history or profile. So

only a random guess may be attempted on whether the user expects search results

on the Jaguar car, the animal, the Atari video console, the guitar, the football team

or even Apple’s Mac OS X 10.2 (also referred to as Jaguar). When submitting the

query “jaguar” to the Yahoo! search engine on August 31, 2009, of the ten top

ranked returned results, seven were about Jaguar cars and three about the animal.

In fact, most results that followed up to rank 500 also dealt with Jaguar cars; the

first result concerning Mac OS X 10.2 could be found at rank 409. So a user needing

information on the operating system would likely have been unable to acquire it. It

is important to note that an algorithm predicting the extent of this ambiguity could

have pointed out the unsuitability of the query and suggested additional terms for

the user to choose from as some search engines do.

A query predicted to perform poorly, such as the one above, may not necessarily

be ambiguous but may just not be covered in the corpus to which it is submit-

ted [31, 167]. Also, identifying difficult queries related to a particular topic can be

a valuable asset for collection keepers who can determine what kind of documents

are expected by users and missing in the collection. Another important factor for

collection keepers is the findability of documents, that is how easy is it for searchers

to retrieve documents of interest [10, 30].

Predictions are also important in the case of well-performing queries. When de-

riving search results from different search engines and corpora, the predictions of

the query with respect to each corpus can be used to select the best corpus or to

merge the results across all corpora with weights according to the predicted query

effectiveness score [160, 167]. Also, consider that the cost of searching can be de-

creased given a multiple partitioned corpus, as is common practice for very large

corpora. If the documents are partitioned by, for instance, language or by topic,

predicting to which partition to send the query saves time and bandwidth, as not

all partitions need to be searched [12, 51]. Moreover, should the performance of

a query appear to be sufficiently good, the query can be improved by some affir-

mative action such as automatic query expansion with pseudo-relevance feedback.

In pseudo-relevance feedback it is assumed that the top K retrieved documents are

relevant and so for a query with low effectiveness most or all of the top K docu-

ments would be irrelevant. Notably, expanding a poorly performing query leads to

1http://www.a9.com/
2http://www.yahoo.com/
3http://www.google.com/

http://www.a9.com/
http://www.yahoo.com/
http://www.google.com/
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query drift and possibly to an even lower effectiveness while expanding queries with

a reasonable performance and thus a number of relevant documents among the top

K retrieved documents is more likely to lead to a gain in effectiveness. Another

recently proposed application of prediction methods is to shorten long queries by

filtering out predicted extraneous terms [94], in view of improving their effective-

ness.

Cost considerations are also the prevalent driving force behind the research in

predicting the ranking of retrieval systems according to their retrieval effectiveness

without relying on manually derived relevance judgments. The creation of test col-

lections, coupled with more and larger collections becoming available, can be very

expensive. Consider that in a typical benchmark setting, the number of documents

to judge depends on the number of retrieval systems participating. In the data sets

used throughout this thesis, for example, the number of documents judged varies

between a minimum of 31984 documents and a maximum of 86830 documents. If

we assume that a document can be judged for its relevance within 30 seconds [150],

this means that between 267 and 724 assessor hours are necessary to create the rel-

evance judgments of one data set – a substantial amount.

Moreover, in a dynamic environment such as the World Wide Web, where the

collection and user search behavior change over time, regular evaluation of search

engines with manual assessments is not feasible [133]. If it were possible, however,

to determine the relative effectiveness of a set of retrieval systems, reliably and

accurately, without the need for relevance judgments, the cost of evaluation would

be greatly reduced.

Correctly identifying the ranking of retrieval systems can also be advantageous

in a more practical setting when relying on different retrieval approaches (such as

Okapi [125] and Language Modeling [121]) and a single corpus. Intuitively, differ-

ent types of queries benefit from different retrieval approaches. If it is possible to

predict which of the available retrieval approaches will perform well for a particular

query, the best predicted retrieval strategy can then be selected. Overall, this would

lead to an improvement in effectiveness.

The motivation for this work is to improve user satisfaction in retrieval, by en-

abling the automatic identification of well performing retrieval systems as well as

allowing retrieval systems to identify queries as either performing well or poorly

and reacting accordingly. This thesis includes a thorough evaluation of existing

prediction methods in the literature and proposes an honest appraisal of their effec-

tiveness. We carefully enumerate the limitations of contemporary work in this field,

propose enhancements to existing proposals and clearly outline their scope of use.

Ultimately, there is considerable scope for improvement in existing retrieval systems

if predictive methods are evaluated in a consistent and objective manner; this work,

we believe, contributes substantially in accomplishing this goal.
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1.2 Prediction Aspects

Evaluation of new ideas, such as new retrieval approaches, improved algorithms

of pseudo-relevance feedback and others, is of great importance in information re-

trieval research. The development of a new model is not useful if the model does

not substantially reflect reality and does not lead to improved results in a practical

setting. For this reason, there are a number of yearly benchmarking events, where

different retrieval tasks are used to compare retrieval models and approaches on

common data sets. In settings such as TREC4, TRECVID5, FIRE6, INEX7, CLEF8, and

NTCIR9, a set of topics t1 to tm is released for different tasks, and the participat-

ing research groups submit runs, that are ranked lists of results for each topic ti
produced by their retrieval systems s1 to sn. The performance of each system is de-

termined by so-called relevance judgments, that is manually created judgments of

results that determine a result’s relevance or irrelevance to the topic. The retrieval

tasks and corpora are manifold - they include the classic adhoc task [62], the entry

page finding task [89], question answering [147], entity ranking [47] and others

on corpora of text documents, images and videos.

The results returned thus depend on the task and corpus - a valid result might be

a text document, a passage or paragraph of text, an image or a short video sequence.

In this thesis, we restrict ourselves to collections of text documents and mostly the

classical adhoc task.

For each pairing (ti, sj) of topic and system, one can determine a retrieval ef-

fectiveness value eij, which can be a measure such as average precision, precision

at 10 documents, reciprocal rank and others [13]. The decision as to which mea-

sure to use is task dependent. This setup can be represented by an m × n matrix

as shown in Figure 1.1. When relevance judgments are not available, it is evident

from Figure 1.1 that the performances of four different aspects can be predicted. In

previous work, all four aspects have been investigated by various authors and are

outlined below. We also include in the list a fifth aspect, which can be considered as

an aggregate of evaluation aspects EA1 to EA4.

(EA1) How difficult is a topic in general? Given a set of m topics and a corpus

of documents, the goal is to predict the retrieval effectiveness or difficulty

ranking of the topics independent of a particular retrieval system [7, 30], thus

the topics are evaluated for their inherent difficulty with respect to the corpus.

4Text REtrieval Conference (TREC),
http://trec.nist.gov/

5TREC Video Retrieval Evaluation (TRECVID),

http://trecvid.nist.gov/
6Forum for Information Retrieval Evaluation (FIRE),

http://www.isical.ac.in/~fire/
7INitiative for the Evaluation of XML Retrieval (INEX),

http://www.inex.otago.ac.nz/
8Cross Language Evaluation Forum (CLEF),

http://clef.iei.pi.cnr.it/
9NII Test Collection for Information Retrieval Systems (NTCIR),

http://research.nii.ac.jp/ntcir/

http://trec.nist.gov/
http://trecvid.nist.gov/
http://www.isical.ac.in/~fire/
http://www.inex.otago.ac.nz/
http://clef.iei.pi.cnr.it/
http://research.nii.ac.jp/ntcir/
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(EA2) How difficult is a topic for a particular system? Given a set of m topics,

a retrieval system sj and a corpus of documents, the aim is to estimate the

effectiveness of the topics given sj . A topic with low effectiveness is considered

to be difficult for the system. This is the most common evaluation strategy

which has been investigated for instance in [45, 71, 167, 175].

(EA3) How well does a system perform for a particular topic? Given a topic

ti, n retrieval systems and a corpus of documents, the systems are ranked

according to their performance on ti. This approach is somewhat similar to

aspect EA4, although here, the evaluation is performed on a per topic basis

rather than across a set of topics [50].

(EA4) How well does a system perform in general? Given a set of n retrieval

systems and a corpus of documents, the aim is to estimate a performance

ranking of systems independent of a particular topic [9, 114, 133, 135, 161].

(EA5) How hard is this benchmark for all systems participating? This evalua-

tion aspect can be considered as an aggregate of the evaluation aspects EA1

to EA4.

Figure 1.1: A matrix of retrieval effectiveness values; eij is the retrieval effectiveness,

system sj achieves for topic ti on a particular corpus. The numbered labels refer to the

different aspects (label 1 corresponds to EA1, etcetera).

A topic is an expression of an information need – in the benchmark setting of

TREC it usually consists of a title, a description and a narrative. A query is a for-

mulation of the topic that is used in a particular retrieval system. Often, only the

title part of the topic is used and a formulation is derived by, for instance, stemming

and stopword removal or the combination of query terms by Boolean operators. As

the input to a retrieval system is the formulation of an information need, that is a

query, this concept is often expressed as query performance or query effectiveness

prediction.
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Search engines, even if they perform well on average, suffer from a great vari-

ance in retrieval effectiveness [63, 151, 152], that is, not all queries can be answered

with equal accuracy. Predicting whether a query will lead to low quality results is a

challenging task, even for information retrieval experts. In an experiment described

by Voorhees and Harman [148], a number of researchers were asked to classify a

set of queries as either easy, medium or difficult for a corpus of newswire articles

they were familiar with. The researchers were not given ranked lists of results, just

the queries themselves. It was found that the experts were unable to predict the

query types correctly and, somewhat surprisingly, they could not even agree among

themselves how to classify the queries10. Inspired by the aforementioned experi-

ment, we performed a similar one with Web queries and a Web corpus; specifically,

we relied on the newly released ClueWeb09 corpus and the 50 queries of the TREC

2009 Web adhoc task. Nowadays (as opposed to the late 90’s time frame of [148]),

Web search engines are used daily, and instead of information retrieval experts, we

relied on members of the Database and the Human Media Interaction group of the

University of Twente, who could be considered expert users. Thirty-three people

were recruited and asked to judge each of the provided queries for their expected

result quality. The users were asked to choose for each query one of four levels of

quality: low, medium and high quality as well as unknown. The quality score of each

query is derived by summing up the scores across all users that did not choose the

option unknown where the scores 1, 2 and 3 are assigned to low, medium and high

quality respectively. Note that a higher quality score denotes a greater expectation

by the users that the query will perform well on a Web search engine. Named en-

tities such as “volvo” and “orange county convention center” as well as seemingly

concrete search request such as “wedding budget calculator” received the highest

scores. The lowest scores were given to unspecific queries such as “map” and “the

current”. The correlation between the averaged quality scores of the users and the

retrieval effectiveness scores of the queries evaluated to r = 0.46. This moderate

correlation indicates, that users can, to some extent, predict the quality of search

results, though not with a very high accuracy, which denotes the difficulty of the

task11.

In recent years many different kinds of predictions in information retrieval have

been investigated. This includes, for instance, the prediction of a Web summary’s

quality [83] and of a Q&A pair’s answer quality [22, 81], as well as the prediction of

the usefulness of involving the user or user profile in query expansion [92, 93, 137].

Further examples in this vain include predicting the effect of labeling images [85],

predictions on the amount of external feedback [53] and predicting clicks on Web

advertisements [18] and news results [88].

In this thesis we focus specifically on predicting the effectiveness of informational

queries and retrieval systems, as we believe that these two aspects will bring about

the most tangible benefits in retrieval effectiveness and in improvement of user

satisfaction, considering that around 80% of the queries submitted to the Web are

10The highest linear correlation coefficient between an expert’s predictions and the ground truth

was r = 0.26, the highest correlation between any two experts’ predictions was r = 0.39.
11The user study is described in more detail in Appendix A.
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informational in nature [78]. Furthermore, the works cited above depend partially

on large-scale samples of query logs or interaction logs [92, 137] which cannot be

assumed to be available to all search systems.

1.3 Definition of Terms

As of yet there is no widely accepted standard terminology in this research area.

Depending on the publication forum and the particular author different phrases

are used to refer to specific evaluation aspects. As can be expected the same term

can also have different meanings in works by different authors. In this section, we

explicitly state our interpretation of ambiguous terms in the literature and we use

them consistently throughout.

Firstly, while generally - and also in this thesis - to predict and to estimate a

query’s quality are used interchangeably, in a number of works in the literature a

distinction is made between the two. Predicting the quality of a query is used when

the algorithms do not rely on the ranked lists of results, while the quality of a query

is estimated if the calculations are based on the ranked list of results. In this work

the meaning becomes clear in the context of each topic under investigation, it is

always explicitly stated whether a ranked list of results used.

Throughout, the term query quality means the retrieval effectiveness that a query

achieves with respect to a particular retrieval system, which is also referred to as

query performance. When we investigate query difficulty we are indirectly also in-

terested in predicting the retrieval effectiveness of a query, however we are only

interested whether the effectiveness will be low or high. We thus expect a binary

outcome - the query is either classified as easy or it is classified as difficult. In

contrast, when investigating query performance prediction we are interested in the

predicted effectiveness score and thus expect a non-binary outcome such as an esti-

mate of average precision.

EA1 collection query hardness [7], topic difficulty [30]

EA2 query difficulty [167], topic difficulty [30], query performance

prediction [175], precision prediction [52], system query hard-

ness [7], search result quality estimation [40], search effective-

ness estimation [145]

EA3 performance prediction of “retrievals” [50]

EA4 automatic evaluation of retrieval systems [114], ranking retrieval

systems without relevance judgments [133], retrieval system

ranking estimation

EA5 -

Table 1.1: Overview of commonly used terminology of the evaluation aspects of Figure 1.1.

In Table 1.1 we have summarized the expressions for each evaluation aspect as

they occur in the literature. Evaluation aspect EA2 has the most diverse set of labels,

as it is the most widely evaluated aspect. Most commonly, it is referred to as query
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performance prediction, query difficulty as well as query effectiveness estimation. Eval-

uation aspect EA3 on the other hand has only been considered in one publication so

far [50], where the pair (ti, sj) of topic and system is referred to as “retrieval”.

Aspect EA4 of Figure 1.1 was originally referred to as ranking retrieval systems

without relevance judgments, but has also come to be known as automatic evaluation

of retrieval systems. We refer to it as retrieval system ranking estimation as in this

setup we attempt to estimate a ranking of retrieval systems.

1.4 Research Themes

The analysis presented in this thesis aims to provide a comprehensive picture of

research efforts in the prediction of query and retrieval system effectiveness. By

organizing previous works according to evaluation aspects we methodically clarify

and categorise the different dimensions of this research area. The thesis focuses

on two evaluation aspects (enumerated in full in Section 1.2), in particular, EA2

and EA4, as their analysis has value in practical settings as well as for evaluation

purposes.

The other aspects are not directly considered. Evaluation aspect EA1, which

assumes the difficulty of a topic to be inherent to a corpus, is mainly of interest in

the creation of benchmarks, so as to, for instance, choose the right set of topics.

In an adaptive retrieval system, where the system cannot choose which queries to

answer it is less useful. The same argumentation applies intuitively to aspect EA5.

As part of the work on evaluation aspect EA4 in Chapter 5 we will briefly discuss

EA3.

Four main research themes are covered in this work and will now be explicitly

stated. The first three (RT1, RT2 and RT3) are concerned with evaluation aspect

EA2, while the last one (RT4) is concerned with evaluation aspect EA4 (and partly

with EA3). The backbone of all results reported and observations made in this

work form two large-scale empirical studies. In Chapter 2 and Chapter 3 a total

of twenty-eight prediction methods are evaluated on three different test corpora.

The second study, discussed in detail in Chapter 5 puts emphasis on the influence

of the diversity of data sets: therein five system ranking estimation approaches are

evaluated on sixteen highly diverse data sets.

RT1: Quality of pre-retrieval predictors Pre-retrieval query effectiveness pre-

diction methods are so termed because they predict a query’s performance before

the retrieval step. They are thus independent of the ranked list of results. Such

predictors base their predictions solely on query terms, the collection statistics and

possibly external sources such as WordNet [57] or Wikipedia12. In this work we an-

alyze and evaluate a large subset of the main approaches and answer the following

questions: on what heuristics are the prediction algorithms based? Can the algo-

rithms be categorized in a meaningful way? How similar are different approaches to

12http://www.wikipedia.org/

http://www.wikipedia.org/
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each other? How sensitive are the algorithms to a change in the retrieval approach?

What gain can be achieved by combining different approaches?

RT2: The case of the post-retrieval predictor Clarity Score The class of post-

retrieval approaches estimates a query’s effectiveness based on the ranked list of

results. The approaches in this class are usually more complex than pre-retrieval

predictors, as more information (the list of results) is available to form an estimate

of the query’s effectiveness. Focusing on one characteristic approach, namely Clarity

Score [45], the questions we explore are: how sensitive is this post-retrieval predic-

tor to the retrieval algorithm? How does the algorithm’s performance change over

different test collections? Is it possible to improve upon the prediction accuracy of

existing approaches?

RT3: The relationship between correlation and application The quality of query

effectiveness prediction methods is commonly evaluated by reporting correlation co-

efficients, such as Kendall’s Tau [84] and the linear correlation coefficient. These

measures denote how well the methods perform at predicting the retrieval per-

formance of a given set of queries. The following essential questions have so far

remained unexplored: what is the relationship between the correlation coefficient

as an evaluation measure for query performance prediction and the effect of such a

method on retrieval effectiveness? At what levels of correlation can we be reason-

ably sure that a query performance prediction method will be useful in a practical

setting?

RT4: System ranking estimation Substantial research work has also been under-

taken in estimating the effectiveness of retrieval systems. However, most of the eval-

uations have been performed on a small number of older corpora. Current work in

this area lacks a broad evaluation scope which gives rise to the following questions:

is the performance of system ranking estimation approaches as reported in previous

studies comparable with their performance on more recent and diverse data sets?

What factors influence the accuracy of system ranking estimation? Can the accuracy

be improved when selecting a subset of topics to rank retrieval systems?

1.5 Thesis Overview

The organization of the thesis follows the order of the research themes. In Chap-

ter 2, we turn our attention to pre-retrieval prediction algorithms and provide a

comprehensive overview of existing methods. We examine their similarities and dif-

ferences analytically and then verify our findings empirically. A categorization of

algorithms is proposed and the change in predictor performance when combining

different approaches is investigated. The major results of this chapter have previ-

ously been published in [65, 69].
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In Chapter 3, post-retrieval approaches are introduced, with a focus on Clarity

Score for which an improved variation is proposed and an explanation is offered

as to why some test collections are more difficult for query effectiveness estimation

than others. Part of this work can also be found in [70].

The connection between a common evaluation measure (Kendall’s Tau) in query

performance prediction approaches and the performance of retrieval systems rely-

ing on those predictions is evaluated in Chapter 4. Insights in the level of correlation

required in order to ensure that an application of a predictor in an operational set-

ting is likely to lead to an overall improvement in the retrieval system are reported.

Parts of this chapter have been described in [64, 67].

Chapter 5 then focuses on system ranking estimation approaches. A number of

algorithms are compared and the hypothesis that subsets of topics lead to a better

performance of the approaches is evaluated. The work of this chapter was initially

presented in [66, 68].

The thesis concludes with Chapter 6 where a summary of the conclusions is

included and suggestions for future research are offered.



Chapter 2

Pre-Retrieval Predictors

2.1 Introduction

Pre-retrieval prediction algorithms predict the effectiveness of a query before the

retrieval stage is reached and are, thus, independent of the ranked list of results;

essentially, they are search-independent. Such methods base their predictions solely

on query terms, the collection statistics and possibly an external source such as

WordNet [57], which provides information on the query terms’ semantic relation-

ships. Since pre-retrieval predictors rely on information that is available at indexing

time, they can be calculated more efficiently than methods relying on the result list,

causing less overhead to the search system. In this chapter we provide a compre-

hensive overview of pre-retrieval query performance prediction methods.

Specifically, this chapter contains the following contributions:

• the introduction of a predictor taxonomy and a clarification of evaluation goals

and evaluation measures,

• an analytical and empirical evaluation of a wide range of prediction methods

over a range of corpora and retrieval approaches, and,

• an investigation into the utility of combining different prediction methods in

a principled way.

The organization of the chapter is set up accordingly. First, in Section 2.2 we

present our predictor taxonomy, then in Section 2.3 we discuss the goals of query

effectiveness prediction and subsequently lay out what evaluations exist and when

they are applicable. A brief overview of the notation and the data sets used in the

evaluations (Sections 2.4 and 2.5) follows. In Sections 2.6, 2.7, 2.8 and 2.9 we

cover the four different classes of predictor heuristics. While these sections give

a very detailed view on each method, in Section 2.10 we discuss the results of an

evaluation that has so far been neglected in query performance prediction: the eval-

uation whether two predictors perform differently from each other in a statistically

significant way. How diverse retrieval approaches influence the quality of various

prediction methods is evaluated in Section 2.11. A final matter of investigation is

the utility of combining prediction methods in a principled way, which is described

in Section 2.12. The conclusions in Section 2.13 round off the chapter.
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pre-retrieval predictor

specificity ambiguity term relatedness

collection
statistics

(AvIDF,...)

query
(AvQL)

WordNet
(AvP,...)

collection
statistics

(AvQC,...)

WordNet
(AvPath,...)

collection
statistics

(AvPMI,...)

ranking sensitivity

collection
statistics

(AvVAR,...)

Figure 2.1: Categories of pre-retrieval predictors.

2.2 A Pre-Retrieval Predictor Taxonomy

In general, pre-retrieval predictors can be divided into four different groups ac-

cording to the heuristics they exploit (Figure 2.1). First, specificity based predictors

predict a query to perform better with increased specificity. How the specificity is

determined further divides these predictors into collection statistics based and query

based predictors.

Other predictors exploit the query terms’ ambiguity to predict the query’s qual-

ity; in those cases, high ambiguity is likely to result in poor performance. In such a

scheme, if a term always appears in the same or similar contexts, the term is consid-

ered to be unambiguous. However, if the term appears in many different contexts

it is considered to be ambiguous. For instance, consider that the term “tennis” will

mainly appear in the context of sports and will rarely be mentioned in documents

discussing finances or politics. The term “field”, however, is more ambiguous and

can easily occur in sports articles, agriculture articles or even politics (e.g. “field of

Democratic candidates”). Intuitively, ambiguity is somewhat related to specificity,

as an ambiguous term can have a high document frequency, but there are excep-

tions - consider that the term “tennis” might not be specific in a corpus containing

many sports-related documents, but it is unambiguous and while specificity based

predictors would predict it to be a poor query, ambiguity based predictors would

not. The ambiguity of a term may be derived from collection statistics, additionally

it can also be determined by relying on an external source such as WordNet.

The drawback of predictors in the first two categories (specificity and ambigu-

ity) stems from their lack of consideration of the relationship between terms. To

illustrate this point, consider that the query “political field” is actually unambiguous

due to the relationship between the two terms, but an ambiguity based predictor

is likely to predict a poor effectiveness, since “field” can appear in many contexts.

Similarly for a specificity based predictor, the term “field” will likely occur often in

a general corpus. To offset this weakness, a third category of predictors makes use

of term relatedness in an attempt to exploit the relationship between query terms.
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Specifically, if there is a strong relationship between terms, the query is predicted to

be of good quality.

Finally, the ranking sensitivity can also be utilized as source of information for

a query’s effectiveness. In such a case, a query is predicted to be ineffective, if

the documents containing the query terms appear similar to each other, making

them indistinguishable for a retrieval system and thus difficult to rank. In contrast

to post-retrieval methods, which work directly on the rankings produced by the

retrieval algorithms, these predictors attempt to predict how easy it is to return a

stable ranking. Moreover, they rely exclusively on collection statistics, and more

specifically the distribution of query terms within the corpus.

2.3 Evaluation Framework

Query effectiveness prediction methods are usually evaluated by reporting the cor-

relation they achieve with the ground truth, which is the effectiveness of queries

derived for a retrieval approach with the help of relevance judgments. The com-

monly reported correlations coefficients are Kendall’s Tau τ [84], Spearman’s Rho

ρ, and the linear correlation coefficient r (also known as Pearson’s r). In general,

the choice of correlation coefficient should depend on the goals of the prediction

algorithm. As often prediction algorithms are evaluated but not applied in prac-

tice, a mix of correlation coefficients is usually reported as will become evident in

Chapter 3 (in particular in Table 3.1).

2.3.1 Evaluation Goals

Evaluation goals can be for instance the determination whether a query can be

answered by a corpus or an estimation of the retrieval effectiveness of a query. We

now present three categories of evaluation goals which apply both to pre- and post-

retrieval algorithms.

Query Difficulty

The query difficulty criterion can be defined as follows: given a query q, a corpus of

documents C, external knowledge sources E and a ranking function R (which re-

turns a ranked list of documents), we can estimate whether q is difficult as follows:

fdiff(q, C, E, R)→ {0, 1}. (2.1)

Here, fdiff = 0 is an indicator of the class of difficult queries which exhibit unsatis-

factory retrieval effectiveness and fdiff = 1 represents the class of well performing

queries. When R = ∅ we are dealing with pre-retrieval prediction methods. A num-

ber of algorithms involve external sources E such as Wikipedia or WordNet. The

majority of methods however, rely on C and R only. Evaluation measures that are
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in particular applicable to fdiff emphasize the correct identification of the worst per-

forming queries and largely ignore the particular performance ranking and the best

performing queries [145, 151].

Query Performance

Determining whether a query will perform well or poorly is not always sufficient.

Consider for example a number of alternative query formulations for an information

need. In order to select the best performing query, a more general approach is

needed; such an approach is query performance prediction. Using the notation above,

we express this as follows:

fperf(q, C, E, R)→ R (2.2)

The query with the largest score according to fperf is deemed to be the best for-

mulation of the information need. In this scenario, we are not interested in the

particular scores, but in correctly ranking the queries according to their predicted ef-

fectiveness. In such a setup, evaluating the agreement between the predicted query

ranking and the actual query effectiveness ranking is a sound evaluation strategy.

The alignment of these two rankings is usually reported in terms of rank correlation

coefficients such as Kendall’s τ and Spearman’s ρ.

Normalized Query Performance

In a number of instances, absolute estimation scores as returned by fperf cannot be

utilized to locate the best query from a pool of queries. Consider a query being

submitted to a number of collections and the ranked list that is estimated to best fit

the query is to be selected, or alternatively the ranked lists are to be merged with

weights according to the estimated query quality. Absolute scores as given by fperf

will fail, as they usually depend on collection statistics and are, thus, not comparable

across corpora. The evaluation should thus emphasize, how well the algorithms

estimate the effectiveness of a query according to a particular effectiveness measure

such as average precision. Again, using the usual notation:

fnorm(q, C, E, R)→ [0, 1]. (2.3)

By estimating a normalized score, scores can be compared across different collec-

tions. The standard evaluation measure in this setting is the linear correlation coef-

ficient r.

2.3.2 Evaluation Measures

As described in the previous section, different evaluation methodologies are appli-

cable to different application scenarios. The standard correlation based approach to

evaluation is as follows. Let Q be the set of queries {q}i and let Rqi
be the ranked

list returned by the ranking function R for qi. For each qi ∈ Q, the predicted score

si is obtained from a given predictor; additionally the retrieval effectiveness of R is
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determined (based on the relevance judgments). Commonly, the average precision

api of Rqi
is calculated as ground truth effectiveness. Then, given all pairs (si, api),

the correlation coefficient is determined.

Ranking Based Approaches

Rank correlations make no assumptions about the type of relationship between the

two lists of scores (predictor scores and retrieval effectiveness scores). Both score

lists are converted to lists of ranks where the highest score is assigned rank 1 and so

on. Then, the correlation of the ranks is measured. In this case, the ranks give an

indication of each query’s effectiveness relative to the other queries in the list but

no quantitative prediction is made about the retrieval score of the query.

The TREC Robust Retrieval track [151, 152], where query effectiveness predic-

tion was first proposed as part of the adhoc retrieval task, aimed at distinguishing

the poorly performing queries from the successful ones. The participants were asked

to rank the given set of queries according to their estimated performance. As mea-

sure of agreement between the predicted ranking and the actual ranking, Kendall’s

τ was proposed.

A common approach to comparing two predictors is to compare their point es-

timates and to view a higher correlation coefficient as proof of a better predictor

method. However, to be able to say with confidence that one predictor outperforms

another, it is necessary to perform a test of statistical significance of the difference

between the two [39]. Additionally, we can give an indication of how confident we

are in the result by providing the confidence interval (CI) of the correlation coeffi-

cient. Currently, predictors are only tested for their significance against a correlation

of zero.

While Kendall’s τ is suitable for the setup given by fpref, it is sensitive to all

differences in ranking. If we are only interested in identifying the poorly performing

queries (fdiff), ranking differences at the top of the ranking are of no importance and

can be ignored. The area between the MAP curves, proposed by Voorhees [151],

is an evaluation measure for this scenario. The mean average precision (MAP)

is computed over the best performing b queries and b ranges from the full query

set to successively fewer queries, leading to a MAP curve. Two such MAP curves

are generated: one based on the actual ranking of queries according to retrieval

effectiveness and one based on the predicted ranking of queries. If the predicted

ranking conforms to the actual ranking, the two curves are identical and the area

between the curves is zero. The more the predicted ranking deviates from the actual

ranking, the more the two curves will diverge and, thus, the larger the area between

them. It follows, that the larger the area between the curves, the worse the accuracy

of the predictor. A simpler evaluation measure that is also geared towards query

difficulty, was proposed by Vinay et al. [145]. Here, the bottom ranked 10% or

20% of predicted and actual queries are compared and the overlap is computed; the

larger the overlap, the better the predictor.
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Linear Correlation Coefficient

Ranking based approaches are not suitable to evaluate the scenario fnorm, as they

disregard differences between the particular predicted and actual scores. In such

a case, the linear correlation coefficient r can be used instead. This coefficient is

defined as the covariance, normalized by the product of the standard deviations of

the predicted scores and the actual scores.

The value of r2 is known as the coefficient of determination. A number of tests for

the significance of difference between overlapping correlations have been proposed

in the literature [77, 103, 158]. In our evaluation, we employed the test proposed

by Meng et al. [103].

In the case of multiple linear regression, r increases due to the increase in re-

gressors. To account for that, the value of the adjusted r2 can be reported, which

takes the number p of regressors into account (n is the sample size):

r2
adj = 1− (1− r2)

n− 1

n− p− 1
. (2.4)

Limitations of Correlation Coefficients

Correlation coefficients compress a considerable amount of information into a sin-

gle number, which can lead to problems of interpretation. To illustrate this point,

consider the cases depicted in Figure 2.2 for the linear correlation coefficient r and

Kendall’s τ . Each point represents a query with its corresponding retrieval effective-

ness value (given in average precision) on the x-axis and its predicted score on the

y-axis. The three plots are examples of high, moderate and low correlation coeffi-

cients; for the sake of r, the best linear fit is also shown. Further, the MAP as average

measure of retrieval effectiveness is provided as well. These plots are derived from

data that reflects existing predictors and retrieval approaches. In the case of Fig-

ure 2.2a, the predictor scores are plotted against a very basic retrieval approach

with a low retrieval effectiveness (MAP of 0.11). The high correlations of r = 0.81
and τ = 0.48 respectively highlight a possible problem: the correlation coefficient

of a predictor can be improved by correlating the prediction scores with the “right”

retrieval method instead of improving the quality of the prediction method itself.

To aid understanding, consider Figures 2.2b and 2.2c, which were generated

from the same predictor for different query sets and a better performing retrieval

approach. They show the difference between a medium and a low correlation. Note

that, in general, the value of Kendall’s τ is lower than r, but the trend is similar.

In Section 2.12, we evaluate the utility of combining predictors in a principled

way. The evaluation is performed according to fnorm, which is usually reported in the

literature in terms of r. However, when combining predictors, a drawback of r is the

increase in correlation if multiple predictors are linearly combined. Independent of

the quality of the predictors, r increases as more predictors are added to the model.

An extreme example of this, is shown in Figure 2.3 where the average precision

scores of a query set were correlated with randomly generated predictors numbering

between 1 and 75. Note that at 75 predictors, r > 0.9. Figure 2.3 also contains
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(a) MAP = 0.11, r = 0.81,
τ = 0.48
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(b) MAP = 0.23, r = 0.59,
τ = 0.32
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(c) MAP = 0.18, r = 0.22,
τ = 0.18

Figure 2.2: Scatter plots of retrieval effectiveness scores versus predicted scores.

the trend of radj , which takes the number of predictors in the model into account,

but despite this adaptation we observe radj > 0.6 when 75 random predictors are

combined.
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Figure 2.3: Development of r and radj with increasing number of random predictors.

2.4 Notation

We now briefly present definitions and notations as used for the remainder of this

chapter. A query q = {q1, q2, .., qm} is composed of query terms qi and has length

|q| = m. A term ti occurs tf(ti, dj) times in document dj . Further, a term ti occurs

tf(ti) =
∑

j tf(ti, dj) times in the collection and in df(ti) documents. The document

length |dj| is equal to the number of terms in the document. The total number

of terms in the collection is denoted by termcount and doccount marks the total

number of documents. Nq is the set of all documents containing at least one of the

query terms in q.

The maximum likelihood estimate of term ti in document dj is given by

Pml(ti|dj) =
tf(ti, dj)

|dj|
. (2.5)
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The probability of term ti occurring in the collection is Pml(ti) = tf(ti)
termcount

. Finally,

Pml(ti, tj) is the maximum likelihood probability of ti and tj occurring in the same

document.

2.5 Materials and Methods

The evaluations of the methods outlined in the current and the following chapters

are performed on a range of query sets and corpora. In this section, we briefly

describe the corpora, the query sets and the retrieval approaches utilized. A more

comprehensive overview of the data sets can be found in Appendix B.

2.5.1 Test Corpora

To perform the experiments, the adhoc retrieval task is evaluated on three dif-

ferent TREC corpora, namely, TREC Volumes 4 and 5 minus the Congressional

Records [148] (TREC Vol. 4+5), WT10g [132] and GOV2 [38]. The corpora dif-

fer in size as well as content. TREC Vol. 4+5 is the smallest, containing newswire

articles, WT10g is derived from a crawl of the Web and GOV2, the largest corpus

with more than 25 million documents, was created from a crawl of the .gov domain.

The corpora were stemmed with the Krovetz stemmer [90] and stopwords were re-

moved1. All experiments in this thesis are performed with the Lemur Toolkit for

Language Modeling and Information Retrieval2, version 4.3.2.

The queries are derived from the TREC title topics of the adhoc tasks, available

for each corpus. We focus on title topics as we consider them to be more realistic

than the longer description and narrative components of a TREC topic. Please note

again, that we distinguish the concepts of topic and query: whereas a topic is a

textual expression of an information need, we consider a query to be the string of

characters that is submitted to the retrieval system. In our experiments we turn

a TREC title topic into a query by removing stopwords and applying the Krovetz

stemmer.

Table 2.1 contains the list of query sets under consideration, the corpus they

belong to and the average number of query terms. In query set 451-500, we man-

ually identified and corrected three spelling errors. Our focus is on investigating

query effectiveness predictors and we assume the ideal case of error-free queries. In

practical applications, spelling error correction would be a preprocessing step.

2.5.2 Retrieval Approaches

The goal of prediction algorithms is to predict the (relative) retrieval effectiveness

of a query as well as possible. Since there are many retrieval approaches with

various degrees of retrieval effectiveness, an immediate concern lies in determining

1stopword list: http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
2http://www.lemurproject.org/

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
http://www.lemurproject.org/
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Corpus Queries Av. Query Length

TREC Vol. 4+5 301-350 2.54
351-400 2.50
401-450 2.40

WT10g 451-500 2.43
501-550 2.84

GOV2 701-750 3.10
751-800 2.94
801-850 2.86

Table 2.1: Overview of query sets.

for which retrieval approach and for which effectiveness measure the prediction

method should be evaluated. In this chapter, we rely on average precision as the

effectiveness measure as it is most widely used in the literature and available for all

retrieval experiments we perform.

We chose to address the question of which retrieval approach to utilize in two

ways. First, we investigate three common retrieval approaches, namely Language

Modeling with Dirichlet Smoothing [170], Okapi [125] with its default parameter

settings, and TF.IDF [13], the most basic retrieval approach based on term and doc-

ument frequencies. Although this setup allows us to investigate the influence of a

change in parameter setting for one particular retrieval approach, the results cannot

be further generalized. In order to gain an understanding of predictor performances

over a wider variety of retrieval approaches, we also rely on the retrieval runs sub-

mitted to TREC for each title topic set and their achieved retrieval effectiveness as

ground truth.

Table 2.2 lists the retrieval effectiveness of the three retrieval approaches in MAP

over all query sets. The level of smoothing in the Language Modeling approach is

varied between µ = {100, 500, 1000, 1500, 2000, 2500}. Larger values of µ show no

further improvements in retrieval effectiveness (see Appendix B, Figure B.2). As

expected, TF.IDF performs poorly, consistently degrading in performance as the col-

lection size increases. Notably, while it reaches a MAP up to 0.11 on the query sets

of TREC Vol. 4+5, for the query sets of the GOV2 collection, the MAP degrades

to 0.04 at best. In contrast, Okapi outperforms the Language Modeling approach

with µ = 100 for all but one query set (401-450). In all other settings of µ, Okapi

performs (slightly) worse. The highest effectiveness in the Language Modeling ap-

proach is achieved for a smoothing level µ between 500 and 2000, depending on the

individual query set.

2.6 Specificity

Query performance predictors in this category estimate the effectiveness of a query

by the query terms’ specificity. Consequently, a query consisting of common (col-

lection) terms is deemed hard to answer as the retrieval algorithm is unable to
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Corpus Queries TF.IDF Okapi Language Modeling with Dirichlet Smoothing
µ = 100 µ = 500 µ = 1000 µ = 1500 µ = 2000 µ = 2500

TREC 301-350 0.109 0.218 0.216 0.227 0.226 0.224 0.220 0.218
Vol. 4+5 351-400 0.073 0.176 0.169 0.182 0.187 0.189 0.190 0.189

401-450 0.088 0.223 0.229 0.242 0.245 0.244 0.241 0.239

WT10g 451-500 0.055 0.183 0.154 0.195 0.207 0.206 0.201 0.203
501-550 0.061 0.163 0.137 0.168 0.180 0.185 0.189 0.189

GOV2 701-750 0.029 0.230 0.212 0.262 0.269 0.266 0.261 0.256
751-800 0.036 0.296 0.279 0.317 0.324 0.324 0.321 0.318
801-850 0.023 0.250 0.247 0.293 0.297 0.292 0.284 0.275

Table 2.2: Overview of mean average precision over different retrieval approaches. Shown

in bold is the most effective retrieval approach for each query set.

distinguish relevant and non-relevant documents based on term frequencies. The

following is a list of predictors in the literature that exploit the specificity heuristic:

• Averaged Query Length (AvQL) [111],

• Averaged Inverse Document Frequency (AvIDF) [45],

• Maximum Inverse Document Frequency (MaxIDF) [128],

• Standard Deviation of IDF (DevIDF) [71],

• Averaged Inverse Collection Term Frequency (AvICTF) [71],

• Simplified Clarity Score (SCS) [71],

• Summed Collection Query Similarity (SumSCQ) [174],

• Averaged Collection Query Similarity AvSCQ [174],

• Maximum Collection Query Similarity MaxSCQ [174], and,

• Query Scope (QS) [71].

2.6.1 Query Based Specificity

The specificity of a query can be estimated to some extent without considering any

other sources apart from the query itself. The average number AvQL of characters

in the query terms is such a predictor: the higher the average length of a query, the

more specific the query is assumed to be. For instance, TREC title topic 348 “Ago-

raphobia” has an average query length of 11, whilst TREC title topic 344 “Abuses of

E-Mail” has an average length of AvQL = 4.67. Hence, “Agoraphobia” is considered

to be more specific and therefore would be predicted to perform better than “Abuses

of E-Mail”.

Intuitively, making a prediction without taking the collection into account will

often go wrong. Consider, for instance, that “BM25”, which would be a very spe-

cific term in a corpus of newswire articles, contains few characters and hence, is

erroneously considered to be non-specific according to the previous scheme. The

success of predictors of this type also depends on the language of the collection.

Text collections in languages that allow compounding such as Dutch and German

might benefit more from predictors of this type than corpora consisting of English

documents.
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An alternative interpretation of query length is to consider the number of query

terms in the search request as an indicator of specificity. We do not cover this inter-

pretation here, as TREC title topics have very little variation in the number of terms,

while TREC description and narrative topics on the other hand, often do not re-

semble realistic search requests. We note though, that Phan et al. [119] performed

a user study where participants were asked to judge search requests of differing

length, on a four point scale according to how narrow or broad they judge the un-

derlying information need to be. A significant correlation was found between the

number of terms in the search requests and the information need’s specificity.

2.6.2 Collection Based Specificity

The specificity of a term qi can be approximated by either the document frequency

df(qi) or the term frequency tf(qi). Both measures are closely related as a term

that occurs in many documents can be expected to have a high term frequency in

the collection. The opposite is also normally true: when a term occurs in very few

documents then its term frequency will be low, if we assume that all documents in

the collection are reasonable and no corner cases exist.

The most basic predictor in this context is AvIDF which determines the specificity

of a query by relying on the average of the inverse document frequency (idf) of the

query terms:

AvIDF =
1

m

m
∑

i=1

[

log
doccount

df(qi)

]

=
1

m

m
∑

i=1

[log(doccount)− log(df(qi))] (2.6)

= log(doccount)−
1

m
log

[

m
∏

i=1

df(qi)

]

(2.7)

MaxIDF is the maximum idf value over all query terms. As an alternative metric,

instead of averaging or maximizing the idf values of all query terms, the predictor

DevIDF relies on the standard deviation of the idf values:

DevIDF =

√

√

√

√

1

m

m
∑

i=1

(

log
doccount

df(qi)
− AvIDF

)2

(2.8)

Note that a query with a high DevIDF score has at least one specific term and one

general term, otherwise the standard deviation would be small. A shortcoming

of this predictor lies in the fact that single term queries or queries containing only

specific terms are assigned a score of 0 and a low prediction score respectively. Thus,

DevIDF can be expected to perform worse as predictor, on average, than AvIDF or

MaxIDF.

In previous work [71], INQUERY’s idf formulation has been used in the predic-

tors. In contrast to AvIDF, this approach normalizes the values to the [0, 1] interval.
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Since such normalization makes no difference to the predictor performance it is not

considered here. Among the pre-retrieval predictors proposed by He and Ounis [71]

are the AvICTF and SCS predictors. AvICTF is defined as follows:

AvICTF =
log2

∏m
i=1

[

termcount
tf(qi)

]

m

=
1

m

m
∑

i=1

log2

[

termcount

tf(qi)

]

=
1

m

m
∑

i=1

[log2(termcount)− log2(tf(qi))] (2.9)

When comparing Equations 2.6 and 2.9, the similarity between AvICTF and AvIDF

becomes clear; instead of document frequencies, AvICTF relies on term frequencies.

The Simplified Clarity Score is, as the name implies, a simplification of the post-

retrieval method Clarity Score which will be introduced in detail in Chapter 3. In-

stead of applying Clarity Score to the ranked list of results however, it is applied to

the query itself, as follows:

SCS =

m
∑

i=1

Pml(qi|q) log2

Pml(qi|q)

P (qi)

≈
m

∑

i=1

1

m
log2

1
m

tf(qi)
termcount

≈ log2

1

m
+

1

m

m
∑

i=1

[log2(termcount)− log2(tf(qi))] . (2.10)

Pml(qi|q) is the maximum likelihood estimate of qi occurring in query q. If we

assume that each query term occurs exactly once in a query, then Pml(qi|q) = 1
m

and

SCS = log2
1
m

+ AvICTF (consider the similarity of Equations 2.9 and 2.10).

Importantly, if two queries have the same AvICTF score, SCS will give the query

containing fewer query terms a higher score. The assumption of each term occurring

only once in the query is a reasonable one, when one considers short queries such

as those derived from TREC title topics. In the case of short queries, we can expect

that the SCS and AvICTF scores for a set of queries will have a correlation close to 1,

as the query length does not vary significantly. Longer queries such as those derived

from TREC description topics that often include repetitions of terms will result in a

larger margin.

Combining the collection term frequency and inverse document frequency was

proposed by Zhao et al. [174]. The collection query similarity summed over all

query terms is defined as:

SumSCQ =
m

∑

i=1

(1 + ln(cf(qi)))× ln

(

1 +
doccount

df(qi)

)

. (2.11)
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AvSCQ is the average similarity over all query terms: AvSCQ = 1
m
× SumSCQ,

whereas the maximum query collection similarity MaxSCQ relies on the maximum

collection query similarity score over all query terms. The authors argue that a

query, which is similar to the collection as a whole is easier to retrieve documents

for, since the similarity is an indicator of whether documents answering the infor-

mation need are contained in the collection. As the score increases with increased

collection term frequency and increased inverse document frequency, terms that ap-

pear in few documents many times are favored. Those terms can be seen as highly

specific, as they occur in relatively few documents, while at the same time they

occur often enough to be important to the query.

Query Scope is a measure that makes use of the document frequencies. In this

instance, the number of documents containing at least one of the query terms is

used as an indicator of query quality; the more documents contained in this set, the

lower the predicted effectiveness of the query:

QS = − log
Nq

doccount
. (2.12)

Finally, we observe that for queries consisting of a single term, the predictors QS,

MaxIDF and AvIDF will return exactly the same score.

2.6.3 Experimental Evaluation

The evaluation of the introduced prediction methods is performed in two steps.

First, to support the mathematical derivation, we present the correlations, as given

by Kendall’s τ , between the different predictors. A high correlation coefficient in-

dicates a strong relationship. Then, we evaluate the predictors according to their

ability to predict the performance of different query sets across different corpora

and retrieval approaches. This evaluation is presented in terms of Kendall’s τ and

the linear correlation coefficient.

Predictor-Predictor Correlations

The correlations between the predictor scores are shown in Table 2.3 aggregated

over the query sets of TREC Vol. 4+5 and over the query sets of GOV2. Let us first

consider the results over the queries 301-450. The three predictors AvIDF, SCS and

AvICTF are highly correlated, with a minimum τ = 0.88 (the same evaluation with

the linear correlation coefficient yields r = 0.98). The predictors QS and MaxIDF

can also be considered in this group to some extent as they correlate with all three

predictors with τ ≥ 0.65 (r ≥ 0.75). Most predictors have a moderate to strong

relationship to each other. Only AvQL, DevIDF and SumSCQ consistently behave

differently.

The similarity between the prediction methods is different for the queries of the

GOV2 corpus. While AvICTF, AvIDF, MaxIDF, SCS, QS and DevIDF exhibit similar

though somewhat lower correlations to each other, AvQL and the query collection

similarity based predictors, on the other hand, behave differently. The query length

based predictor is now consistently uncorrelated to any of the other predictors.
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AvIDF MaxIDF DevIDF SCS QS AvICTF AvQL SumSCQ AvSCQ MaxSCQ

AvIDF 0.721 0.164 0.875 0.683 0.933 0.292 0.155 0.710 0.517
MaxIDF 0.429 0.651 0.417 0.694 0.249 0.165 0.453 0.625
DevIDF 0.119 -0.137 0.142 -0.002 0.203 0.019 0.397

SCS 0.723 0.915 0.310 0.053 0.662 0.439
QS 0.693 0.268 0.076 0.722 0.290

AvICTF 0.295 0.138 0.683 0.469
AvQL -0.063 0.196 0.111

SumSCQ 0.297 0.236
AvSCQ 0.524

(a) Queries 301-450 (TREC Vol. 4+5)

AvIDF MaxIDF DevIDF SCS QS AvICTF AvQL SumSCQ AvSCQ MaxSCQ

AvIDF 0.598 0.139 0.833 0.615 0.894 0.052 0.127 0.835 0.515
MaxIDF 0.513 0.521 0.238 0.585 0.032 0.192 0.450 0.777
DevIDF 0.095 -0.220 0.133 0.036 0.157 -0.010 0.445

SCS 0.665 0.895 0.086 -0.023 0.742 0.419
QS 0.613 0.073 -0.043 0.714 0.201

AvICTF 0.068 0.083 0.767 0.476
AvQL -0.085 0.037 0.148

SumSCQ 0.184 0.253
AvSCQ 0.435

(b) Queries 701-850 (GOV2)

Table 2.3: Kendall’s τ between scores of specificity based predictors.

Predictor Evaluation

While the relationship between the predictors is certainly important (for instance, it

is not necessary to report both AvICTF and AvIDF), the more important question that

arises is how well the predictors perform in predicting the retrieval effectiveness of

queries. The retrieval effectiveness can be measured in various ways, including av-

erage precision, precision at 10 documents, reciprocal rank, and other measures. In

this frame of inquiry, average precision is utilized as the measure of true retrieval

performance of each query. The predictors were evaluated for their prediction capa-

bilities of TF.IDF, Okapi and Language Modeling with Dirichlet smoothing. For the

latter, the level of smoothing µ was fixed to the best performing retrieval setting as

observed in Table 2.2. In Table 2.4 the linear correlation coefficient r is reported, in

Table 2.5 the results of Kendall’s τ are listed. The query sets are evaluated individ-

ually, as well as combined for all query sets of a particular corpus.

We observe that the predictor performance is influenced considerably by the

particular query set under consideration. This observation holds even within the

scope of a single collection. MaxSCQ for instance can be considered as the best

predictor overall, but for one particular query set, 301-350, it breaks down com-

pletely, achieving no significant correlation. A contrasting example is DevIDF, which

generally does not result in meaningful correlations, however for two query sets

(401-450, 501-550) it is among the best performing predictors with respect to r.

The group of AvIDF, AvICTF, SCS, QS and MaxIDF predictors achieve their highest

correlations in the TF.IDF setting for TREC Vol. 4+5 and the WT10g collection.

When comparing the results of the Okapi and Language Modeling approach

across all predictors, considerable differences in predictor performances are only

visible for a single query set (701-750). In most other instances the predictors can
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Queries AvIDF MaxIDF DevIDF SCS QS AvICTF AvQL SumSCQ AvSCQ MaxSCQ

301- TF.IDF 0.809 0.687 -0.068 0.822 0.796 0.813 0.458 -0.340 -0.033 -0.085
350 Okapi 0.625 0.609 0.127 0.611 0.557 0.619 0.326 -0.126 0.040 0.110

µ = 500 0.591 0.574 0.119 0.578 0.531 0.582 0.310 -0.123 0.074 0.122

351- TF.IDF 0.604 0.422 -0.068 0.584 0.603 0.578 0.014 -0.150 0.442 0.350
400 Okapi 0.330 0.346 0.133 0.265 0.252 0.301 -0.210 0.189 0.360 0.465

µ = 2000 0.374 0.383 0.166 0.319 0.284 0.348 -0.172 0.123 0.412 0.507

401- TF.IDF 0.541 0.492 0.176 0.540 0.493 0.494 0.465 -0.188 0.333 0.403
450 Okapi 0.502 0.587 0.448 0.444 0.302 0.444 0.177 0.039 0.347 0.507

µ = 1000 0.576 0.649 0.450 0.518 0.381 0.516 0.193 0.046 0.408 0.524

301- TF.IDF 0.693 0.565 -0.001 0.696 0.673 0.680 0.345 -0.244 0.176 0.150
450 Okapi 0.508 0.523 0.226 0.469 0.400 0.483 0.129 0.009 0.214 0.322

µ = 1000 0.516 0.532 0.239 0.480 0.407 0.490 0.133 -0.002 0.256 0.341

451- TF.IDF 0.641 0.408 -0.369 0.658 0.699 0.634 0.130 -0.391 0.332 0.092
500 Okapi 0.204 0.280 0.158 0.146 0.134 0.193 -0.280 0.105 0.242 0.284

µ = 1000 0.153 0.214 0.139 0.087 0.092 0.141 -0.262 0.176 0.384 0.429

501- TF.IDF 0.441 0.398 0.146 0.400 0.318 0.415 0.122 -0.346 0.345 0.442

550 Okapi 0.143 0.383 0.415 0.168 -0.092 0.111 0.068 0.160 0.089 0.373
µ = 2000 0.221 0.469 0.450 0.189 -0.061 0.200 0.052 0.192 0.154 0.393

451- TF.IDF 0.525 0.386 -0.108 0.523 0.513 0.511 0.127 -0.365 0.332 0.260
550 Okapi 0.195 0.315 0.245 0.160 0.075 0.179 -0.147 0.116 0.191 0.309

µ = 1000 0.182 0.292 0.233 0.126 0.062 0.167 -0.135 0.183 0.307 0.400

701- TF.IDF 0.247 0.312 0.290 0.207 0.146 0.191 -0.134 -0.041 0.282 0.388

750 Okapi 0.202 0.263 0.121 0.128 0.150 0.154 -0.202 0.199 0.290 0.382

µ = 1000 0.393 0.425 0.160 0.325 0.334 0.354 -0.150 0.151 0.444 0.473

751- TF.IDF 0.008 0.017 0.019 0.035 0.146 0.031 0.149 -0.125 0.073 0.253

800 Okapi 0.304 0.244 0.052 0.274 0.267 0.297 0.049 0.200 0.332 0.283
µ = 1000 0.315 0.232 0.061 0.278 0.252 0.304 0.122 0.258 0.393 0.371

801- TF.IDF 0.581 0.435 -0.076 0.534 0.533 0.567 0.042 0.213 0.359 0.225
850 Okapi 0.309 0.309 0.147 0.220 0.162 0.263 0.019 0.333 0.368 0.345

µ = 1000 0.223 0.337 0.317 0.137 0.009 0.185 0.043 0.323 0.248 0.362

701- TF.IDF 0.270 0.228 0.052 0.250 0.247 0.251 0.045 0.017 0.220 0.272

850 Okapi 0.278 0.283 0.121 0.215 0.187 0.245 -0.040 0.229 0.324 0.341

µ = 1000 0.309 0.331 0.185 0.248 0.179 0.281 0.007 0.235 0.352 0.403

Table 2.4: Linear correlation coefficients r of specificity-based pre-retrieval predictors. In

bold, the highest correlation per query set and retrieval approach is shown.

be considered to predict equally well for both retrieval approaches, only MaxSCQ

performs consequently worse on Okapi. We pointed out earlier, that the only dif-

ference between AvIDF and AvICTF is the reliance on doccount versus termcount.
Across all collections, AvIDF is slightly better than AvICTF, hence we can conclude

that doccount is somewhat more reliable. The performance of SCS is comparable

to AvICTF, but always slightly worse than AvIDF. The predictors AvQL, DevIDF and

SumSCQ consistently perform poorly, at best they result in moderate correlations

for one or two query sets. In the case of AvQL the reasons for failure are the lack

of term length distribution. For instance, consider query set 701-750, where 31 out

of 50 queries have an average term length between 5 and 6, rendering the predictor

unusable. Note that the spread is considerably larger for queries 301-350, where

AvQL results in a small positive correlation.

Overall, the predictor MaxSCQ performs best, however due to its drastic fail-

ure on query set 301-350, a safer choice would be the slightly worse performing

MaxIDF. If we focus on the corpora, we observe that TREC Vol. 4+5 is easiest

to predict for, whereas the WT10g and GOV2 corpora pose significant difficulties to

the predictors. Although our observations hold for both the linear correlation coeffi-
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Queries AvIDF MaxIDF DevIDF SCS QS AvICTF AvQL SumSCQ AvSCQ MaxSCQ

301- TF.IDF 0.480 0.474 0.093 0.439 0.356 0.465 0.281 0.045 0.225 0.286
350 Okapi 0.348 0.409 0.115 0.304 0.220 0.327 0.171 0.067 0.093 0.162

µ = 500 0.314 0.368 0.086 0.286 0.219 0.289 0.165 0.087 0.095 0.181

351- TF.IDF 0.355 0.336 0.045 0.328 0.333 0.336 -0.043 0.042 0.368 0.413

400 Okapi 0.244 0.287 0.116 0.180 0.200 0.202 -0.097 0.146 0.275 0.398

µ = 2000 0.271 0.307 0.153 0.227 0.227 0.238 -0.095 0.126 0.315 0.422

401- TF.IDF 0.310 0.320 0.146 0.300 0.197 0.293 0.250 -0.009 0.275 0.439

450 Okapi 0.275 0.354 0.276 0.252 0.146 0.249 0.046 0.033 0.228 0.424

µ = 1000 0.313 0.402 0.314 0.277 0.161 0.273 0.048 0.058 0.265 0.474

301- TF.IDF 0.400 0.390 0.113 0.375 0.299 0.383 0.169 0.019 0.292 0.373
450 Okapi 0.287 0.340 0.177 0.248 0.188 0.265 0.042 0.089 0.195 0.330

µ = 1000 0.290 0.340 0.180 0.251 0.190 0.266 0.039 0.080 0.204 0.332

451- TF.IDF 0.480 0.316 -0.182 0.480 0.494 0.470 0.100 -0.169 0.448 0.364
500 Okapi 0.261 0.361 0.144 0.203 0.151 0.254 -0.115 0.079 0.188 0.336

µ = 1000 0.249 0.281 0.137 0.174 0.135 0.236 -0.076 0.147 0.321 0.435

501- TF.IDF 0.364 0.355 0.017 0.349 0.236 0.338 0.202 -0.246 0.337 0.391

550 Okapi 0.139 0.233 0.184 0.156 0.005 0.099 0.109 0.087 0.102 0.240

µ = 2000 0.187 0.277 0.174 0.136 0.046 0.143 0.087 0.111 0.160 0.270

451- TF.IDF 0.403 0.319 -0.085 0.401 0.355 0.393 0.155 -0.210 0.371 0.354
550 Okapi 0.192 0.274 0.165 0.175 0.069 0.177 -0.019 0.081 0.132 0.262

µ = 1000 0.213 0.266 0.157 0.163 0.079 0.192 -0.005 0.138 0.227 0.322

701- TF.IDF 0.186 0.258 0.257 0.186 0.084 0.173 0.017 -0.045 0.188 0.297

750 Okapi 0.151 0.189 0.050 0.099 0.124 0.112 -0.111 0.160 0.184 0.247

µ = 1000 0.277 0.304 0.108 0.211 0.218 0.248 -0.065 0.161 0.300 0.331

751- TF.IDF -0.016 0.034 0.021 -0.006 0.084 -0.034 0.082 -0.002 0.012 0.173

800 Okapi 0.207 0.169 0.011 0.192 0.193 0.205 0.041 0.151 0.224 0.174
µ = 1000 0.253 0.204 0.059 0.240 0.217 0.260 0.117 0.165 0.274 0.291

801- TF.IDF 0.255 0.267 0.144 0.193 0.094 0.232 0.104 0.219 0.221 0.250
850 Okapi 0.246 0.218 0.144 0.166 0.118 0.205 0.045 0.277 0.256 0.241

µ = 1000 0.193 0.228 0.255 0.130 0.004 0.166 0.057 0.238 0.171 0.241

701- TF.IDF 0.120 0.176 0.127 0.096 0.040 0.103 0.077 0.045 0.122 0.229

850 Okapi 0.199 0.195 0.076 0.151 0.142 0.172 -0.011 0.182 0.216 0.221

µ = 1000 0.229 0.243 0.143 0.186 0.137 0.209 0.028 0.179 0.234 0.274

Table 2.5: Kendall’s τ coefficients of specificity-based pre-retrieval predictors. In bold, the

highest correlation per query set and retrieval approach is shown.

cient r and Kendall’s τ , there are also differences visible when comparing Tables 2.4

and 2.5. Comparing the performance of MaxIDF and MaxSCQ for queries 301-

450 yields hardly any differences in performance when reporting τ (τMaxIDF = 0.34,

τMaxSCQ = 0.33); the linear correlation coefficient on the other hand indicates a con-

siderable performance gap, namely, rMaxIDF = 0.52 versus rMaxSCQ = 0.34. Thus, if

query performance prediction should be applied in a practical setup, where the av-

erage precision score is of importance, MaxIDF is a better predictor than MaxSCQ,

while the reverse is true if the application relies on the effectiveness ranking of the

queries.

Due to the nature of most specificity based prediction methods, it is expected

that the amount of smoothing in the Language Modeling approach will have a con-

siderable influence on their quality as increased smoothing results in an increas-

ing influence of collection statistics. To investigate the influence of high levels of

smoothing, µ is evaluated for levels ranging from µ = 5×103 to µ = 3.5×105 (more

specifics are given in Appendix B, Figure B.2). We report the prediction accuracy of

AvIDF, MaxIDF, SCS, AvSCQ and MaxSCQ, the remaining predictors were excluded

either due to poor performance or their similarity to one of the reported predictors.
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(a) Queries 301-450 (TREC Vol. 4+5)
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(b) Queries 451-550 (WT10g)
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(c) Queries 701-850 (GOV2)

Figure 2.4: The influence of the level µ of smoothing on the accuracy of various predictors.

The results shown in Figure 2.4 are reported in terms of Kendall’s τ (the results

were similar for the linear correlation coefficient). They confirm the hypothesis,

that increasing levels of µ generally lead to a positive change in correlation for the

specificity-based predictors. The relative predictor performance s remain largely the

same, the correlation increases occur to similar degrees. Depending on the cor-

pus and the predictor, the performance difference can be large, for instance at low

levels of smoothing MaxIDF has a correlation of τµ=500 = 0.33, whereas it reaches

τµ=3×105 = 0.5 when the amount of smoothing is increased. Changing µ has the least

effect on AvSCQ; although its correlation also rises with the rise of µ, the improve-

ments are small and they trail off after τ reaches 5 × 104 for TREC Vol. 4+5 and

GOV2.
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2.7 Ranking Sensitivity

Although pre-retrieval predictors do not consider the ranked list of results returned

by the retrieval system for a given query, they can still rely on collection statistics to

infer how difficult it will be for the system to rank the documents according to the

query. The three predictors in this category are all variations of the same principle,

and are presented below:

• Summed Term Weight Variability (SumVAR) [174],

• Averaged Term Weight Variability (AvVAR) [174], and,

• Maximum Term Weight Variability (MaxVAR) [174].

2.7.1 Collection Based Sensitivity

This family of predictors exploits the distribution of term weights across the collec-

tion. If the term weights across all documents containing query term qi are simi-

lar, there is little evidence for a retrieval system on how to rank those documents

given qi, and thus different retrieval algorithms are likely to produce widely differ-

ent rankings. Conversely, if the term weights differ widely across the collection,

ranking becomes easier and different retrieval algorithms are expected to produce

similar rankings. Here we assume that the retrieval system relies solely on collection

statistics, without considering external sources or additional information.

In [174], the term weight w(qi, d) is based on TF.IDF, the average term weight

wqi
is the average weight over all documents containing qi. SumVAR is the sum of

the query term weight deviations:

SumVAR =
m

∑

i=1

√

√

√

√

1

df(qi)

∑

d∈Nqi

(w(qi, d)− wqi
)2. (2.13)

In contrast to SumVAR which is not normalized according to the query length,

AvVAR = 1
m
× SumVAR is normalized. Finally, the maximum variability score over

all query terms is used as prediction score for the predictor MaxVAR. Note, that

the three predictors in this category are more complex than for example MaxIDF, as

they rely on TF.IDF weights and require additional pre-processing.

2.7.2 Experimental Evaluation

Analogous to the specificity based predictors, the algorithms in this category are first

evaluated with respect to their similarity to each other. Then, their ability to predict

retrieval effectiveness will be evaluated.

Predictor-Predictor Correlations

In Table 2.6 the correlations between the predictor scores are shown. While the

results of the query sets of TREC Vol. 4+5 and GOV2 are similar, with AvVAR and
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MaxVAR being more closeley related to each other than to SumVAR, in the WT10g

collection, SumVAR is hardly related to the other two predictor variations. Since

SumVAR is not normalized with regard to query length, we expect it to perform

rather poorly as predictor.

SumVAR AvVAR MaxVAR

SumVAR 0.546 0.561
AvVAR 0.721

(a) Queries 301-450 (TREC Vol. 4+5)

SumVAR AvVAR MaxVAR

SumVAR 0.075 0.210
AvVAR 0.669

(b) Queries 451-550 (WT10g)

SumVAR AvVAR MaxVAR

SumVAR 0.397 0.478
AvVAR 0.616

(c) Queries 701-850 (GOV2)

Table 2.6: Kendall’s τ between scores of ranking sensitivity based predictors.

Predictor Evaluation

Table 2.7 contains the correlation coefficients the predictors achieve across all query

sets and across the standard retrieval approaches. Of the three predictor variations,

SumVAR is the most erratic. This is not surprising, as it is not normalized with re-

spect to the number of terms in the queries. MaxVAR is the best predictor of this

category, with a surprisingly good performance on query set 501-550 of the WT10g

collection, which provided the most difficulties to the specificity based predictors.

AvVAR’s overall performance is slightly worse than MaxVAR’s. There are two query

sets which yield somewhat unexpected results: for one, query set 301-350, which

has shown to be the easiest for AvIDF and related predictors (leading to the highest

observed correlation), is the most difficult for the ranking sensitivity based predic-

tors. Secondly, query set 801-850 shows hardly any variation for the performance

of the three predictors, unlike the other query sets.

Similar to the observations made for the specificity based predictors, increasing

the level of smoothing in the Language Modeling approach increases the correla-

tion coefficients of AvVAR and MaxVAR across the three corpora. The largest im-

provements are recorded for the query sets of the WT10g corpus; the correlation of

MaxVAR ranges from τµ=100 = 0.29 to τµ=3.5×105 = 0.44 at the highest level of smooth-

ing. Smaller improvements up to τ = 0.1 are also achieved for TREC Vol. 4+5 and

MaxVAR, where τ peaks at µ = 2.5× 104. Relatively unaffected is the GOV2 corpus,

where the trend is positive, but the changes in correlation are minor. The SumVAR

predictor, on the other hand, continuously degrades when the level of smoothing is

improved; it achieves its highest correlation at µ = 100.
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SumVAR AvVAR MaxVAR

301- TF.IDF −0.035 0.306 0.203
350 Okapi 0.151 0.371 0.359

µ = 500 0.163 0.403 0.369
351- TF.IDF 0.149 0.583 0.455
400 Okapi 0.318 0.400 0.426

µ = 2000 0.288 0.431 0.445

401- TF.IDF 0.262 0.706 0.631
450 Okapi 0.517 0.699 0.723

µ = 1000 0.552 0.758 0.764

301- TF.IDF 0.089 0.487 0.388
450 Okapi 0.293 0.476 0.491

µ = 1000 0.297 0.510 0.513

451- TF.IDF −0.266 0.336 0.181
500 Okapi 0.173 0.197 0.253

µ = 1000 0.259 0.324 0.381

501- TF.IDF −0.168 0.489 0.566

550 Okapi 0.336 0.201 0.513

µ = 2000 0.366 0.233 0.533

451- TF.IDF −0.219 0.401 0.366
550 Okapi 0.221 0.198 0.337

µ = 1000 0.300 0.291 0.411

701- TF.IDF 0.160 0.442 0.479

750 Okapi 0.360 0.392 0.437

µ = 1000 0.293 0.464 0.435
751- TF.IDF −0.062 0.119 0.167

800 Okapi 0.295 0.406 0.371
µ = 1000 0.363 0.438 0.434

801- TF.IDF 0.357 0.495 0.355
850 Okapi 0.401 0.430 0.420

µ = 1000 0.380 0.314 0.389

701- TF.IDF 0.143 0.323 0.300
850 Okapi 0.336 0.397 0.402

µ = 1000 0.337 0.392 0.412

(a) Linear correlation coefficient r

SumVAR AvVAR MaxVAR

301- TF.IDF 0.166 0.383 0.390

350 Okapi 0.201 0.302 0.367

µ = 500 0.203 0.291 0.353

351- TF.IDF 0.218 0.434 0.410
400 Okapi 0.334 0.339 0.415

µ = 2000 0.317 0.382 0.434

401- TF.IDF 0.252 0.413 0.437

450 Okapi 0.304 0.432 0.443

µ = 1000 0.352 0.460 0.494

301- TF.IDF 0.220 0.403 0.417

450 Okapi 0.285 0.356 0.407

µ = 1000 0.283 0.356 0.411

451- TF.IDF −0.078 0.424 0.330
500 Okapi 0.118 0.188 0.241

µ = 1000 0.203 0.300 0.339

501- TF.IDF −0.154 0.400 0.451

550 Okapi 0.189 0.189 0.323

µ = 2000 0.189 0.233 0.327

451- TF.IDF −0.121 0.394 0.385
550 Okapi 0.145 0.168 0.262

µ = 1000 0.213 0.249 0.321

701- TF.IDF 0.093 0.287 0.336

750 Okapi 0.245 0.261 0.276

µ = 1000 0.250 0.330 0.288
751- TF.IDF 0.012 0.089 0.172

800 Okapi 0.197 0.259 0.247
µ = 1000 0.230 0.292 0.318

801- TF.IDF 0.204 0.242 0.272

850 Okapi 0.303 0.314 0.306
µ = 1000 0.280 0.233 0.274

701- TF.IDF 0.107 0.198 0.241

850 Okapi 0.237 0.268 0.267
µ = 1000 0.241 0.269 0.280

(b) Kendall’s τ

Table 2.7: Correlation coefficients of ranking sensitivity based pre-retrieval predictors. In

bold, the highest correlation per query set and retrieval approach is shown.

2.8 Ambiguity

Predictors that infer the quality of a query from the ambiguity of the query terms

include the following:

• Averaged Query Term Coherence (AvQC) [73],

• Averaged Query Term Coherence with Global Constraint (AvQCG)[73],

• Averaged Polysemy (AvP) [111], and,

• Averaged Noun Polysemy (AvNP).

The first two predictors rely on the collection and, specifically, on all documents

containing any of the query terms, to determine the amount of ambiguity. The latter

two predictors exploit WordNet, an external source which provides the number of

senses a term has, thus making further calculations on the corpus unnecessary.
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2.8.1 Collection Based Ambiguity

He et al. [73] derive the ambiguity of a query term qi by calculating the similarity

between all documents that contain qi. The set of all those documents is Nqi
, with

|Nqi
| = n. The set coherence of Nqi

is then defined as:

SetCoherence(Nqi
) =

∑

i6=j∈1,...,n σ(di, dj)

n(n− 1)

where σ(di, dj) is a similarity function that returns 1 if the similarity between di

and dj exceeds a threshold θ; otherwise σ = 0. The SetCoherence is defined in the

interval [0, 1]: SetCoherence = 1 if all documents in Nqi
are similar to each other, and

SetCoherence = 0 if none are.

When viewed as a clustering task, the documents in Nqi
are clustered agglom-

eratively. Initially, each document is assigned its own cluster and iteratively the

two closest clusters are merged. The distance between two clusters is given by

the distance of the two farthest points in the clusters (complete linkage cluster-

ing). The merging process stops, if the merged clusters have a similarity less than θ.

SetCoherence is then the number of links between nodes within a cluster, divided by

the number of links between all nodes independent of the cluster. In the ideal case,

all documents are clustered into a single cluster. The SetCoherence score is mainly

influenced by the size of the largest cluster: the larger the dominant cluster, the

larger the score. Equally sized clusters receive a lower SetCoherence score.
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Figure 2.5: The development of the SetCoherence score with increased size of the dominant

cluster.

We investigated the influence of the dominant cluster size with a small simula-

tion experiment. The size of the document set to cluster was fixed to 10000 docu-

ments, while the size of the dominant cluster was varied between 1 and 10000 with a

step size of 250. Once the dominant cluster is fixed, cluster sizes, with the restriction

of being smaller than the dominant cluster, are randomly generated until the num-

ber of 10000 documents is reached. This process is repeated 10000 times for each

dominant cluster size. Figure 2.5 contains the minimum, average and maximum
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SetCoherence for each dominant cluster size. When 50% of all documents belong to

the dominant cluster, SetCoherence = 0.37 on average, although one might expect a

higher score as half of all possible documents belong to a single cluster.

In the work by He et al. [73], the documents are vectors and σ is the cosine

similarity. The similarity threshold θ is set heuristically by averaging the top 5% of

similarity scores from randomly sampled sets of documents. AvQC is the average

set coherence over all query terms.

Additionally, the following constraint is added to AvQCG:

AvQCG = SetCoherence(Nq)× AvQC.

Here, AvQC is multiplied by the global set coherence, that is the coherence of the

set of documents that contains any of the query terms: Nq = ∪m
i=1Nqi

. If Nq is large

(in [73] the limit of 10000 documents is given for the AP88 & 89 corpus), the global

set coherence is approximated by the threshold θ. In particular, for longer queries

with a high number of general terms it can be expected that the global set coherence

is close to constant for a set of queries, as in almost all cases θ will be used as global

set coherence. A similar result is expected for a query set from a large corpus.

The GOV2 corpus contains 25 million documents and even specific terms will often

appear in more than 10000 documents. We implemented the proposed method to

the highest precision degree possible, as the original publication did not disclose

all details. For the newspaper corpus, the limit was set to 10000 documents, for

the WT10g corpus the limit was increased to 20000 documents and for the GOV2

collection it was set to 50000 documents.

AvQC and AvQCG both require a great amount of computation; determining the

document similarity between all document pairs of a collection for example is not

feasible, samples have to be drawn instead.

2.8.2 Ambiguity as Covered by WordNet

WordNet [57] is an online lexical database developed at Princeton University, in-

spired by psycholinguistic theories. It is continuously enlarged and updated by hu-

man experts and can be viewed as a general domain knowledge base. WordNet’s

building blocks are sets of synonymous terms3, called synsets, each representing a

lexical concept and each connected to others through a range of semantic relation-

ships. Relations between terms instead of synsets exist as well but are not very

frequent. WordNet also provides glosses, which are example sentences and defini-

tions for the synsets. Relationships exist mainly between synsets of the same word

type; there are separate structures for nouns, verbs, adjectives and adverbs. Notably,

nouns make up by far the largest fraction of WordNet.

The number of WordNet senses of a term is an indicator of its ambiguity - the

more senses a term has, the more ambiguous it is. For example, the term “go” has

a total of thirty-five senses in WordNet4. These are, four noun senses, one adjective

3A term can be a single word, a compound or a phrase.
4All figures are based on WordNet version 3.0.
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sense and thirty verb senses. On the other hand, “Agoraphobia” has a single noun

sense and thus is considered to be unambiguous. A limiting factor of WordNet is

the fact that it is a general knowledge semantic dictionary and therefore it is only

useful for a general collection of documents. Additionally, WordNet also contains

rare senses of terms, which may not appear at all in a corpus, while many proper

nouns that do appear in a corpus may not be a part of WordNet.

For each synset, WordNet provides a gloss of varying length. Take for example

the concepts “viral hepatitis” and “aspirin” from TREC description queries. The

gloss of the former is: “hepatitis caused by a virus” whereas “aspirin” is described

as follows: “the acetylated derivative of salicylic acid; used as an analgesic anti-

inflammatory drug (trade names Bayer, Empirin, and St. Joseph) usually taken

in tablet form; used as an antipyretic; slows clotting of the blood by poisoning

platelets”.

The AvP [111] value is derived from WordNet in the following way. Initially, each

query is tokenized and mapped to WordNet terms. Since WordNet contains phrases

such as “organized crime”, the matching is first performed based on a window of five

terms, then four terms and so on, with morphological variations also being tested.

Then the number of senses of each phrase found is recorded - a term that is not

found in WordNet and is not part of a WordNet phrase, is assigned a single sense.

Finally, the average number of senses over all found phrases/terms is calculated.

For example, TREC title topic “black bear attacks” is WordNet tokenized into {black

bear, attack}. The phrase “black bear” has two senses, while “attack” has fifteen

senses, and therefore AvP = 8.5. For comparison purposes, we also evaluate AvNP,

which is similar to AvP but it only considers the noun senses instead of the senses

over all word types.

2.8.3 Experimental Evaluation

This segment contains the results of the evaluation of the presented ambiguity based

predictors. The presentation of numerical findings is accompanied by a discussion

on the causes of discovered differences.

Predictor-Predictor Correlations

The correlation between the AvQC and AvQCG predictors is high across all three

corpora. With increased collection size, the correlation approaches one, specifically

τ = 0.87 for the queries of TREC Vol. 4+5 and τ = 0.98 for the queries of the

GOV2 corpus. The two WordNet based prediction methods are less highly corre-

lated, reaching τ = 0.8 at best. The correlation between the WordNet based and the

collection based predictors is moderately negative for TREC Vol. 4+5 and approx-

imately zero for the queries of WT10g and GOV2. The negative correlation can be

attributed to the fact that the more WordNet senses the query terms have, the lower

the quality of the query, whereas the collection based predictors predict a higher

quality with increased score.
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Predictor Evaluation

The results in Table 2.8 show that the two WordNet based predictors (AvP and AvNP)

generally perform very poorly; only for query sets 301-350 and 451-500 do they

exhibit meaningful negative correlations across the range of retrieval methods. The

reason for this failure can be attributed, in part, to the fact that the TREC title topics

of the WT10g and the GOV2 corpus contain a significant number of proper nouns

such as “Chevrolet”, “Skoda”, “Peer Gynt”, “Nirvana”, “John Edwards” and “TMJ”

which are not part of WordNet. As these terms and phrases often make up the

most important or even the sole part of a title topic, the results become unusable.

A second reason for the discrepancy is rooted in the collection size and makeup.

Arguably, the newswire corpus (TREC Vol. 4+5) employs a limited vocabulary and

reasonably structured prose, while the newer Web and Terabyte corpora contain a

more diverse vocabulary with more noise (frequent use of esoteric or non-sensical

words and phrases). In such cases, WordNet does not provide an accurate sense

count.

AvP AvNP AvQC AvQCG

301- TF.IDF −0.283 −0.354 0.545 0.584

350 Okapi −0.360 −0.467 0.487 0.436
µ = 500 −0.347 −0.445 0.449 0.404

351- TF.IDF −0.329 −0.290 0.525 0.611

400 Okapi −0.104 −0.160 0.192 0.245

µ = 2000 −0.131 −0.153 0.238 0.273

401- TF.IDF 0.009 −0.110 0.732 0.551
450 Okapi 0.125 0.022 0.611 0.365

µ = 1000 0.076 −0.069 0.627 0.390

301- TF.IDF −0.187 −0.248 0.591 0.475
450 Okapi −0.115 −0.211 0.456 0.316

µ = 1000 −0.121 −0.220 0.457 0.330

451- TF.IDF −0.305 −0.253 0.657 0.544
500 Okapi −0.303 −0.262 0.208 0.091

µ = 1000 −0.305 −0.246 0.138 −0.047
501- TF.IDF −0.282 −0.247 0.512 0.394
550 Okapi −0.064 0.063 0.154 0.056

µ = 2000 0.015 0.109 0.210 0.052

451- TF.IDF −0.289 −0.247 0.579 0.460
550 Okapi −0.210 −0.141 0.195 0.088

µ = 1000 −0.183 −0.108 0.162 −0.021

701- TF.IDF 0.075 0.027 0.221 0.020
750 Okapi 0.047 −0.068 0.177 0.131

µ = 1000 0.050 0.007 0.253 0.104
751- TF.IDF −0.184 −0.170 0.145 0.206

800 Okapi 0.130 −0.042 0.371 0.182
µ = 1000 0.014 −0.040 0.410 0.164

801- TF.IDF −0.188 −0.224 0.384 0.427

850 Okapi −0.014 −0.119 0.274 0.010
µ = 1000 −0.038 −0.111 0.265 0.006

701- TF.IDF −0.124 −0.124 0.252 0.214
850 Okapi 0.075 −0.049 0.263 0.060

µ = 1000 0.017 −0.035 0.298 0.048

(a) Linear correlation coefficient r

AvP AvNP AvQC AvQCG

301- TF.IDF −0.283 −0.329 0.483 0.503

305 Okapi −0.314 −0.375 0.370 0.374
µ = 500 −0.334 −0.371 0.350 0.347

351- TF.IDF −0.208 −0.186 0.297 0.318

400 Okapi −0.039 −0.094 0.181 0.209

µ = 2000 −0.046 −0.065 0.213 0.241

401- TF.IDF −0.129 −0.128 0.382 0.412

450 Okapi 0.029 0.032 0.341 0.311
µ = 1000 0.007 −0.014 0.385 0.352

301- TF.IDF −0.210 −0.227 0.397 0.421

450 Okapi −0.107 0.152 0.295 0.298

µ = 1000 −0.118 −0.157 0.296 0.301

451- TF.IDF −0.292 −0.185 0.540 0.529
500 Okapi −0.271 −0.226 0.293 0.276

µ = 1000 −0.195 −0.143 0.260 0.246
501- TF.IDF −0.247 −0.176 0.418 0.423

550 Okapi −0.053 0.053 0.098 0.093
µ = 2000 −0.044 0.084 0.152 0.147

451- TF.IDF −0.261 −0.194 0.458 0.454
550 Okapi −0.153 0.088 0.195 0.178

µ = 1000 −0.114 0.044 0.210 0.195

701- TF.IDF 0.111 0.118 0.264 0.264

750 Okapi 0.029 −0.027 0.163 0.163

µ = 1000 0.031 0.010 0.279 0.287

751- TF.IDF −0.110 −0.045 0.288 0.298

800 Okapi −0.031 −0.046 0.268 0.258
µ = 1000 −0.015 0.007 0.280 0.267

801- TF.IDF −0.171 −0.208 0.272 0.298

850 Okapi 0.005 −0.093 0.247 0.251

µ = 1000 0.027 −0.038 0.268 0.249

701- TF.IDF −0.059 −0.029 0.269 0.282

850 Okapi 0.017 −0.026 0.232 0.226
µ = 1000 0.027 0.014 0.273 0.265

(b) Kendall’s τ

Table 2.8: Correlation coefficients of ambiguity based pre-retrieval predictors. In bold, the

highest correlation per query set and retrieval approach is shown.
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The predictor performances of AvQC and AvQCG are mixed and greatly depend

on the particular collection. The best performance is achieved for the query sets of

TREC Vol. 4+5. For the query sets of WT10g and GOV2, in many instances only

insignificant correlation coefficients are achieved. This might be due to the fact

that AvQC is geared towards smaller collections or that our parameter settings were

not optimal. Note that thorough calibration of parameters has not been conducted

during this work, given time constraints and the great computational requirement

of this method.

With respect to the level of smoothing in the Language Modeling approach, the

two clustering based predictors AvQC and AvQCG show considerable performance

increases over the three corpora when the amount of smoothing is increased. On

query set 701-850 for instance, AvQC reaches τµ=100 = 0.27 for low amounts of

smoothing; however, when µ is raised to the maximum, τ reaches 0.39. The two

WordNet based predictors on the other hand show hardly any change in correlation

with changing amounts of smoothing.

2.9 Term Relatedness

The previously introduced specificity and ambiguity based predictors ignore an im-

portant aspect of the query, namely the relationship between the query terms. Con-

sider for example the two queries q1 = {American, football} and q2 = {foot, porch}.
Specificity based predictors might predict q2 to be an easier query because the terms

foot and porch might occur less frequently than American and football. However, in

a general corpus one would expect q1 to be an easier query for a retrieval sys-

tem than q2 due to the strong relationship between the two query terms. Term

relatedness measures predict a query to perform well, if there is a measurable re-

lationship between query terms. The degree of relationship can either be derived

from co-occurrence statistics of the collection or from WordNet based measures that

determine the degree of semantic relatedness.

The predictors surveyed in this section are:

• Averaged Pointwise Mutual Information (AvPMI),

• Maximum Pointwise Mutual Information (MaxPMI),

• Averaged Path Length (AvPath) [124],

• Averaged Lesk Relatedness (AvLesk) [15], and,

• Averaged Vector Pair Relatedness (AvVP) [116].

A drawback of these predictors is, that queries consisting of a single term will

be assigned a score of zero, as in such cases no relatedness value can be derived. If

a significant number of queries in the query set used for evaluation are single term

queries, the correlation will be lower than what the actual quality of the predictor

implies.
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2.9.1 Collection Based Relatedness

Predictors that exploit co-occurrence statistics of the collection are more precise

than those based on standard deviations such as DevIDF. AvPMI and MaxPMI both

rely on the concept of pointwise mutual information, which for two terms qi and qj

is defined by:

PMI(qi, qj) = log2

Pml(qi, qj)

Pml(qi)Pml(qj)
.

The nominator is the probability that the two terms occur together in a docu-

ment; the denominator is the probability of them occurring together by chance.

If Pml(qi, qj) ≈ Pml(qi)Pml(qj), the terms are independent and PMI ≈ 0. Query terms

that co-occur significantly more often than by chance lead to a high PMI value.

AvPMI is the average over all PMI scores across all query term pairs, while MaxPMI

is the maximum PMI score across all query term pairs.

2.9.2 WordNet Based Relatedness

As an alternative to the collection statistics based methods, the degree of relatedness

of query terms can also be determined by exploiting the graph structure of WordNet.

In general, the closer two terms are in the WordNet graph, the higher their semantic

similarity. Diverse WordNet based measures exist; in this work, we evaluate three

measures as pre-retrieval predictors.

AvPath, initially proposed by Rada et al. [124], determines the relatedness be-

tween two terms by the reciprocal of the number of nodes on the shortest path of

the IS-A hierarchy between the two corresponding synset nodes. Since the IS-A re-

lationship is defined on the noun graph, the measure ignores all non-noun query

terms. The maximum relatedness score is one (two identical synsets) and the min-

imum is zero (no path between two synsets). The average over all query term pair

scores is then utilized as AvPath score5.

AvLesk [14] is a relatedness measure that exploits the gloss overlap between two

synsets, as well as the glosses of their related synsets. Generally, the more terms the

glosses have in common, the more related the two synsets are.

Finally, AvVP, introduced by Patwardhan and Pedersen [116], is a measure where

each synset is represented as a second-order co-occurrence vector of glosses, includ-

ing the glosses of related synsets. Relatedness, in this case, is the cosine similarity

between the gloss vectors.

The three measures just described rely on synsets instead of terms. In a practical

applications, it would be necessary to first disambiguate the query terms and then

to locate the correct synset in WordNet. Since in this experiment were are interested

in the general feasibility of WordNet based relatedness measures, in a preprocessing

step we manually disambiguated the query terms and identified the correct synset. A

number of proper nouns in the queries could not be matched and had to be ignored

in the relatedness calculations.

5All WordNet based predictors were calculated with the WordNet::Similarity package available at

http://wn-similarity.sourceforge.net/.

http://wn-similarity.sourceforge.net/
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2.9.3 Experimental Evaluation

Predictor-Predictor Correlations

The two collection based predictors are naturally highly correlated as one relies on

the average and the other on the maximum of PMI scores. Moreover, in instances

where a query consists of one or two terms only, both predictors produce exactly

the same score. Intuitively, larger differences between the two predictors can be

expected for queries derived from TREC description topics. With respect to the

different corpora, a clear trend can be discerned: the larger the corpus, the more

the correlation between AvPMI and MaxPMI degrades. While for the queries 301-

450 of TREC Vol. 4+5 the correlation reaches τ = 0.80 (r = 0.91), for the queries

701-850 of the GOV2 corpus, the correlation degrades to τ = 0.63 (r = 0.74).

The correlations between the WordNet and the corpus based measures are low, yet

significant, for the queries of TREC Vol. 4+5 and WT10g; the correlation is close

to zero for the queries of the GOV2 corpus. A comparison of the WordNet based

measures with each other, yields eratic results, none of them are consistently highly

correlated to each other.

Predictor Evaluation

Table 2.9 shows the quality of the five algorithms as query effectiveness predic-

tors. AvPMI and MaxPMI exhibit significant correlations across all collections for

the Okapi and Language Modeling approaches, although with respect to the best

performing specificity and ambiguity based predictors the correlations are relatively

low. The WordNet based predictors have a significant linear correlation for queries

301-350. However, for the same corpus the query set 401-450 leads to negative cor-

relations, which, due to their unreliability, renders these WordNet based predictors

unusable, even for the smallest of the evaluated corpora.

The influence of the smoothing parameter µ is corpus dependent, but not par-

ticularly pronounced. For TREC Vol. 4+5, increasing the amount of smoothing

also increases the correlation coefficients. In the case of queries 301-450, for in-

stance, consider τµ=100 = 0.22 for AvPMI, which, when the level of smoothing is

increased, becomes τµ=2×105 = 0.29. In contrast, for the WT10g corpus, both AvPMI

and MaxPMI show consistent degradation in correlation with increased smoothing.

Lastly, for the GOV2 corpus increasing µ leads to slightly increased correlation coef-

ficients. The development of the WordNet based measures is similarly mixed – slight

improvements and degradations depending on the query set. However, apart from

the query sets of TREC Vol. 4+5, the correlation coefficients are not significantly

different from zero.

2.10 Significant Results

The previous sections have provided a comprehensive and detailed overview of a

number of pre-retrieval predictors. The extensive evaluation that followed each
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AvPMI MaxPMI AvPath AvLesk AvVP

301- TF.IDF 0.297 0.295 0.253 0.327 0.318
350 Okapi 0.314 0.315 0.312 0.413 0.411

µ = 500 0.316 0.298 0.294 0.374 0.411

351- TF.IDF 0.326 0.196 0.120 0.142 −0.004
400 Okapi 0.331 0.203 0.050 0.210 0.192

µ = 2000 0.376 0.234 0.005 0.219 0.254
401- TF.IDF 0.163 0.108 −0.246 −0.127 −0.165
450 Okapi 0.401 0.371 −0.247 −0.014 −0.238

µ = 1000 0.438 0.398 −0.240 −0.014 −0.214

301- TF.IDF 0.275 0.230 0.155 0.252 0.170
450 Okapi 0.336 0.292 0.151 0.278 0.237

µ = 1000 0.353 0.295 0.135 0.252 0.253

451- TF.IDF −0.258 −0.224 −0.084 0.076 −0.037
500 Okapi 0.199 0.152 0.004 −0.034 −0.087

µ = 1000 0.288 0.199 −0.033 −0.022 −0.073
501- TF.IDF −0.150 −0.178 −0.242 −0.133 −0.049
550 Okapi 0.176 0.292 0.124 0.243 0.005

µ = 2000 0.235 0.403 0.150 0.104 −0.057

451- TF.IDF −0.212 −0.201 −0.151 0.032 −0.032
550 Okapi 0.196 0.195 0.041 0.001 0.068

µ = 1000 0.285 0.269 0.033 0.006 −0.058

701- TF.IDF 0.250 0.262 0.010 −0.106 −0.059
750 Okapi 0.276 0.333 −0.101 0.066 0.064

µ = 1000 0.431 0.436 −0.118 0.035 0.057
751- TF.IDF −0.044 −0.072 −0.020 −0.069 −0.112

800 Okapi 0.425 0.296 −0.116 −0.039 −0.089
µ = 1000 0.456 0.353 −0.089 0.019 0.016

801- TF.IDF 0.661 0.545 0.875 0.916 0.885
850 Okapi 0.116 0.188 0.091 0.112 0.127

µ = 1000 0.076 0.203 0.097 0.098 0.102

701- TF.IDF 0.320 0.225 0.481 0.509 0.355
850 Okapi 0.247 0.257 0.009 0.064 0.043

µ = 1000 0.277 0.302 0.025 0.069 0.071

(a) Linear correlation coefficient r

AvPMI MaxPMI AvPath AvLesk AvVP

301- TF.IDF 0.288 0.295 0.022 0.169 0.024
350 Okapi 0.191 0.236 −0.029 0.185 0.059

µ = 500 0.176 0.218 −0.037 0.191 0.039
351- TF.IDF 0.221 0.199 0.014 0.141 0.074
400 Okapi 0.247 0.252 0.070 0.202 0.089

µ = 2000 0.290 0.287 0.054 0.188 0.088
401- TF.IDF 0.250 0.164 −0.138 −0.144 −0.140
450 Okapi 0.234 0.206 −0.097 −0.025 −0.210

µ = 1000 0.232 0.195 −0.100 −0.046 −0.219

301- TF.IDF 0.219 0.219 −0.033 0.062 −0.021
450 Okapi 0.228 0.229 −0.015 0.120 −0.025

µ = 1000 0.223 0.217 −0.027 0.114 −0.036

451- TF.IDF 0.018 −0.037 −0.174 −0.144 −0.176
500 Okapi 0.140 0.163 −0.051 −0.062 −0.065

µ = 1000 0.208 0.213 −0.030 −0.071 −0.027
501- TF.IDF −0.074 −0.083 −0.230 −0.100 −0.139
550 Okapi 0.191 0.239 0.020 0.103 −0.049

µ = 2000 0.212 0.263 0.072 0.045 −0.085

451- TF.IDF −0.039 −0.066 −0.192 −0.123 −0.134
550 Okapi 0.149 0.179 0.001 0.000 −0.045

µ = 1000 0.204 0.225 0.029 −0.026 −0.040

701- TF.IDF 0.204 0.205 0.055 0.002 −0.013
750 Okapi 0.215 0.206 −0.081 0.112 0.114

µ = 1000 0.301 0.339 −0.105 0.057 0.053
751- TF.IDF 0.034 0.076 −0.011 −0.036 −0.141
800 Okapi 0.270 0.259 −0.121 −0.078 −0.044

µ = 1000 0.314 0.302 −0.117 −0.027 −0.040
801- TF.IDF 0.164 0.177 0.170 0.174 0.159
850 Okapi 0.078 0.158 0.008 0.010 0.098

µ = 1000 0.069 0.155 0.035 0.049 0.078

701- TF.IDF 0.118 0.146 0.077 0.045 0.009
850 Okapi 0.189 0.186 −0.050 0.059 0.077

µ = 1000 0.215 0.227 −0.046 0.050 0.050

(b) Kendall’s τ

Table 2.9: Correlation coefficients of term relatedness based pre-retrieval predictors. In

bold, the highest correlation per query set and retrieval approach is shown.

category of predictors aimed to emphasize the strong dependency of the predictors

on the retrieval approach, the collection and the particular query set.

What we have largely neglected so far, are a discussion of the significance of the

correlations and the comparison of predictor performances across all categories. In

this section, we address both issues. Testing the significance of a correlation co-

efficient can be considered from two angles. On the one hand, we need to test,

whether a recorded correlation coefficient is significantly different from zero. While

this test is performed and acknowledged in publications, it is usually neglected to

test, whether a predictor is significantly different from the best performing predictor.

As in retrieval experiments, where we routinely evaluate the significance of the dif-

ference between two retrieval approaches, we should do the same in the evaluation

of query performance prediction.

In Table 2.10, we summarize the results of the significance tests. For each col-

lection, all predictors, that result in a correlation significantly different from zero

for both the linear correlation and Kendall’s τ coefficient, are listed. Additionally,

we report the confidence intervals (α = 0.95) of the coefficients. As the retrieval
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approach to predict for, Language Modeling with Dirichlet smoothing and the best

setting of µ was used (Table 2.2). Presented in bold, is the best predictor for each

collection. Given the best performing predictor, all other predictors were tested for

their statistical difference; underlined are those predictors for which no significant

difference (α = 0.95) was found.

With respect to the linear correlation coefficient r, MaxIDF is the best predictor

for the query sets of TREC Vol. 4+5. When determining the significance of the

difference, six other prediction methods show no significant difference, including

AvICTF, AvQC and MaxVAR. Thus, apart from the relatedness predictors, all cate-

gories provide useful predictors. When considering Kendall’s τ , MaxVAR is the best

performing predictor. It is, however, not significantly different from MaxIDF. Note,

that although AvVAR exhibits a higher Kendall’s τ than MaxIDF, its correlation is

significantly worse than MaxVAR’s correlation. This is due to the fact, that the cor-

relation between AvVAR and MaxVAR is larger (τ = 0.72) than between MaxIDF and

MaxVAR (τ = 0.53).

For the query sets of WT10g, MaxVAR also reports the highest linear correlation

with r = 0.41, but again the significance test shows, most predictors which achieve

a significant correlation (different from zero) are not significantly different from the

best performing predictor. It is notable that in this corpus, none of the ambiguity

based predictors are significantly different from zero. The situation is similar for

Kendall’s τ ; by absolute correlation scores MaxSCQ performs best, but apart from

DevIDF all other predictors exhibit no significantly worse performance. When com-

paring the confidence intervals of TREC Vol. 4+5 and the WT10g corpus, it becomes

apparent that the intervals are wider for WT10g. The reason is, that we only deal

with a query set of size 100 in this corpus, whereas TREC Vol. 4+5 are evaluated

for 150 queries. Hence, the more queries exist for evaluation purposes, the more

reliable the correlation coefficient and thus the smaller the confidence interval.

Finally, Table 2.10 also shows that the GOV2 corpus is easier to predict for than

the WT10g corpus; more predictors are significantly different from zero. The most

accurate predictor is once more MaxVAR, although again, it can be shown that a

variety of predictors are similarly useful.

2.11 Predictor Robustness

In the beginning of this chapter we stated that, ideally, since the pre-retrieval pre-

dictors are search independent, a robust predictor should be indifferent to the par-

ticular retrieval algorithm. Since the commonly relied upon retrieval models such

as Okapi [125], Language Modeling [76, 97, 121, 170, 171], the Markov Random

Field model [104] and the Divergence from Randomness model [5], are based ex-

clusively on term and document frequencies, one might expect similar predictor

performances across all of them. However, as seen in the previous sections, predic-

tion methods are indeed sensitive to the retrieval approach as well as the specific

parameter settings such as the level of smoothing µ.

In the current section, we expand considerably on the variety of retrieval ap-



50 | Chapter 2 – Pre-Retrieval Predictors

r CI τ CI

AvICTF 0.490 [0.358,0.603] 0.266 [0.161,0.371]

AvIDF 0.516 [0.388,0.625] 0.290 [0.186,0.394]

AvPMI 0.352 [0.203,0.485] 0.222 [0.112,0.333]

AvQC 0.457 [0.320,0.575] 0.292 [0.193,0.391]

AvQCG 0.330 [0.179,0.465] 0.297 [0.199,0.395]

AvSCQ 0.256 [0.100,0.400] 0.204 [0.094,0.314]

AvVAR 0.510 [0.381,0.620] 0.356 [0.260,0.452]

DevIDF 0.239 [0.082,0.384] 0.180 [0.066,0.293]

MaxIDF 0.532 [0.407,0.638] 0.339 [0.237,0.442]

MaxPMI 0.295 [0.142,0.435] 0.216 [0.102,0.330]

MaxSCQ 0.341 [0.191,0.475] 0.332 [0.230,0.433]

MaxVAR 0.513 [0.384,0.622] 0.411 [0.316,0.505]

QS 0.407 [0.264,0.533] 0.190 [0.077,0.303]

SCS 0.480 [0.347,0.595] 0.251 [0.145,0.357]

SumVAR 0.297 [0.144,0.437] 0.283 [0.182,0.384]

AvNP -0.220 [-0.367,-0.062] -0.145 [-0.261,-0.029]

(a) Queries 301-450 (TREC Vol. 4+5)

r CI τ CI

AvPMI 0.282 [0.092,0.458] 0.201 [0.063,0.338]

AvSCQ 0.307 [0.116,0.477] 0.227 [0.098,0.356]

AvVAR 0.292 [0.099,0.463] 0.249 [0.123,0.375]

DevIDF 0.233 [0.037,0.413] 0.154 [0.016,0.292]

MaxIDF 0.292 [0.099,0.463] 0.266 [0.122,0.411]

MaxPMI 0.269 [0.075,0.444] 0.221 [0.096,0.393]

MaxSCQ 0.400 [0.218,0.554] 0.322 [0.195,0.448]

MaxVAR 0.411 [0.231,0.563] 0.321 [0.197,0.445]

SumVAR 0.300 [0.108,0.470] 0.213 [0.084,0.341]

(b) Queries 451-550 (WT10g)

r CI τ CI

AvICTF 0.281 [0.125,0.423] 0.209 [0.118,0.299]

AvIDF 0.309 [0.155,0.448] 0.229 [0.139,0.320]

AvPMI 0.277 [0.121,0.419] 0.215 [0.113,0.317]

AvQC 0.298 [0.144,0.439] 0.240 [0.154,0.325]

AvSCQ 0.352 [0.202,0.520] 0.234 [0.137,0.331]

AvVAR 0.392 [0.246,0.520] 0.269 [0.179,0.359]

DevIDF 0.185 [0.024,0.336] 0.143 [0.038,0.249]

MaxIDF 0.331 [0.179,0.468] 0.243 [0.147,0.340]

MaxPMI 0.302 [0.148,0.442] 0.227 [0.114,0.341]

MaxSCQ 0.403 [0.259,0.530] 0.274 [0.175,0.374]

MaxVAR 0.412 [0.269,0.538] 0.280 [0.183,0.376]

QS 0.179 [0.019,0.331] 0.137 [0.030,0.245]

SCS 0.248 [0.090,0.394] 0.186 [0.094,0.278]

SumSCQ 0.235 [0.076,0.382] 0.179 [0.061,0.297]

SumVAR 0.337 [0.186,0.472] 0.241 [0.127,0.355]

(c) Queries 701-850 (GOV2)

Table 2.10: Prediction quality of all predictors significantly different from 0 for both r
and τ . The best performing predictor for each corpus with respect to r or τ are in bold.

Underlined are all predictors that are not significantly different from the best performing

predictor.
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(b) Title topics 751-800

Figure 2.6: Robustness behavior of pre-retrieval predictors on the automatic TREC title

runs.

proaches under investigation. Specifically, we evaluate the predictor performances

against retrieval runs submitted to TREC. The runs are restricted to those with a

MAP above 0.1 and they are required to be automatic title runs (Appendix B.3.2).

Since pre-retrieval predictors rely on the query terms to predict a query’s quality, it

would be an unfair comparison to include runs based on TREC topic description or

narratives. For the same reason, we also exclude manual runs, as they have not nec-

essarily a strong overlap with the query terms. Based on our experimental results in

the earlier sections, we selected the five best performing predictors: MaxIDF, AvPMI,

AvQC, MaxVAR and MaxSCQ. Incidentally, this means that a predictor of each cat-

egory is evaluated. For these predictors, their correlations with all selected TREC

runs are determined.

To aid understanding, consider Figure 2.6, where exemplary the results of title

topics 351-400 and 751-800 are shown in the form of scatter plots. Each point

in a plot indicates a particular correlation coefficient between a TREC run and a

pre-retrieval predictor. Therein, the wide spread in predictor performance is clearly

visible. For title topics 751-800 (Figure 2.6a) for instance, MaxIDF exhibits both the
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highest (τ = 0.48) and the lowest (τ = −0.03) correlation, depending on the TREC

run. In general, the highest correlations are achieved for rather poorly performing

TREC runs, while the predictors’ capabilities continuously degrade with increasing

retrieval effectiveness of the runs. We speculate that this development is due to the

more advanced retrieval approaches of the well performing runs, which do not only

rely on term and document frequencies but possibly among others take into account

n-grams and the hyperlink structure (for WT10g and GOV2). There are differences

between the predictors though. AvPMI, for instance, is somewhat less susceptible to

the above effects as its performance does not change considerably over the different

TREC runs; however compared to other predictors the achieved correlations are

lower.

Although not shown, we note that when considering the results over all title

topic sets MaxVAR and MaxSCQ can be considered as the most stable; over most

topic sets they exhibit the highest minimum correlation with all TREC runs. Note,

though, that this stability is relative and the correlation range is still considerable,

for example between τ = 0.27 and τ = 0.49 for MaxSCQ and title topics 401-450.

Across all topic sets, the maximum correlation achieved by a predictor and TREC

run is τ = 0.50 (MaxVAR, title topics 401-450) and r = 0.74 (MaxSCQ, title topics

401-450) respectively. This implies that high correlations can be achieved, if pre-

retrieval predictors are used with the “right” retrieval approach.

In our experiments, we determined the predicted scores from stemmed and stop-

worded indices. As such, if stemming and/or stopword removal did not occur in the

submitted TREC runs, the results will not reflect the quality of the predictors accu-

rately. In order to determine the influence of those two preprocessing steps on the

reported predictor performances, six indices of TREC Vol. 4+5 were created, each

with a different combination of stemming (Krovetz stemmer, Porter stemmer [122]

and no stemmer) and stopwording (removal, no removal). Three observations could

be made. First of all, the type of stemmer employed, that is Krovetz or Porter, is not

of importance, the reported correlations change only slightly in both directions,

depending on the prediction method. Secondly, stopword removal across all three

stemming options leads to somewhat higher correlations than no stopword removal,

though again the changes are minor. Finally, switching off stemming has the largest

effect, the correlations degrade across all pre-retrieval predictors to a considerable

degree, for instance MaxVAR degrades from τ = 0.41 with Krovetz stemming and

stopwording to τ = 0.34 without stemming and no stopword removal. We conclude

that our indices and the pre-retrieval scores derived from them are sufficiently good

to draw conclusions about the methods’ robustness. One influence that we have not

tested though is influence of tokenization. There might still be some differences in

performance.

2.12 Combining Pre-Retrieval Predictors

Despite the numerous methods proposed, little research has been performed on

combining predictors in a principled way. In [174] the proposed predictors are lin-
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early combined, and the best performing combination is reported. In this section,

we explore if predictor combination with penalized regression methods, which have

shown to perform well in analogous prediction scenarios in microarray data analy-

sis [49, 129, 178], lead to better performing prediction methods.

To measure the algorithms’ performance we make use of the fnorm setup, which is

commonly evaluated by reporting r. While this approach is reasonable for parameter-

free methods, such as the predictors introduced earlier, it is problematic when com-

bining different predictors. Combination methods have a higher degree of freedom

and can thus fit the set of predictor/retrieval effectiveness values very well (see Sec-

tion 2.3.2). Overfitting leads to a high value of r, while at the same time lowering

the prediction accuracy, which is the accuracy of the predictor when predicting val-

ues of unseen queries. To avoid this issue, we adopt the methodology applied in

machine learning [20] and report the root mean squared error (RMSE) derived from

training a linear model on a training set and evaluating it on a separate test set.

2.12.1 Evaluating Predictor Combinations

Let ŷ be the predictions of m queries and let y be the true effectiveness values, then

the RMSE is given by:

RMSE =

√

1

m

∑

i

(yi − ŷi)2. (2.14)

Since RMSE2 is the function minimized in linear regression, in effect, the pre-retrieval

predictor with the highest linear correlation coefficient will have the lowest RMSE.

This approach mixes training and test data - what we are evaluating is the fit of the

predictor with the training data, while we are interested in the evaluation of the

predictor given novel queries. Ideally, we would perform regression on the train-

ing data to determine the model parameters and then use the model to predict the

query performance on separate test queries. However, due to the very limited query

set size, this is not feasible, and cross-validation is utilized instead: the query set

is split into k partitions, where the model is tuned on k − 1 partitions and the kth

partition functions as test set. This process is repeated for all k partitions and the

overall RMSE is reported.

2.12.2 Penalized Regression Approaches

Modeling a continuous dependent variable y, which in our case is a vector of aver-

age precision values, as a function of p independent predictor variables xi is referred

to as multiple regression. If we also assume a linear relationship between the vari-

ables, we refer to it as multiple linear regression. Given the data (xi, yi), i = 1, 2, .., m
and xi = (xi1, ..., xip)

T , the parameters β = (β1, ..., βp) of the model y = Xβ + ǫ are

to be estimated. X is the m × p matrix of predictors and ǫ is the vector of errors,

which are assumed to be normally distributed.

The ordinary least squares (OLS) estimates of β are derived by minimizing the

squared error of the residuals:
∑

i(yi−ŷi)
2, where ŷi =

∑

j βjxij . The two drawbacks



54 | Chapter 2 – Pre-Retrieval Predictors

of OLS are the low prediction accuracy due to overfitting and the difficulty of model

interpretation. All predictors remain in the model and very similar predictors might

occur with very different coefficients. If we have a large number of predictors, meth-

ods are preferred that perform automatic model selection, thereby only introducing

the most important subset of predictors into the model. While this has not yet been

explored in the context of query effectiveness prediction, it has received consider-

able attention among others in microarray data analysis [49, 129, 178] where good

results have been reported with penalized regression approaches. As the problems

in both areas are similar (very small data sets, possibly many predictors) it appears

sensible to attempt to apply those methods to query performance prediction.

Penalized regression approaches place penalties on the regression coefficients β
to keep the coefficients small or exactly zero which essentially removes a number

of predictors from the model. The least absolute shrinkage and selection operator

(LASSO) [138] is such a method:

LASSO(β̂) = arg min
{

m
∑

i=1

(

yi −

p
∑

j=1

βjxij

)2
}

subject to

p
∑

j=1

|βj| ≤ t. (2.15)

The total weight of the coefficients is restricted by the tuning parameter t ≥ 0. If a

number of predictors are very similar, LASSO tends to include only one of them in

the final model whereas the Elastic Net [179] has a grouping effect such that highly

correlated predictors acquire similar coefficients. It relies on a penalty combination

of the squared and absolute sum of beta coefficients.

LASSO is a special case of the later developed least angle regression (LARS) [54].

LARS determines the full regularization path: in each step, LARS selects the predic-

tor that is most highly correlated with the residuals y − ŷ of the current model, re-

sulting in a p×p matrix of beta coefficients. In our experiments, such regularization

paths were derived for LASSO, LARS and the Elastic Net. The question remains,

which vector of beta coefficients from the matrix to choose as model coefficients.

Several stopping criteria exist. Traps are randomly generated predictors that are

added to the set of predictors. The regularization is stopped, as soon as one of the

random predictors is picked to enter the model. An alternative is cross-validation:

the beta coefficients are learned from k−1 partitions of the training data and the kth

partition is used to calculate the error; the vector of beta coefficients with the small-

est error is then chosen. A third possibility is the recently proposed bootstrapped

LASSO (BOLASSO) [11], where a number of bootstrap samples are generated from

the training data, the matrix of beta coefficients of LASSO are determined for each

sample and in the end, only those predictors with non-zero coefficients in all boot-

strap samples are utilized in the final model.

We investigate four variations of these approaches: LARS with traps as stop-

ping criterion (LARS-Traps), LARS with cross-validation to determine the beta coef-

ficients (LARS-CV), BOLASSO and the Elastic Net.
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2.12.3 Experiments and Results

All predictors described in the previous sections were utilized, with the exception

of the WordNet based term relatedness predictors, as they exhibited no predictive

power over any of the corpora. As retrieval approach to predict for, we relied on

Language Modeling with Dirichlet smoothing and the best performing µ (Table 2.2).

The parameter settings of the Elastic Net were taken from [179]. LARS-Traps was

tested with 6 randomly generated traps while LARS-CV was set up with 10-fold cross

validation. BOLASSO was used with 10 bootstrapped samples and each sample was

cross-validated to retrieve the best beta coefficient vector.

TREC Vol. 4+5 WT10g GOV2

AvPMI 0.207 0.191 0.187

AvQC 0.191 0.196 0.184

AvQL 0.215 0.197 0.194

MaxIDF 0.181 0.187 0.181

MaxSCQ 0.205 0.184 0.178

MaxVAR 0.182 0.184 0.176

AvP 0.214 0.195 0.194

Table 2.11: Performance of selected pre-retrieval predictors given in RMSE.

For evaluation purposes, the RMSE of all methods was determined by leave-one-

out cross validation, where each query is once assigned as test set and the model is

trained on all other queries. This setting is sensible due to the small query set size

with a maximum of 150. To emphasize the cross validation RMSE approach being

different from r/CI established on the training set only, we write rtrain and CItrain.

In order to provide a comparison between the combination methods and the

constituent predictors, for a number of best and worst (AvQL, AvP) performing pre-

dictors, we list their RMSE in Table 2.11. In this set of experiments, we summarized

all queries of each corpus.

The penalized regression results are reported in Table 2.12 along with rtrain and

CItrain. For illustration, the predictors selected for LARS-Traps and LARS-CV are

shown in the form of histograms in Figure 2.7. The bars indicate in how many of

the m times the algorithm run each predictor was selected to be in the model.

TREC Vol. 4+5 WT10g GOV2

rtrain CItrain RMSE rtrain CItrain RMSE rtrain CItrain RMSE

OLS 0.69 [ 0.60, 0.77] 0.188 0.64 [0.51, 0.74] 0.208 0.52 [ 0.39, 0.63] 0.190

LARS-Traps 0.59 [ 0.47, 0.68] 0.179 0.52 [0.36, 0.65] 0.187 0.44 [ 0.30, 0.56] 0.178

LARS-CV 0.68 [ 0.59, 0.76] 0.183 0.53 [0.38, 0.66] 0.178 0.46 [ 0.33, 0.58] 0.184

BOLASSO 0.59 [ 0.47, 0.68] 0.181 0.43 [0.25, 0.58] 0.198 0.43 [ 0.28, 0.55] 0.180

Elastic Net 0.69 [ 0.60, 0.77] 0.182 0.52 [0.35, 0.65] 0.182 0.46 [ 0.32, 0.57] 0.178

Table 2.12: Results of the penalized regression approaches. In bold the improvements over

the best single predictor per collection are shown.
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While the correlation coefficient r suggests that the combined methods perform

better than the single predictors, when we examine the results of the stronger RMSE

based evaluation methodology, different conclusions can be drawn. There is a rel-

atively small difference in error of predicted average precision in cases were the

correlation coefficients appear quite distinct, e.g. r1 = 0.18 and r2 = 0.41 lead to

RMSE1 = 0.184 and RMSE2 = 0.194 respectively. Although the penalized regression

approaches have a lower error than the OLS baseline as expected, the decrease in

error compared to the single predictors is smaller than one might expect. In fact, on

the GOV2 corpus the error increased.
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Figure 2.7: Penalized regression: predictor selection.

The histograms show that as desired, not all predictors are selected. For TREC

Vol. 4+5 (Figure 2.7a) in most instances the same five predictors appear in the

models. Notably is the absence of any term relatedness based predictor. The results

are less clear for WT10g (Figure 2.7b): MaxVAR appears in most instances, the

remaining included predictors fluctuate to a greater degree. The majority of single

predictors fail to capture any more variance within the data and so are not used.

This is due to two reasons: the poor accuracy of a number predictors which might

not be better than random, and, as evident from the scatter plots in Section 2.3.2

(Figure 2.2), the training data is over-represented at the lower end of the average

precision values (0.0-0.2) while very few queries exist in the middle and high range.

The problems caused by poor predictors is further exemplified in Figure 2.7b where

a large variety of predictors are added to the model.

2.13 Conclusions

This chapter has provided a detailed overview of a large number of pre-retrieval

prediction methods. A taxonomy of predictors was introduced and in turn the pre-

dictors in each class were analyzed and empirically evaluated. The evaluation was

performed on three diverse test collections: a corpus of newswire documents, a
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Web corpus and an Intranet-like corpus. We were able to show that the predic-

tion method accuracy – independent of the particular evaluation goal (fdiff, fpred,

fnorm) and thus independent of the particular correlation type used for evaluation

– is dependent on the retrieval approach, the collection and the query set under

investigation. First, this was shown on three standard retrieval approaches, and

later confirmed when we investigated the predictor performances on widely differ-

ing TREC runs. For most prediction methods, the Web corpus proved to be the most

difficult corpus to predict the effectiveness for.

Moreover, we showed that when using significance tests, significant differences

in performance between the prediction methods are difficult to obtain. This is

mainly because the query set sizes available to us are so small and thus the cor-

relation coefficients need to have a large difference to point to potential significant

improvements. Despite this lack of significant differences, we can use the corre-

lation coefficients and the observations of the predictors performances on diverse

TREC runs together to conclude that the ranking sensitivity based MaxVAR and the

specificity based MaxSCQ predictors are overall the best performing predictors: they

are among the top performing and they are the most stable across all TREC runs.

Term relatedness based predictors on the other hand only perform well on specific

query sets and can be considered unreliable. WordNet based measures failed to

achieve meaningful predictor accuracies for most query sets.

Experimenting with combining predictors in a principled way through penalized

regression which has the advantage of predictor sparseness, lead to reporting the

cross-validated RMSE as a measure of the prediction accuracy to achieve a more

reliable indicator of a method’s quality. We showed that under the previous evalua-

tion methodology the combination methods would be considered better in terms of

r, though they are in fact not considerably better than single predictors.
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Chapter 3

Post-Retrieval Prediction: Clarity

Score Adaptations

3.1 Introduction

The previous chapter focused on pre-retrieval prediction methods which are mostly

based on the query terms’ collection statistics. We now turn our attention to post-

retrieval methods which derive their performance estimations from ranked lists of

results retrieved in response to a query. Post-retrieval predictors are computationally

more expensive than pre-retrieval approaches since at least one, or possibly more,

retrieval round has to be performed before a prediction can be made. However,

the drawback of increased complexity is considered worthwhile, as an increased

accuracy in the predictions is expected due to the greater amount of information

available. As evident in the the previous chapter, TF.IDF, for instance, is a very poor

retrieval approach for our available corpora, whereas Okapi achieves adequate re-

trieval effectiveness. A pre-retrieval predictor, however, assigns the same predicted

score in both cases to a given query, while a post-retrieval predictor derives two

distinct predictive scores as it is based on the ranked list of results.

In this chapter, we first present an overview of post-retrieval prediction meth-

ods. Then, we will focus on one post-retrieval approach in particular, namely Clarity

Score, which was proposed by Cronen-Townsend et al. [45]. Clarity Score is based

on the intuition that the top ranked results of an unambiguous and thus well per-

forming query are topically cohesive, whereas the result list of an ambiguous and

thus poorly performing query will cover a variety of topics. The degree of topical

cohesiveness is derived from the term distribution of the top ranked documents:

a homogeneous result list will lead to a distribution where terms particular to the

topic appear with high frequency, while topically not homogeneous results with doc-

uments covering a variety of topics are assumed to be more similar to the collection

distribution. Consider, for instance, the example query “jaguar” and its results, de-

scribed in Chapter 1. The result list of the first 500 documents would be predicted

to be of high quality by Clarity Score, as by far most results are concerned with the

topic of cars. If, however, we were only to consider the result list up to rank ten,

the query would be predicted to be somewhat ambiguous, as three documents are
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concerned with the animal, while seven documents are concerned with cars. This

sensitivity to the number of documents to rely on in the Clarity Score calculation is

problematic. Currently, it is necessary to search exhaustively through the parameter

space in order to find a reasonable setting.

In this work, we propose Adaptive Clarity which addresses two perceived short-

comings of Clarity Score. First, Clarity Score uses a fixed number of top-retrieved

documents from which to derive the term distribution - we show that this is not

optimal and propose an easy solution for a query adaptive automatic setting of this

parameter. Second, the predicted performance score is the Kullback-Leibler (KL) di-

vergence [91] between the term distribution of the top ranked results and the term

distribution of the entire collection. Although all terms of the vocabulary partici-

pate in this equation, terms that have a high document frequency in the collection

(and which for some reason occur uncharacteristically rarely in the top retrieved

documents) add nothing to distinguish a set of homogeneous documents from the

collection and thus we use a threshold of maximum document frequency to exclude

those terms.

We will show in this chapter the following:

• Clarity Score in its original form is very sensitive to its parameter setting, and,

• Adaptive Clarity improves over Clarity Score and other state-of-the-art pre-

and post-retrieval prediction approaches.

The work we present is organized as follows: first, in Section 3.2 we will provide

an overview of related work. In order to offer some guidance to the levels of accu-

racy different methods achieve, this section also includes a summary in table form

of the correlations found in various publications. Clarity Score is then introduced

formally in Section 3.3. Section 3.4 contains an analysis of Clarity Score’s sensitivity

to its parameter settings. A similar analysis is also reported for Query Feedback, a

post-retrieval method introduced by Zhou and Croft [177]. In Section 3.5, the two

proposed changes to the Clarity Score algorithm are outlined. The experimental

results, where Clarity Score and our adaptations to it are compared to a number of

pre- and post-retrieval predictors are detailed in Section 3.6 and a discussion of the

results follows in Section 3.7. The chapter concludes in Section 3.8.

3.2 Related Work

Post-retrieval prediction algorithms can be categorized into different classes, de-

pending on the basic approach they take in order to estimate a query’s result list

quality. In this overview, we are going to distinguish the approaches by the type of

information they exploit, that is information derived from

• perturbing the query and considering the differences in the respective ranked

list of results (Section 3.2.1),

• perturbing the documents of the initially retrieved result list and considering

the stability of the ranking (Section 3.2.2),
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• perturbing the retrieval approach and considering the diversity of the ranked

list of results (Section 3.2.3),

• analysing the ranked list of results of the original query (Section 3.2.4), and

lastly,

• Web resources (Section 3.2.5).

Each of the different classes and proposed approaches are outlined below. If

not explicitly stated otherwise, the approaches belong to evaluation aspect EA2 of

Figure 1.1. Note that some approaches may fall into more than one class. We

present those methods in the class of approaches where their most important effect

lays.

3.2.1 Query Perturbation

Slightly altering a query and determining the similarity of the result lists of the

original and perturbed query indicates the amount of query drift, which has been

found to be a good indicator of result quality. Query drift refers to the change of

focus of a query due to faulty query expansion [107]. A query is considered to be

of high quality if slight variations of it do not result in a large change in retrieval

result (the query drift is low), while a query whose ranked list of results changes

considerably with a small change in the query exhibits a high amount of query drift -

a change of focus implying that the originally retrieved ranked list contains a diverse

and at least partially non-relevant set of documents.

A direct exploitation of the query drift concept is the Query Feedback method,

introduced by Zhou and Croft [177]. Query Feedback frames query effectiveness

estimation as a communication channel problem. The input is query q, the channel

is the retrieval system and the ranked list L is the noisy output of the channel. From

the ranked list L, a new, perturbed query q′ is generated and a second ranking L′ is

retrieved with q′ as input. The overlap between the lists L and L′ is used as query

quality score. The lower the overlap between the two rankings, the higher the query

drift and thus the lower the predicted effectiveness.

In the Weighted Information Gain [177] approach, a number of query variations

are derived from a given query and the difference in the probability of occurrence

of those variations in the top retrieved documents and in the corpus is used as es-

timate of retrieval effectiveness. This approach was developed for retrieval models

that exploit term dependencies such as the Markov Random Field model [104] and

thus the query variations include single term queries, exact phrase queries and un-

ordered window queries, the latter being queries whose constituent terms need to

occur in a document within a specified term range. The more the top ranked doc-

uments and the corpus as a whole differ with respect to those query variations, the

better the estimated quality of the result list. This approach could have also been

included in Section 3.2.4, but due to its derivation of different queries we chose

to include it here. The experiments reported by Zhou and Croft [177] show that

Weighted Information Gain outperforms Query Feedback and that a combination

of both in turn overall performs best. The results though are not applicable to our
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experiments, as we rely on unigram language models. We leave experimentation on

term dependency based retrieval approaches for future work.

Yom-Tov et al. [167] also present an estimator based on query variations. In

contrast to Weighted Information Gain though, their query variations are derived

from the queries’ constituent terms. Those “sub-queries” are then used in retrieval

and the result lists of the original query and the sub-queries are compared to each

other. The higher the overlap between them, the higher the estimated result list

quality. The idea behind this approach is that for well performing queries the result

list does not change considerably if only a subset of query terms is used. The two

proposed estimators are based on machine learning approaches, and apart from the

overlap of the result lists also exploit features such as the retrieval status value of

the top ranked document and the number of query terms. The reported experiments

suggest that the best predictor performance can be achieved on queries derived from

TREC description topics (long queries). It is difficult though to put the results in

context, as the predictor baselines in [167] (such as the standard deviation of IDF)

are not very strong.

Finally, Vinay et al. [145] propose to perturb the weights that are assigned to

each query term, and to consider a result list of high quality, if slight changes of term

weights do not lead to a drastically different result list. Among the four approaches

they propose this is the weakest performing one. This idea can also be viewed as a

generalization of Yom-Tov et al. [167]’s estimators, where each sub-query is formed

by setting the weights of all other query terms to zero.

3.2.2 Document Perturbation

The notion of estimating the quality of a result list by its ability to withstand the in-

troduction of noise is based on observations made in retrieval on noisy text corpora.

Transforming audio and images to text with automatic speech and optical character

recognition leads to corrupted text documents, as the recognition process is imper-

fect. Experiments on such text corpora have shown that retrieval approaches which

are robust in the presence of errors also exhibit a higher retrieval effectiveness on

noise free corpora [131]. Translating this observation to query effectiveness predic-

tion leads to the following heuristic: a result list which is stable in the presence of

introduced noise is considered to be of high quality, while a result list which is unsta-

ble when noise is added to documents (the documents are perturbed) is considered

to be of low retrieval effectiveness.

The Ranking Robustness approach by Zhou and Croft [176] exploits this heuristic

by retrieving a result list for a given query, perturbing the documents by adding or

removing terms and then ranking those perturbed documents based on the original

query and retrieval approach. The similarity between the original result list and the

result list derived from the perturbed documents indicates the robustness. In partic-

ular, perturbed are the term frequencies of the query terms occurring in each docu-

ment by sampling a new frequency value from a Poisson distribution. The similarity

between two result lists is determined by Spearman’s rank correlation coefficient.

Finally this process is repeated a number of times and the average rank correlation
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constitutes the robustness score. The higher the score, the better the estimated re-

trieval effectiveness of the original ranked list of results. A comparison between

Clarity Score and Ranking Robustness showed a slightly better performance of the

latter. Zhou and Croft [177] also propose a variation of Ranking Robustness, the

so-called First Rank Change approach, which is modified to be applicable to naviga-

tional queries [23]. Instead of comparing the original and perturbed result list, now

it is only of interest in how many trials the top ranked document of the original list

is also returned at the top of the perturbed result list.

Among the prediction methods proposed by Vinay et al. [145], the best perform-

ing one is based on document perturbations. To estimate the retrieval performance

of a query, each document in the result list is perturbed by varying degrees of noise

and then the perturbed document in turn is used as query. Of interest is the rank, the

unperturbed document is retrieved at in response to such a query. When no noise

is added to a document, the original (unperturbed) document can be expected to

be retrieved at rank one. With increasing levels of noise, the rank of the original

document is expected to drop. This rate of change between the level of noise and

the drop in rank of the unperturbed document is the measure query quality. The

more quickly the rank drops in response to noise, the lower the estimated retrieval

performance of a query. The experiments on TREC Vol. 4+5 show the validity of the

approach, a Kendall’s τ of 0.52 is reported. However, since the retrieval approach

in these experiments is TF.IDF and the queries are derived from TREC topic descrip-

tions (instead of TREC topic titles as in most other experiments), it is not possible

to directly compare the results to other works.

As opposed to directly altering the terms or term weights of a document as done

in the previous two approaches, Diaz [50] proposes a method based on spatial

autocorrelation. In this approach a document’s retrieval score is replaced by the

weighted sum of retrieval scores of its most similar documents in the result list as

determined by TF.IDF. The linear correlation coefficient between the original docu-

ment scores and the perturbed document scores is then used as estimate of result

list quality. This method is based on the notion that the result lists of well perform-

ing queries are likely to fulfill the cluster hypothesis [143], while poorly performing

queries are not. If the cluster hypothesis is fullfilled, we expect the most similar doc-

uments to also receive similar retrieval scores by the retrieval system, while in the

opposite case, high document similarity is not expressed in similar retrieval scores

and the perturbed scores will be very different from the original ones. Note that

in [50] this method is referred to simply as ρ(ỹ,y), in our experiments (and in Ta-

ble 3.1) we denote it with ACSim for autocorrelation based on document similarity.

The results reported in [50] show that this approach outperforms both Clarity Score

and Ranking Robustness on a range of query sets and corpora. An adaptation of this

method, where the retrieval scores are modelled by Gaussian random variables is

described by Vinay et al. [146].
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3.2.3 Retrieval System Perturbation

Different retrieval systems applied to a single corpus return different result lists for

a topic, depending on the particular retrieval approach, the approach’s parameter

settings, the pre-processing steps applied as well as the corpus content relied upon,

such as for instance document content, document titles, anchor text and hyperlink

structure. In a controlled setting such as TREC, a very limited number of relevant

documents exist per topic (see Table 3.2) and retrieval approaches achieving a high

retrieval effectiveness for a topic necessarily have a large amount of overlap among

their top retrieved documents. Together with the observation that retrieval sys-

tems do not return the same non-relevant documents [134], the following heuris-

tic arises: a topic is easy, that is, it will result in a high retrieval effectiveness, if

the document overlap among different retrieval approaches is high. Conversely, a

small amount of document overlap indicates a topic whose retrieval effectiveness

will be low. In general, approaches in this category evaluate the effectiveness of

a topic without considering a particular retrieval system (evaluation aspect EA1 in

Figure 1.1) and we speak of topic as opposed to query since the retrieval approaches

may rely on different (TREC) topic parts or different instantiations of the same topic

part (different stemming algorithms for instance). The ground truth in this evalu-

ation setup is commonly derived by considering the retrieval effectiveness of each

topic across all participating retrieval approaches. The average, median or majority

average precision is then utilized as ground truth effectiveness.

The first approach in this direction is AnchorMap, proposed by Buckley [25]. In

his work, the document overlap between two rankings is equivalent to the mean

average precision a ranking achieves if the documents of a second ranking are con-

sidered to be the relevant ones (the documents are “anchored”). The reported cor-

relation with the ground truth is significant at r = 0.61. However, due to the small

scale of the study – 30 topics and 8 retrieval systems – it is not possible to draw

further conclusions from the result.

Counting the number of unique documents among the result lists of different

retrieval approaches was suggested by Takaku et al. [136]. The larger the count,

the more diverse the result lists and thus the more difficult the topic is estimated to

be. The reported correlation of r = −0.34 suggests that there is some relationship

between topic difficulty and the number of unique documents. However, due to the

size of the experiment (14 retrieval systems) and the the type of topics (navigational

topics from NTCIR) it remains unclear if these results will hold for informational

queries.

Aslam and Pavlu [7] propose to determine the document overlap between re-

trieval systems by the Jensen-Shannon divergence [100] of their result lists. The

authors experiment with a wide range of TREC data sets and report consistently

high correlations, which indicates that the topic difficulty inherent to a collection is

easier to estimate than the query effectiveness for a particular retrieval approach.
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3.2.4 Result List Analysis

The ranked list of results can either be evaluated with respect to the corpus or by

comparing the documents in the result list to each other without any further frame

of reference. Comparing the retrieved result list to the collection as a whole is a

measure of the result list’s ambiguity. If the top retrieved results appear similar to

the collection, the query is estimated to be difficult, as the results are not distinct

from the entire corpus which covers many topics. On the other hand, if the top

retrieved results are homogeneous and different from the corpus, the query’s result

list is estimated to be of high quality.

Clarity Score [45], which will be covered in more detail in Section 3.3, is based

on the intuition that the top ranked results of an unambiguous query will be topi-

cally cohesive and terms particular to the topic will appear with high frequency. The

term distribution of the top ranked results of such a query will be different from the

general term distribution, which is derived from the entire corpus of documents.

In contrast, a retrieval system will return results belonging to number of different

topics when the query is ambiguous, and thus the term distribution will be less dis-

tinguishable from the corpus distribution. The higher the Clarity Score, the more

distinct the top ranked results are from the corpus. In this case, the results are esti-

mated to be unambiguous and therefore the estimated quality of the query is high.

While Clarity Score is based on the Language Modeling framework, the same idea

of comparing the term distribution in the top retrieved documents to the corpus as

a query quality measure has been introduced for the Divergence From Randomness

retrieval model [5] by Amati et al. [4]. In the work of Diaz and Jones [52], it is

proposed to linearly combine Clarity Score with temporal features derived from the

top ranked results. In particular in news corpora, distinctive temporal profiles exist

for certain terms, such as Christmas which will occur mostly in articles published

around December of each year, while a term such as explosion is likely to occur

in bursts across the year depending on current events. This combination of article

content and article publication time based query quality measures proved to lead

to considerably higher correlations with average precision than Clarity Score alone.

The two corpora used in the experiments were derived from TREC collections to

only include newspaper articles, making them particularly suitable for the task. The

same approach is unlikely to lead to improvements on WT10g and GOV2 though.

Clarity Score has also been applied to tasks such as selective query expansion [46]

and the automatic identification of extraneous terms in long queries [94].

Carmel et al. [30] hypothesize that query difficulty is positively correlated with

the distances between the query, the corpus and the set of relevant documents. The

motivational experiments show that as expected the distance between the set of rel-

evant documents and the set of all documents (the corpus) exhibits a positive cor-

relation with retrieval effectiveness, an observation that is similar to the motivation

for Clarity Score. Since in the topic difficulty setting the set of relevant documents

is unknown, it is proposed to approximate this set by performing an initial retrieval

and then selecting those documents from the result list that lead to the smallest

distance to the query. The distances derived from the query, corpus and the approxi-
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mation of the set of relevant documents are then used as features in a support vector

machine [44, 144]. The approach is evaluated on GOV2 and queries derived from

title topics 701-800. The reported linear correlation coefficient (r = 0.36) though

lacks behind other reported approaches.

The Clustering Tendency method developed by Vinay et al. [145] deems a result

list to be of high quality if the documents are tightly clustered, whereas the lack

of clusters in the result list indicates poor retrieval effectiveness. In contrast to

the previously described approaches, this method does not compare the result list

to the corpus, instead, the amount of clustering is derived from the top retrieved

documents alone. In this approach, documents are points in a high-dimensional

space (vector space model). Then, random points are generated and two distances

are recorded for each generated sample: the distance between the random point

and the nearest document point dD and the distance between dD and its nearest

document point neighbor. A large difference in those two distances indicates a high

quality result list: the documents are highly clustered as their distances to each

other are lower than their distances to random points. The advantage of such an

approach is that we do not require collection statistics, on the other hand this might

also make us miss vital information. A corpus that contains sports documents only,

and whose top 100 results are about sports are not really tightly clustered, whereas

they are appear clustered when we deal with a general news corpus. The reported

results show a good estimation performance (τ = 0.44). It should be noted though,

that the distances between documents are determined based on query terms only,

which works well for longer queries (in the experiments TREC description topics

were used), the effect on short queries is not known.

Instead of considering the content of the top retrieved documents, recent studies

have also investigated the possibility of deriving quality measures directly based on

the retrieval scores of the top ranked documents. The most basic possibility is to es-

timate the quality of a result list by the retrieval score assigned to the top retrieved

document as proposed by Tomlinson [139]: the higher the retrieval score, the better

the result list is estimated to be. The performance of this approach is naturally de-

pendent on the retrieval approach (which in turn determines what retrieval scores

to assign to each document) and the query set. Depending on the retrieval model

settings, the results reported in [139] for the Hummingbird SearchServer vary be-

tween τ = 0.23 and τ = 0.35 for queries derived from TREC title topics and between

τ = 0.26 and τ = 0.43 for queries derived from TREC description topics. The ob-

servation that this approach is better suited for longer queries was also confirmed

by Yom-Tov et al. [167] who evaluated the Juru search engine.

Shtok et al. [130] and Perez-Iglesias and Araujo [118] experiment with esti-

mating the coverage of query aspects in the ranked list of results by deriving the

retrieval scores’ standard deviation, possibly normalized by a query dependent cor-

pus statistic. It is hypothesized, that a high standard deviation indicates a high

“query-commitment” [130] and the absence of aspects unrelated to the query. This

indicates a result list of high quality. Conversely, if the retrieval scores of the top

ranked documents exhibit a low score diversity, the result list is estimated to be

dominated by aspects unrelated to the query and it is therefore considered to be of
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poor quality. The work by Lang et al. [96] is also similar in spirit. Here, each query

term is considered as a separate concept and the more concepts are covered in the

result list, the better the estimated result quality. The coverage score of a query

is defined as the sum of the term coverage scores weighted by the terms’ impor-

tance. The term coverage scores in turn are estimated based on the retrieval scores

of the top ranked documents. The advantage of retrieval score based approaches

is the very low complexity, compared to approaches relying on document content,

or document and query perturbations. At the same time the reliance on retrieval

scores can also be considered a drawback, as such approaches require collaborating

search systems that make the retrieval status values available. The results reported

in [96, 130] show the potential of these approaches: retrieval score based methods

achieve similar or higher correlations than the evaluated document content based

approaches (including Clarity Score).

3.2.5 Web Resources

A number of recent studies take advantages of resources from Web search engines

such as interaction logs, query logs and the Web graph (W). We describe these

approaches here as they offer valuable insights. However, we admit that we cannot

apply any of the insights directly to our own work due to the unavailability of such

resources to us. A second type of studies we describe in this section relies on freely

available Web resources such as the Open Directory Project1 (ODP) to infer the

quality of search results.

Jensen et al. [80] infer the difficulty of a query on the Web by submitting it to dif-

ferent search engines, collecting the presented snippets of the top retrieved results

and extracting thirty-one “visual clues” from these snippets such as the percentage

of character n-grams of the query appearing in the snippet, the snippet title and the

URL. An SVM regression approach is then applied to train a model. The reported

results confirm the validity of the approach, the Spearman rank correlation between

average precision at 10 documents (averaged over all search engines) and the qual-

ity estimate is ρ = 0.57. Since all baseline approaches are pre-retrieval predictors

and this approach amounts to a post-retrieval approach it remains to be seen how

its performance will compare against other approaches relying on the result list.

Leskovec et al. [99] propose the utilization of search result dependent subgraphs

of W (on the URL and domain level) to train search result quality classifiers. The

nodes of the top ranked Web pages retrieved in response to a query are located

in W; together with their connecting edges they form the query projection graph.

A second subgraph, the query connection graph is generated by adding nodes and

edges to the query projection graph until all nodes of the top ranked results are in a

single connected component. A total of fifty-five features, most of them topological

in nature, are derived from these two subgraphs, the query and the search result list.

Together they are used in a Bayesian network classifier. The approach, evaluated on

nearly 30000 queries, was found to achieve a high degree of classification accuracy.

1http://www.dmoz.org/

http://www.dmoz.org/
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The drawback of such a reliance on the Web graph is the complexity of the approach,

in particular in finding the query connection graph.

A step further goes the reseach reported by White et al. [157], where “supported

search engine switching” is investigated. Here, the aim is to predict which search

engine of a given set of engines is going to provide the best results for a particular

query. A large interaction log, containing search sessions of more than five million

users across Google, Yahoo! and MS Live, was analyzed to find a set of useful

features for the task of determining which of two rankings is of higher quality. Three

types of features, used in a neural network based classifier, were found to lead to

a high prediction accuracy: features derived from the two result rankings, features

based on the query and features based on the similarity between query and result

ranking. The evaluation on a data set of 17000 queries showed that automatic engine

switching can considerably improve result precision.

Predicting when to switch between states is also explored by Teevan et al. [137],

whose goal is to predict whether to switch query personalization on or off. The moti-

vation for this work stems from the observation, that not all queries perform equally

well when user dependent factors, such as search history and user profile, are taken

into account. While ambiguous queries benefit from personalization, the result qual-

ity of non-ambiguous queries can deteriorate. In order to predict query ambiguity,

the authors rely on a query log of more than 1.5 million users and 44000 distinct

queries. A Bayesian dependency network is learned with forty features extracted

from the query, the result list and the query log, including the average number of

results, the click position, the time a query is issued and the amount of seconds

passed until a result is clicked. Click entropy, which is the variability in the clicked

results across users, is one of the evaluated query ambiguity measures. The results

show that the trained model predicts the click entropy based ambiguity with high

accuracy. Notably, Clarity Score is also listed as one of the features. Its correlation

with click entropy is reported as approximately zero, similarly to most other fea-

tures that are not based on query log information. The reason of this result remains

unclear, though one possible explanation is that Clarity Score determined on the

title and summary of the top 20 retrieved results (as done here) is not as effective

as on the full document content of possibly hundreds of documents. Furthermore,

the ranking produced by a Web search engine is derived from a number of sources

of evidence, instead of document content only, which might also influence the per-

formance of Clarity Score.

Finally, Collins-Thompson and Bennett [40] and Qiu et al. [123] propose to ex-

ploit the ODP to measure a query’s ambiguity. Although assigning precomputed

ODP categories to each document [40] and relying on them to calculate Clarity

Score and related approaches has the advantage of a low computational overhead,

the reported results are not convincing: the maximum correlations achieved are

τ = 0.09 and τ = 0.13 on the WT10g and GOV2 corpora respectively. The ODP

also provides a search service, which given a query as input, returns not only a list

of result pages but also a list of ODP categories. In [123], an ODP category list is

determined for each term of a query and the overlap between the different lists of a

query is used as an indicator of query ambiguity. A problem of the approach is that it
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cannot assign ambiguity scores to queries consisting of a single term only. The high

correlations reported (up to ρ = 0.81) were achieved on queries derived from the

topics of the TREC 2003/04 Novelty track. In this track, only 25 documents exist per

topic and thus the entire document collection consists of merely 2500 documents. It

is not known how the reported results will translate to larger corpus sizes.

3.2.6 Literature Based Result Overview

While outlining the various approaches in the previous sections, we have largely

refrained from comparing the effectiveness of different algorithms. The reason for

this is the diversity of the test corpora, retrieval approaches, topic and query sets

and evaluation measures, that have been employed to evaluate these algorithms.

It is only possible to draw conclusions from evaluations performed on exactly the

same setup. As was shown in Chapter 2, a small change in the parameter settings

of a retrieval approach can already influence the correlation a query performance

prediction method achieves. This observation also holds for post-retrieval methods

as will become clear in the result section of this chapter.

Due to the complexity of most approaches, it is not possible to perform an eval-

uation across all methods. In order though to give some indication of the success of

selected methods, we provide an overview of the correlations they exhibit on TREC

and NTCIR data sets in Table 3.1. All correlations are taken from the cited publica-

tions. If a publication contains several proposed prediction methods, we include the

best performing ones.

For each method included in Table 3.1, the overview contains the evaluation

aspect that is investigated, the effectiveness measure relied upon as ground truth,

the topic set and were applicable the part of the TREC/NTCIR topic the queries are

derived from, either title (T), description (D), any part including the narrative (-)

or unknown (?). The last three columns list the correlation coefficients.

The respective evaluation aspect – EA1 or EA2 – determines how the ground

truth is derived. The ground truth of methods that predict the effectiveness of a

set of queries for a particular retrieval approach (EA2) is most often the average

precision (AP), some results also exist for precision at 10 documents (P@10) and

reciprocal rank (RR). The latter measure is used in instances were navigational

query sets are evaluated. The column Models/#Runs lists the retrieval approach the

ground truth effectiveness is derived from: either Language Modeling (LM), TF.IDF,

BM25, the Markov Random Field model (MRF) or the Divergence From Random-

ness model (DFR).

The ground truth of methods that aim to predict the topic difficulty inherent

to the corpus (EA1) is derived from a set of retrieval approaches. When diverse

retrieval approaches achieve a low retrieval effectiveness a topic is deemed difficult

for a corpus. In this setting, the median, the average or the majority AP value

across the retrieval runs participating in the experiment form the ground truth. The

column Models/#Runs specifically indicates how many TREC or NTCIR runs are

relied upon.
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Table 3.1: Overview of selected post-retrieval query and topic effectiveness predictors. Models/#Runs describes the number of runs or the retrieval
model used, depending on the evaluation aspect Eval. Asp.: EA1 (How difficult is a topic in general?) and EA2 (How difficult is a topic for a particular

system?). T-N indicates which topic part is used: title (T), description (D), any part including the narrative (-) or unknown (?). Evaluation Measure
lists the effectiveness measure relied upon as ground truth: average precision (AP), precision at 10 documents (P@10), reciprocal rank (RR) and the
average and median AP value over all evaluated runs (TREC av. AP and TREC med. AP respectively). The correlations reported in each publication

are shown in the last three columns: the linear correlation coefficient r, Kendall’s τ and Spearman’s ρ.

Topics Models/#Runs T-N Eval. Evaluation Correlations
Asp. Measure r τ ρ

Clarity Score[45]: divergence between the query

language model and the collection language

model

201-250 LM D EA2 AP 0.490
251-300 LM T EA2 AP 0.459
351-400 LM T EA2 AP 0.577
401-450 LM T EA2 AP 0.494
351-450 LM T EA2 AP 0.536

InfoBo2
[4]: divergence between query term fre-

quencies of the collection and result list
100 topics (TREC
Robust 2003)

DFR D EA2 AP 0.52

Temporal Clarity [52]: linear regression with

Clarity Score and two features of temporal

profiles based on the creation dates of the top
retrieved documents

≈ 100 topics from

AP corpus

LM ? EA2 AP 0.52

≈ 100 topics from
WSJ corpus

LM ? EA2 AP 0.60

AnchorMap[25]: document overlap between

ranked lists measured by mean average precision

30 topics from

301-450

8 auto. TREC runs D EA1 majority AP 0.608

Top Score[139]: retrieval score of the top
retrieved document

301-450,601-700 Hummingbird T EA2 AP 0.35
301-450,601-700 Hummingbird D EA2 AP 0.43

Decision Tree[167]: document overlap between

the result lists of the full query and its

sub-queries; decision tree based machine
learning approach

301-450,601-650 Juru T EA2 AP 0.305
301-450,601-650 Juru T EA2 P@10 0.268
451-550 Juru D EA2 AP 0.202
451-550 Juru T EA2 P@10 0.175

Histogram[167]: document overlap between the

result lists of the full query and its sub-queries;
feature histogram based machine learning

approach

301-450,601-650 Juru D EA2 AP 0.439
301-450,601-650 Juru D EA2 P@10 0.360
451-550 Juru T EA2 AP 0.143
451-550 Juru T EA2 P@10 0.187

Pool size[136]: number of unique documents in

the pool of top 100 retrieved documents

269 NP NTCIR-5

topics

14 NTCIR runs T EA1 av. RR −0.342

Document clustering tendency[145] 301-450,601-650 TF.IDF D EA2 AP 0.441
Document perturbation[145] 301-450,601-650 TF.IDF D EA2 AP 0.521
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Topics Models/#Runs T-N Eval. Evaluation Correlations
Asp. Measure r τ ρ

Combination of topic distances[30]: SVM based

machine learning approach

701-800 Juru T EA2 AP 0.362

Robustness score[176]: stability of the result list

in the presence of perturbed documents

201-250 LM D EA2 AP 0.613 0.548
251-300 LM T EA2 AP 0.454 0.328
301-450,601-700 LM T EA2 AP 0.550 0.392
701-750 LM T EA2 AP 0.341 0.213
751-800 LM T EA2 AP 0.301 0.208

JS divergence[7]: diversity between the result

lists of multiple retrieval systems

251-300 all TREC runs - EA1 TREC av. AP 0.623 0.469
301-350 all TREC runs - EA1 TREC av. AP 0.698 0.491
351-400 all TREC runs - EA1 TREC av. AP 0.722 0.623
401-450 all TREC runs - EA1 TREC av. AP 0.770 0.615
301-450,601-700 all TREC runs - EA1 TREC av. AP 0.695 0.530
701-750 all TREC runs - EA1 TREC av. AP 0.682 0.502
751-800 all TREC runs - EA1 TREC av. AP 0.581 0.440

Weighted Information Gain[177]: change of

information from average retrieval state to
observed retrieval result state

301-450,601-700 MRF T EA2 AP 0.468
701-800 MRF T EA2 AP 0.574
801-850 MRF T EA2 AP 0.464
252 NP-05 topics MRF - EA2 RR 0.458
181 NP-06 topics MRF - EA2 RR 0.478

Query Feedback[177]: overlap between the

original result list ℓO and the result list derived
by constructing a query from ℓO

301-450,601-700 MRF T EA2 AP 0.464
701-800 MRF T EA2 AP 0.480
801-850 MRF T EA2 AP 0.422

First Rank Change[177]: stability of top result

when perturbing the documents of the result list

252 NP-05 topics MRF - EA2 RR 0.440
181 NP-06 topics MRF - EA2 RR 0.386

Linear combination of Weighted Information
Gain and First Rank Change[177]

252 NP-05 topics MRF - EA2 RR 0.525
181 NP-06 topics MRF - EA2 RR 0.515

Linear combination of Weighted Information

Gain and Query Feedback[177]

701-800 MRF T EA2 AP 0.637
801-850 MRF T EA2 AP 0.511

ODP based query ambiguity[123]: ambiguity

based on the number of different topics assigned
to query terms in an ODP search

100 topics (TREC

Novelty 2003/04)

LM T EA2 AP 0.597

70 topics (TREC

Novelty 2003/04)

LM T EA2 AP 0.808
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Topics Models/#Runs T-N Eval. Evaluation Correlations
Asp. Measure r τ ρ

ACSim (ρ(y, ỹ))[50]: spatial autocorrelation

based on document similarity

201-250 LM D EA2 AP 0.650 0.513
251-300 LM T EA2 AP 0.486 0.357
301-450,601-700 LM T EA2 AP 0.527 0.373
701-750 LM T EA2 AP 0.540 0.454
751-800 LM T EA2 AP 0.439 0.383

Covering Topic Score (IM2/CD2)[96]: coverage
of topic concepts in the result list

201-250 LM D EA2 AP 0.615
251-300 LM T EA2 AP 0.422
301-450, 601-700 LM T EA2 AP 0.454
701-750 LM T EA2 AP 0.313
751-800 LM T EA2 AP 0.356

AP Scoring[146]
301-450,601-650 BM25 T EA2 AP 0.328
301-450,601-650 BM25 D EA2 AP 0.345

Topic Prediction
∆QR1

∆QG
[40]

451-550 LM T EA2 AP 0.091
701-850 LM T EA2 AP 0.130

Ranking Dispersion[118] 301-450,601-700 BM25 T EA2 AP 0.55 0.41

Normalized Query-Commitment (NQC)[130]:

standard deviation of retrieval scores

201-250 LM D EA2 AP 0.556 0.414
251-300 LM T EA2 AP 0.431 0.300
301-450,601-700 LM T EA2 AP 0.563 0.419
451-550 LM T EA2 AP 0.527 0.303
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3.3 Clarity Score

In this section, the Clarity Score query effectiveness estimator will be explained in

more detail. To compute Clarity Score, the ranked list of documents returned for a

given query is used to create a query language model [97] where terms that often

co-occur in documents with query terms receive higher probabilities:

Pqm(w) =
∑

D∈R

P (w|D)P (D|Q). (3.1)

R is the set of retrieved documents, w is a term in the vocabulary, D is a document,

and Q is a query. In the query model, P (D|Q) is estimated using Bayesian inversion:

P (D|Q) = P (Q|D)P (D) (3.2)

where the prior probability of a document P (D) is zero for documents containing

no query terms.

Typically, the probability estimations are smoothed to give non-zero probability

to terms not appearing the query, by redistributing some of the collection probability

mass:

P (D|Q) = P (Q|D)P (D)

= P (D)
∏

i

P (qi|D)

≈ P (D)
∏

i

λP (qi|D) + (1− λ)P (qi|C)

(3.3)

where P (qi|C) is the probability of the ith term in the query, given the collection,

and λ is a smoothing parameter. The parameter λ is constant for all query terms,

and is typically determined empirically on a separate test collection.

Clarity Score is the Kullback-Leibler (KL) divergence between the query language

model Pqm and the collection language model Pcoll:

DKL(Pqm||Pcoll) =
∑

w∈V

Pqm(w) log
Pqm(w)

Pcoll(w)
. (3.4)

The larger the KL divergence, the more distinct is the query language model from

the collection language model. If the documents of the ranked list are very similar

to each other, Clarity Score assigns a relatively high score, as the divergence be-

tween the query language model and the collection language model will be large.

Ambiguous queries on the other hand are hypothesized to result in ranked lists that

are not topically homogeneous, which leads to a lower divergence between the two

language models.

3.3.1 Example Distributions of Clarity Score

In this section, we experimentally assess whether the homogeneity assumption de-

scribed above holds. For each query of our query sets, we calculate the Clarity

Scores of three ranked lists, namely the lists of:
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• the x relevant documents,

• a random sample of x documents from the pool of non-relevant documents,

and,

• a random sample of x documents from the pool of all documents in the collec-

tion containing at least one title topic term.

To derive the ranked lists for the relevant and the pool of non-relevant documents,

we rely on the relevance judgments (the so-called qrels), available for each TREC

test collection. For each topic, the qrels contain the relevant as well as the judged

non-relevant documents. The number x of documents to use is topic dependent and

equal to the total number of relevant documents available for a topic. Table 3.2

shows the minimum, average and maximum number of of relevant documents x
across all topics of a corpus. While in all test corpora topics occur with very few

relevant documents, the average number of relevant documents for the GOV2 col-

lection is significantly higher than for the topics of TREC Vol. 4+5 and WT10g.

We distinguish between two random samples: the non-relevant random sample

and the collection-wide random sample. The non-relevant random sample is derived

from documents judged as non-relevant in the qrels. As TREC assessments are made

of a pool of documents which have been returned as the top ranked documents by

participating systems, it can be expected that those non-relevant documents are

somewhat close in spirit to the relevant documents from the point of view of key-

word based retrieval. As the number of judged non-relevant documents is always

larger than the number of relevant documents, x samples are drawn. This sampling

process is repeated five times and the average Clarity Score of those five iterations

is reported. Note that only documents containing at least 50 terms were considered.

For the collection-wide sample, we rely on our stopped and stemmed indices. All

documents in the collection, that contain at least one of the title topic terms and

have a length of 50 or more terms (including stopwords), are used as sample space

and as before sampling is performed five times and the average is reported.

Corpus Topics #Relevant Documents
Min. Average Max.

TREC Vol. 4+5 301-450 3 93 474

WT10g 451-550 1 60 519

GOV2 701-850 4 181 617

Table 3.2: Minimum, average and maximum number of relevant documents in the rele-

vance judgments.

If the homogeneity assumption holds, we can expect a noticeable difference be-

tween the relevant, non-relevant and collection-wide Clarity Scores. Ideally, we would

expect the scores of the relevant lists to lie in a narrow band, as no non-relevant doc-

ument enters the language model and the ranked lists of results are unambiguous.

The Clarity Scores of the non-relevant lists are expected to be somewhat lower, but

still higher than those of the collection-wide lists as the non-relevant documents were
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mistaken to be relevant by at least one retrieval system, whereas the collection-wide

lists are generally created from a very large pool of random documents. In cases,

where the title topic consists of a single very specific term, the pool of random doc-

uments will become very small and no large difference in scores can be expected.

This effect is observed rarely though.

The results of this experiment are shown in the form of scatter plots in Figure 3.1.

Each point marks the Clarity Score of a query for a particular type of ranked list, ei-

ther relevant, non-relevant or collection-wide. In general, the results are as expected,

that is the Clarity Scores of the lists of relevant documents are higher than those

of the non-relevant and the collection-wide ones. However, there are differences

visible in the quality of separation between the three plots. Figure 3.1c contains

the results of the GOV2 collection. Here, in all instances, the scores of the lists

of relevant documents are higher than those of the two random samples and fur-

thermore, there are only 22 cases (out of 150) where the collection-wide samples

achieve a higher score than the non-relevant samples. Slightly less well separated

are the queries of TREC Volumes 4+5 (Figure 3.1a); for one query2, the list of rel-

evant documents has a slightly lower score than the two random samples and in

33 additional cases the collection-wide samples are considered more homogeneous

than the non-relevant samples. The results of the WT10g collection in Figure 3.1b

are worst with respect to the separability of the different list types. There exist nine

queries where the Clarity Scores of the lists of relevant documents are lower than

the scores of one or both random samples. For a further 33 queries, the scores of the

collection-wide samples are higher than the non-relevant random samples. These

results indicate, that Clarity Score is likely to perform better on GOV2 and TREC

Vol. 4+5 than on WT10g, since the separation between the relevant and random

samples is considerably clearer for them.

3.4 Sensitivity Analysis

During the analysis of Clarity Score’s homogeneity we assumed the number of feed-

back documents x to be query dependent, equaling the number of relevant docu-

ments existing for a topic. This knowledge over the number of relevant documents

is, of course, not available in practical applications and the original Clarity Score

algorithm utilizes a uniform setting of x across all queries, with x = 500 being re-

ported to be a good value [45].

In this section, we investigate the influence of different factors affecting effec-

tiveness prediction quality by giving examples of the behavior of Clarity Score and

Query Feedback [177] as their (i) parameters, (ii) the retrieval setting, (iii) the

collections and (iv) the query sets vary. In particular we are interested how sen-

sitive Clarity Score actually is to the setting of x and how well it can perform for

the WT10g collection, having in mind the homogeneity analysis of Section 3.3.1.

Additionally, we perform a similar analysis for the Query Feedback algorithm, as it

2Title topic 344: “Abuses of E-Mail”; the corresponding stemmed and stopword-free query is

“abuse e mail”
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(b) Queries 451-550 (WT10g)
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(c) Queries 701-850 (GOV2)

Figure 3.1: Distribution of Clarity Scores of the lists of relevant documents, sampled lists

of non-relevant documents and sampled lists of collection-wide documents.

has been shown to achieve a good prediction performance across various TREC test

collections. The parameters of Query Feedback are the number t = |q′| of terms q′

consists of and the number of top documents s for which the overlap between the

two rankings L and L′ is considered.

In Chapter 2 we already observed that the retrieval approach relied upon has

a considerable influence on the accuracy of prediction algorithms. As will become

evident shortly, the same observation holds for post-retrieval algorithms. For this

reason, we evaluate Clarity Score and Query Feedback for a number of parame-
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ters of the Language Modeling with Dirichlet smoothing approach, in particular

µ = {100, 500, 1000, 1500, 2000, 2500}. As in all experiments, we derive the queries

from the TREC title topics.

3.4.1 Sensitivity of Clarity Score

Figure 3.2 shows the development of Clarity Score’s performance in terms of the lin-

ear correlation coefficient (the trends are similar for Kendall’s τ). The number x of

feedback documents is evaluated for the range of x = {10, 50, 100, 250, 500, 750, 1000}.
Figures 3.2a, 3.2b and 3.2c display the behavior of the three different query sets of

TREC Vol. 4+5. While queries 301-350 are relatively insensitive to the specific

number of feedback documents and do not show much change in performance once

250 feedback documents are reached, queries 351-400 exhibit a very different be-

havior. At 10 feedback documents and µ = 2000, the linear correlation coefficient

is as high as r = 0.66, while at 1000 feedback documents the correlation has de-

graded to r = 0.27. Finally, queries 401-450 show a continuous increase in r for

the lower levels of smoothing, while for µ = 1500 and above, Clarity Score’s perfor-

mance peaks at 250 feedback documents. In more general terms, for this collection

the observation holds that low levels of smoothing favor a good Clarity Score per-

formance: across most settings of x, the lowest level of smoothing (µ = 100) leads

to the highest correlation.

In Section 3.3.1, we hypothesized that Clarity Score’s performance will be worst

for WT10g, due to the insufficient separation between the scores of the relevant, the

non-relevant nd the collection-wide randomly drawn documents. This hypothesis is

now empirically confirmed when considering Figures 3.2d and 3.2e. They contain

the results of the two query sets of the WT10g collection. Compared to the other

query sets, the prediction performance is considerably lower, achieving in the most

favorable setting r = 0.43. The influence of the level of smoothing is visible, but

less clear: while for queries 451-500 µ = 100 gives the highest correlation, the same

level of smoothing leads to a low performance when considering queries 501-550.

The influence of the number of feedback documents also varies; for queries 451-

500, at x = 10 the Clarity Score’s performance peaks for all but one smoothing level

(µ = 100). In contrast, for queries 501-550 the highest performance is achieved

when x is set to between 250 and 1000, depending on µ.

Finally, the results for the query sets of the GOV2 corpus are shown in Fig-

ures 3.2f, 3.2g and 3.2h. Here, overall a greater amount of smoothing leads to

a better performance and the optimal setting of x varies between 100 and 250.

The setting of µ that leads to the highest correlation, often does not result in the

best retrieval performance as measured in MAP. Consider Table 2.2, which contains

the overview of the retrieval effectiveness for all query sets and various settings of µ.

In all but one case µ ≥ 1000 results in the highest retrieval effectiveness. However,

for queries 451-500 for instance, the highest linear correlation coefficient (r = 0.43)

is achieved for the setting of µ = 100 and x = 500 feedback documents. The MAP of

this retrieval run is only 0.15 though. This is significantly worse than the MAP of the

best performing run (0.21), which in turn leads to a maximum predictor correlation
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(b) Queries 351-400
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(c) Queries 401-450
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(d) Queries 451-500
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(e) Queries 501-550
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(f) Queries 701-750
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(g) Queries 751-800
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(h) Queries 801-850

Figure 3.2: Sensitivity of Clarity Score towards the corpus, the smoothing parameter µ and

the number of feedback documents.
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Corpus Queries Best Standard Worst

TREC Vol. 4+5 301-350 0.545 0.539 0.338
351-400 0.659 0.311 0.268
401-450 0.573 0.573 0.438

WT10g 451-500 0.323 0.260 0.217
501-550 0.287 0.251 0.180

GOV2 701-750 0.635 0.603 0.406
751-800 0.488 0.444 0.279
801-850 0.387 0.387 0.062

Table 3.3: Linear correlation coefficient r of the best, standard (500 feedback documents)

and worst performing Clarity Score with respect to the retrieval run with the highest re-

trieval effectiveness as given in Table 2.2.

Corpus Queries Best Standard Worst
TREC Vol. 4+5 301-350 0.436 0.420 0.302

351-400 0.503 0.217 0.155
401-450 0.367 0.305 0.305

WT10g 451-500 0.300 0.129 0.118
501-550 0.243 0.223 0.053

GOV2 701-750 0.475 0.415 0.257
751-800 0.377 0.330 0.243
801-850† 0.247 0.235 0.061

Table 3.4: Kendall’s τ of the best, standard (500 feedback documents) and worst perform-

ing Clarity Score with respect to the retrieval run with the highest retrieval effectiveness as

given in Table 2.2.

of r = 0.32.

To stress the point that the standard setting of 500 feedback documents may

not always be adequate for Clarity Score, we present in Tables 3.3 and 3.4 the

linear correlation coefficient r and Kendall’s τ that Clarity Score achieves with 500
feedback documents (standard) as well as the correlations of the best and worst

performing feedback document setting. It is evident, that the feedback parameter

is important for the accuracy of the Clarity Score algorithm and a wrong setting of

this parameter can lead to poor results.

3.4.2 Sensitivity of Query Feedback

Figure 3.3 shows Query Feedback’s sensitivity to changes in its parameter settings

exemplary for queries 351-400 (reported as linear correlation coefficient r) and

queries 451-500 (reported as Kendall’s τ for comparison). The parameters s and t
are evaluated for the range of s = {20, 50, 100} and t = {2, 5, 10, 20} respectively.

Noticeable, as for Clarity Score, is the dependency on the correct parameter setting.

The correlations achieved fluctuate widely, depending on s and t but also depending

on the query set. For instance, for queries 351-400, the setting of s = 20 results
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Figure 3.3: Sensitivity of Query Feedback towards its parameters and the smoothing pa-

rameter µ of the retrieval approach (language modeling with Dirichlet smoothing).

in a very stable and good performance across all t except for t = 2, whereas for

queries 451-500, t = 2 performs best across all settings of s. Finally, the effect of

the level of smoothing on the algorithm’s quality is generally reversed compared to

Clarity Score: the lower the level of smoothing µ, the less well the Query Feedback

algorithm performs.

The conclusion to be drawn from this analysis is that both Clarity Score and

Query Feedback can be very sensitive to both the initial retrieval parameter tuning,

as well as their own parameters. Furthermore, parameters tuned to one query set

do not produce reliable results for other query sets. Even when the query set and

the collection are fixed, the performance of the predictors vary depending on the

parameter settings of the retrieval approach.

3.5 Clarity Score Adaptations

In this section we introduce our proposed adaptations to Clarity Score. First the

approach to setting the number of feedback documents automatically is described,

followed by the frequency dependent term selection.

3.5.1 Setting the Number of Feedback Documents Automatically

In the literature, setting the number of feedback documents to a fixed value for

all queries is the standard approach. Cronen-Townsend et al. [45] suggest that

the exact number of feedback documents used is of no particular importance and

500 feedback documents are proposed to be sufficient. In Section 3.4 experimental

results showed that the performance of Clarity Score indeed depends on the number

of feedback documents.

In real-world situations, such a dependence on the tuning of the parameter in

order to achieve meaningful performance can have adverse effects if training on one

query set does not translate to another query set. Preferably, it should be possible



Section 3.5 – Clarity Score Adaptations | 81

to set parameters automatically such that performance on the evaluation set is close

to or better than the best performing parameter setting.

When computing Clarity Score, if the query language model is created from a

mixture of topically relevant and off-topic documents, its score will be lower com-

pared to a query language model that is made up only of topically relevant docu-

ments, due to the increase in vocabulary size of the language model and the added

noise.

Whereas Clarity Score sets the prior to zero for documents not containing at least

one query term, Adapted Clarity sets the prior to zero for documents not containing

all m query terms, independent of the rank of the document in the result list. This

effectively sets the number of feedback documents in the Clarity Score automati-

cally; for each query, the number of feedback documents utilized in the generation

of the query language model is equal to the number of documents in the collection

containing all query terms.

As an example, consider TREC title topic 476: “Jennifer Aniston”. Among the

top 1000 retrieved documents for the respective query there are 214 documents that

contain both terms, 780 contain only the term Jennifer and 6 documents contain

only the term Aniston. Including all documents in the query language model that

do not contain both query terms adds noise to the query language model. Although

documents containing only the term Aniston are likely to be on topic as well, the

method works well as an automatic threshold. In practice, in cases where there are

fewer than 10 documents fulfilling the requirement, documents with m − 1 query

terms are included. Note that a document returned at rank i that does not contain

all query terms is ignored, while a document returned at rank j > i is included in

the query language model if it contains all query terms.

3.5.2 Frequency-Dependent Term Selection

In Section 3.4.1 we observed that the performance of Clarity Score depends on

the initial retrieval run. In the Language Modeling approach Clarity Score often

performs better with retrieval algorithms relying on a small amount of smoothing.

Since increased smoothing in many instances though increases the retrieval effec-

tiveness (Table 2.2), retrieval with greater smoothing is preferred. Hence, our goal

is to improve Clarity Score for retrieval runs with greater smoothing. Increased

smoothing also increases the influence of high frequency terms on the KL diver-

gence calculation (Equation 3.4), despite the fact that terms with a high document

frequency do not aid in retrieval and therefore should not have a strong influence

on Clarity Score. Thus, we would like to minimize the contribution of terms that

have a high document frequency in the collection.

The situation is similar in a retrieval setting where we estimate a query model

using feedback documents. One proposed solution by Zhai and Lafferty [169], uses

expectation maximization (EM) to learn a separate weight for each of the terms

in the set of feedback documents. In doing this they reduce noise from terms that

are frequent in the collection, as they have less power to distinguish relevant from

nonrelevant documents.
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A similar approach is proposed by Hiemstra et al. [76]. The effect of both ap-

proaches is to select the terms that are frequent in the set of feedback documents,

but infrequent in the collection as a whole.

Generally, a notable requirement of web retrieval is speed. Running EM to con-

vergence, although principled, would be computationally impractical. As a remedy,

to approximate the effect of selecting terms frequent in the query model, but infre-

quent in the collection, we select the terms from the set of feedback documents that

appear in N% of the collection, where N = {1, 10, 100}. We leave the comparison

of a fixed document frequency-based threshold and a variable EM-based threshold

to future work.

3.6 Experiments

We tested Adapted Clarity, that is our adaptations on Clarity Score, on the TREC

corpora and query sets already employed in Chapter 2. Apart from Clarity Score,

for reasons of comparison we include a number of the best performing pre-retrieval

predictor scores as already presented in the previous chapter. We also implemented

four post-retrieval prediction methods, described in Section 3.2, which base their

predictions on different types of information:

• Ranking Robustness [176] (based on document perturbation),

• Query Feedback [177] (based on query perturbation),

• Normalized Query-Commitment (NQC) [130] (based on retrieval scores), and,

• Autocorrelation ρ(y, ỹ) (ACSim) [50] (based on document content).

The two parameters of the Robustness approach are the number of top ranked

documents to include in the perturbation and the number of trials. We settled on 50
top documents and 100 perturbation trials; varying the parameters yielded no great

changes in performance in line with the observations in [176].

The parameter settings of the Query Feedback approach were determined by

training s and t on one query set and evaluating it on another. That is, the best

setting of s and t on queries 301-350 was used to evaluate query sets 351-400 and

401-450; similarly for the query sets of WT10g and GOV2.

The single parameter of NQC is the number of top ranked documents to include

in the calculation of the standard deviation. Our results are based on the top 100
documents as recommended in [130]. Similarly to the Robustness approach, small

changes in the parameter do not affect the performance of this approach.

The most complex of the implemented post-retrieval predictors is ACSim whose

parameters are the number of top ranked documents to include in the calculations,

the number of most similar documents to derive the weightest sum of scores from

and the similarity measure. Due to time constraints we did not train this model and

instead chose the parameter settings recommended by Diaz [50] for our data sets.

In all reported experiments that follow, the smoothing parameter µ is set indi-

vidually for each query set, according to the best performing retrieval effectiveness
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TREC Vol. 4+5 WT10g GOV2 Av.

Approach N 301-350 351-400 401-450 451-500 501-550 701-750 751-800 801-850

AvIDF 0.591† 0.374† 0.576† 0.153 0.221 0.393† 0.315† 0.172 0.361
SCS 0.578† 0.319† 0.518† 0.087 0.189 0.325† 0.278 0.096 0.310
MaxSCQ 0.122 0.507† 0.524† 0.429† 0.393† 0.473† 0.371† 0.306† 0.397
MaxVAR 0.369† 0.445† 0.764† 0.381† 0.533† 0.435† 0.434† 0.345† 0.477
AvPMI 0.316† 0.376† 0.438† 0.288† 0.235 0.431† 0.456† 0.037 0.327
Query Feedback 0.318† 0.427† 0.382† 0.290† 0.216 0.602† 0.535† 0.490† 0.415
ACSim 0.330† 0.536† 0.525† 0.379† 0.353† 0.550† 0.469† 0.488† 0.457
Robustness 0.526† 0.424† 0.581† 0.312† 0.489† 0.340† 0.307† 0.415† 0.429
NQC 0.545† 0.472† 0.678† 0.569† 0.385† 0.314† 0.297† 0.413† 0.469
Clarity Score 100% 0.539† 0.310† 0.573† 0.260 0.251 0.603† 0.444† 0.387† 0.430
Adapted Clarity 10% 0 .656† 0 .409† 0.572† 0 .348† 0 .253 0.527† 0 .467† 0 .470† 0.471
(Fixed) 1% 0.664† 0 .443† 0 .674† 0 .545† 0.199 0.527† 0.426† 0.386† 0.495
Adapted Clarity 100% 0 .549† 0 .485† 0 .666† 0 .426† 0 .397† 0.619† 0.603† 0.335† 0.519
(Automatic) 10% 0 .629† 0 .529† 0 .639† 0 .428† 0 .366† 0.577† 0 .602† 0.356† 0.524

1% 0 .633† 0 .511† 0 .706† 0.592† 0 .281 0.542† 0 .550† 0.370† 0.535

Table 3.5: Linear correlation coefficient r with respect to the retrieval run with the best mean average precision as given in Table 2.2.

Given in bold is the best performing predictor for each query set. The Adapted Clarity variations that outperform Clarity Score are given

in italics. Correlations significantly different from zero are marked with †(α = 0.95).
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TREC Vol. 4+5 WT10g GOV2 Av.

approach N 301-350 351-400 401-450 451-500 501-550 701-750 751-800 801-850

AvIDF 0.314† 0.271† 0.313† 0.249† 0.187 0.277† 0.253† 0.160 0.253
SCS 0.286† 0.227† 0.277† 0.174 0.136 0.211† 0.240† 0.095 0.206
MaxSCQ 0.181 0.422† 0.474† 0.435† 0.270† 0.331† 0.291† 0.209† 0.327
MaxVAR 0.353† 0.434† 0.494† 0.339† 0.327† 0.288† 0.318† 0.243† 0.350
AvPMI 0.176 0.290† 0.232† 0.208† 0.212† 0.301† 0.314† 0.034 0.221
Query Feedback 0.294† 0.274† 0.224† 0.237† 0.160 0.432† 0.420† 0.275† 0.290
ACSim 0.332† 0.358† 0.471† 0.363† 0.265† 0.377† 0.359† 0.248† 0.347
Robustness 0.423† 0.323† 0.424† 0.208† 0.315† 0.216† 0.199† 0.308† 0.302
NQC 0.377† 0.371† 0.381† 0.409† 0.315† 0.147 0.240† 0.255† 0.312
Clarity Score 100% 0.420† 0.217† 0.305† 0.129 0.223† 0.415† 0.330† 0.235† 0.284
Adapted Clarity 10% 0 .474† 0 .304† 0 .398† 0 .225† 0 .225† 0.348† 0 .359† 0 .291† 0.328
(Fixed) 1% 0 .485† 0 .345† 0 .497† 0 .345† 0.160 0.351† 0.310† 0 .272† 0.346
Adapted Clarity 100% 0 .423† 0 .376† 0 .448† 0 .217† 0 .286† 0 .420† 0 .441† 0.214† 0.353
(Automatic) 10% 0 .461† 0 .397† 0 .465† 0 .260† 0 .277† 0.397† 0.457† 0.221† 0.367

1% 0.500† 0 .400† 0.562† 0 .374† 0.184 0.372† 0 .418† 0 .250† 0.383

Table 3.6: Kendall’s τ with respect to the retrieval run with the best mean average precision as given in Table 2.2. Given in bold is the

best performing predictor for each query set. The Adapted Clarity variations that outperform Clarity Score are given in italics. Correlations

significantly different from zero are marked with †(α = 0.95).
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setting (Table 2.2). Tables 3.5 and 3.6 contain the linear correlation coefficient r and

Kendall’s τ respectively of the baselines, the original Clarity Score and the Adapted

Clarity variations. The rows marked with Fixed have the same fixed number of feed-

back documents for all queries as well as frequency-dependent term selection. To

make the results comparable with the original Clarity Score, the reported numbers

are the correlation coefficients achieved with the standard setting of 500 feedback

documents. The rows marked Automatic have their number of feedback documents

set automatically as described in Section 3.5.1. The parameter N determines the

amount of frequency-dependent term selection. At N = 100%, all terms indepen-

dent of their document frequency are included in the KL divergence calculation, at

N = 10% (N = 1%) only terms occurring in less than 1
10

th ( 1
100

th) of the documents

in collection are included.

The final column of Table 3.5 contains the average linear correlation coefficient

over all data sets. Since r is not additive due to its skewed distribution, the average

correlation does not exactly correspond to the arithmetic mean [112]. In Table 3.6

the arithmetic mean of the Kendall’s τ values are reported.

When testing the significance of the difference between the original Clarity Score

and the variations of Adapted Clarity, the outcome is corpus dependent. In the

case of the linear correlation coefficient r and TREC Vol. 4+5 all Adapted Clarity

variations apart from one (automatic Adapted Clarity with N = 100%) perform

significantly better than the original Clarity Score. For the queries of the WT10g

corpus only two variations significantly outperform the baseline, namely automatic

Adapted Clarity with N = 1% and N = 100% respectively. No such observations can

be made about the queries of GOV2: none of the Adapted Clarity variations result

in a significantly higher correlation than the original Clarity Score.

The results of the significance tests for Kendall’s τ are similar. For the queries of

TREC Vol. 4+5 all variations of Adapted Clarity perform significantly better than

the Clarity baseline, whereas for the queries of the WT10g and GOV2 corpora none

of the proposed adaptations results in a significantly better performance.

In the reported experiments in Tables 3.5 and 3.6, query 803 was removed in

the evaluation of query set 801-850, as it was an extreme outlier. Due to stopword

removal, the title topic “may day” is converted to the query “day”. One would expect

the retrieval effectiveness of the document content based predictors of this query to

be very low. The term “day” is not specific and occurs in a large number of docu-

ments. However, while the retrieval effectiveness is low (AP is 0.0) as expected, the

document content based predictors assign it very high scores, in fact, Clarity Score

assigns it the highest score among the 50 queries in the set by a wide margin. This

surprising result can be explained when considering the makeup of the result list.

We manually assessed the top 50 retrieved documents and found that the documents

either contain very large HTML forms with a hundreds of different “day” options or

large lists and tables, mostly filled with numbers and the term “day”. Duplicates and

near duplicates lead to the outcome that 40 out of the 50 documents fall into four

groups of near-duplicates, severely misleading the document content based predic-

tors. Since the resulting correlations are then dominated by this extreme outlier we

decided to remove this query from the evaluation.
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3.7 Discussion

A considerable fraction of queries submitted to Web search engines occur infre-

quently, thus it is virtually impossible to create a representative query sample with

relevance judgments to tune parameters.

For short unambiguous queries, constraining the language model to documents

containing all query terms adds less noise to the language model. For terms that are

ambiguous, forcing their inclusion increases noise, but this is desirable because we

are capitalizing on noise in the language model to identify ambiguous queries. In the

case that a query is unambiguous, but contains non-content terms, we compensate

by selecting terms from the language model that are infrequent in the collection.

Thus in Adapted Clarity non-content terms do not harm queries that are otherwise

unambiguous.

Tables 3.5 and 3.6 show that similarly to pre-retrieval prediction methods, the

performance of post-retrieval approaches also fluctuates widely over different query

sets and corpora. For instance, Query Feedback achieves no significant correlation

on query set 501-550 both in terms of r and τ , whereas on query set 701-750 it is

among the best performing methods with r = 0.60 and τ = 0.43 respectively. The

range of predictor performance between the query sets of a single corpus is also con-

siderable as evident for instance for Clarity Score and its correlation on query set

351-400 (r = 0.31) and on query set 401-450 (r = 0.57) respectively. The query sets

of the WT10g corpus in general appear to be the most difficult for most of the eval-

uated post-retrieval methods to predict the query effectiveness for. Clarity Score’s

correlations are not significantly different from zero for both query sets, while both

Query Feedback and ACSim perform considerably worse on WT10g’s query sets than

on the query sets of the other two corpora. The approach least affected by WT10g

is NQC which exhibits moderate correlations for both query sets of WT10g. On the

other hand, NQC performs worse than other post-retrieval approaches on GOV2, an

observation we cannot explain yet and which requires further investigation.

When we consider the performance of the Adapted Clarity variations in compar-

ison to Clarity Score we observe substantial improvements, which as pointed out

in the previous section, are for some query sets large enough to be statistically sig-

nificant. The largest change in correlation is observed for query set 451-500 of the

WT10g corpus, where Clarity Score reaches correlations of r = 0.26 and τ = 0.13 re-

spectively whereas Adapted Clarity with automatically set feedback documents and

N = 1% results in r = 0.59 and τ = 0.37 respectively. When we consider the aver-

age correlation (last column in Tables 3.5 and 3.6) the Adapted Clarity variations

with frequency-dependent term selection (the rows are marked as Fixed) outperform

Clarity Score and in turn the Adapted Clarity variations with frequency-dependent

term selection and automatic setting of the number of feedback documents (the

rows are marked as Automatic) perform better than the variations with a fixed doc-

ument feedback setting. With the exception of Adapted Clarity with fixed number of

feedback documents and N = 1%, each Adapted Clarity variation outperforms Clar-

ity Score for at least six of the eight query sets. These observations hold for both the

linear correlation coefficient and Kendall’s τ . Adapted Clarity with automatically
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set feedback documents and N = 1% results in the highest average correlation,

indicating the benefit of both proposed adaptations.

Notable are the prediction methods that perform closest to Adapted Clarity. In

the case of the linear correlation coefficient, the two prediction methods with the

highest average correlation after the Adapted Clarity variations are MaxVAR and

NQC, outperforming the more complex prediction methods based on document and

query perturbations. With respect to Kendall’s τ , MaxVAR is the best performing

method (except for Adapted Clarity), followed by ACSim. This result shows, that

post-retrieval approaches do not necessarily perform better than pre-retrieval pre-

diction methods, in fact the pre-retrieval predictor MaxVAR outperforms all but the

Adapted Clarity variations.

Predicting the quality of queries 451-550 has proven to be the most difficult

across a range of predictors. In a Web environment, there are potentially millions of

relevant documents for a given query. We hypothesize that the language of news ar-

ticles and government websites is less varied, and the documents in these collections

are more topically cohesive than Web pages. A single Web page contains a large pro-

portion of content not related to the topic of the page itself, and furthermore even

among the set of Web pages relevant to a given query, there may be a large number

of different genres represented. For example in a Web setting, the set of relevant

results may include pages that are largely informational (such as Wikipedia pages),

pages that are largely commercial in nature, personal home pages, blogs, etcetera.

Whereas the TREC Vol. 4+5 and GOV2 collections can be expected to be free of

noisy pages such as spam, WT10g is not.

Furthermore, while the style for news articles is determined by a news organi-

zation and enforced to a large extent by the editors at that organization, on the

Web the content is written by members of the general public with no style guide-

lines in place. Thus we hypothesize that one reason for the difficulty of achieving

a good performance with Clarity Score on the Web corpus is the large variance in

vocabulary, even among topically related documents. Since Clarity Score builds on

the hypothesis that relevant documents have a more focused term distribution than

non-relevant documents this metric correlates less well with noisy relevant docu-

ments (see Section 3.3.1).

3.8 Conclusions

The work reported in this chapter has focused on post-retrieval prediction algo-

rithms. We first provided a broad overview of existing prediction methods, then

focused on one particular approach: Clarity Score. Based on an analysis of Clarity

Score’s sensitivity to its parameter settings, we proposed two adaptations, namely

setting the number of feedback documents used in the estimation of the query lan-

guage model individually for each query to the number of documents that contain

all query terms, and ignoring high-frequency terms in the KL divergence calcula-

tion. We evaluated these changes on three TREC test collections and compared

them to a number of strong baseline approaches. We found that on average across
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all evaluated query sets, Adapted Clarity is the best performing prediction method.

Significant differences between Adapted Clarity and the original Clarity Score are

only observed consistently for the queries of TREC Vol. 4+5 though. Another no-

table finding is the observation that the pre-retrieval predictor MaxVAR outperforms

most evaluated post-retrieval predictors (with the exception of Adapted Clarity).



Chapter 4

When is Query Performance

Prediction Effective?

4.1 Introduction

In the previous two chapters, we have evaluated the quality of query performance

prediction methods by reporting how well the predicted performance of a set of

queries correlates with the queries’ retrieval effectiveness derived for a particular

retrieval approach. As correlation measures we relied on the two measures com-

monly reported, namely the linear correlation coefficient r and the rank correlation

coefficient Kendall’s τ .

In Chapter 1 we described the perceived benefits of query performance predic-

tion methods and their envisioned applications in adaptive retrieval systems. The

current evaluation methodology, however, does not consider, whether - or more

accurately when - those benefits will indeed be realized. Query effectiveness predic-

tion research focuses on the development of algorithms that increase the correlation

between the retrieval effectiveness and the predicted performance. While such an

evaluation is straight-forward, it lacks interpretability. For instance, if on a particu-

lar data set one prediction method achieves a correlation of τ = 0.2, while another

achieves τ = 0.4, does it mean the latter predictor is double as effective in prac-

tice? Knowing the correlation of a prediction method does not directly translate to

knowing how the method will influence the performance of an adaptive retrieval

system. In order to determine the relationship between the evaluation and the ap-

plication of query effectiveness prediction methods, it is required to apply them in

practice. This step is often not executed as evident in the strong contrast between

the number of prediction algorithms that have been proposed over the years, and

the number of publications dedicated to applying those prediction methods in an

operational setting. It thus remains relatively unknown when a prediction method

can be considered to perform well enough to be employable in an adaptive retrieval

system.

This is an important knowledge gap, and one that we attempt to bridge in this

chapter. Specifically, we investigate the relationship between the rank correlation

coefficient τ a prediction method achieves and the prediction method’s effect on
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retrieval effectiveness in two operational settings: Meta-Search (MS) [159, 160,

167] and Selective Query Expansion (SQE) [4, 72, 102, 117, 46, 167]. In SQE,

pseudo-relevance feedback [82, 126] is not applied uniformly to all queries, instead

the decision whether to apply automatic query expansion (AQE) is made for each

query individually. In the MS setting that we utilize in our experiments, each query

is submitted to a number of systems and the prediction method determines which

system’s output is best and returned to the user. We chose these two operational

settings because they are the two most often named potential practical applications

for query performance prediction. Kendall’s τ was chosen as correlation to evaluate

as it lends itself naturally to our experiments (Section 4.3.2).

Our goal in this chapter is to determine at what levels of correlation a prediction

method can be considered to be of high enough quality to produce tangible positive

improvements in retrieval effectiveness in an adaptive retrieval component. If we

were able to determine such thresholds, we could infer from a correlation-based

evaluation, whether the quality of a prediction method is sufficient for a particular

application. Thus, we aim to answer the following question: When is query perfor-

mance prediction effective? Such a general question naturally leads to a number of

more pointed questions that can be investigated:

• Is it worth (does the system improve) running a time consuming prediction

method with a recorded performance of τ = 0.3?

• If one prediction method improves the correlation coefficient by 0.05, how

does that affect the effectiveness of an adaptive retrieval system?

• At what levels of correlation can one be reasonably confident that a certain

percentage of queries will improve their performance in an adaptive retrieval

system over the non-adaptive baseline?

One possible approach to answering these questions is to predict the effective-

ness of a set of queries, determine the correlation the predictor achieves and then

calculate the retrieval effectiveness of the set of queries on the non-adaptive base-

line and the adaptive retrieval system. If the effectiveness of the adaptive system

is higher than the effectiveness of the baseline system, we might conclude that the

correlation the prediction method achieved, is sufficient for the predictor to be vi-

able in practice. As will become apparent in Section 4.2, such an approach may lead

to misleading results. Based on the outcome of a single prediction method and one

data set, one cannot draw conclusions about the level of correlation that indicates a

high enough predictor accuracy to improve the retrieval effectiveness of an adaptive

system in general.

If, on the other hand, we can perform such an experiment multiple times with

diverse retrieval systems and predictions methods, we can gain a much better un-

derstanding by considering the change in adaptive retrieval performance on average.

Considering the resources at our disposal for this work, the utilization of diverse re-

trieval systems and prediction methods covering a wide range of correlations is not

possible. In particular, at the time of this thesis’ completion, the best prediction

methods reach a rank correlation of τ ≈ 0.6. For this reason, we base our empirical
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studies on several TREC data sets. Instead of the output of existing query effec-

tiveness prediction methods, we rely on generated predictions to analyze the entire

spectrum of correlations so as to characterize precisely the relationship between

the evaluation of query performance prediction methods and their effectiveness in

operational settings.

In this chapter we aim to demonstrate the following:

• the correlation a query performance prediction method needs to achieve on

average to be viable in practice, is dependent on the operational setting,

• in SQE, under stringent assumptions, moderate to high τ coefficients are re-

quired to obtain reliable improvements to retrieval performance, and,

• in MS, low to moderate correlations are already sufficient; however, for these

improvements to be statistically significant, moderate to high correlations are

also required.

The remainder of this chapter is organized as follows: in Section 4.2 we present

an overview of works that have attempted to apply query performance prediction

in the SQE and MS setting respectively. The section also contains an example of the

potential for drawing misleading conclusions when a single predictor is applied. In

Section 4.3 we describe our approach to overcoming this problem by generating a

substantial number of data sets and predictions of query effectiveness. The SQE and

MS experiments based on these generated data sets and predictions are detailed in

Sections 4.4 and 4.5. We then discuss the implications of our study in Section 4.6.

We close the chapter in Section 4.7 with an overview of the conclusions reached.

4.2 Related Work and Motivation

In the following two sections we provide an overview of the literature that describes

the application of query performance prediction in the SQE and MS setup. As part

of the overview, we also indicate the level of success reported in these works. In

Section 4.2.3 we offer a motivation for our study on a concrete example.

4.2.1 Applications of Selective Query Expansion

The two SQE scenarios that were evaluated by Yom-Tov et al. [167] are based on the

notion that easy queries, that is queries resulting in a high retrieval effectiveness,

further improve with the application of pseudo-relevance feedback. Conversely,

queries that are deemed difficult and which thus achieve only a low retrieval effec-

tiveness degrade with the application of AQE. The rationale is the following: easy

queries will have relevant documents among the top ranked results, and therefore

an AQE algorithm [29, 107, 162, 163], which derives additional query terms from

the top ranked documents returned for the initial query, is likely to derive terms

related to the information need1. The ranked list retrieved for the expanded query

1Negative feedback from documents assumed not relevant is also possible [154], but will not be

discussed further here.
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further improves the quality of the results. Difficult queries on the other hand have

few or no relevant documents in the top ranks of the result list and thus an AQE

algorithm is likely to add irrelevant and misleading terms to the query. This results

in query drift when the expanded query is used for retrieval and degrades the result

quality. Selective query expansion builds on these assumptions: if we can predict

the performance of a query, we selectively expand the queries that perform well ac-

cording to the predictor method, while not expanding the poorly performing ones.

This strategy should lead to an improvement over uniformly applying AQE to all

queries as it aims to identify those, which will be hurt by the application of AQE.

In the first scenario reported by Yom-Tov et al. [167], a support vector ma-

chine [44, 144] is trained on features derived from the ranked list of results of the

original query to classify queries as either to be expanded or not to be expanded.

In the second scenario, a query performance prediction method is used to rank the

queries according to their predicted effectiveness. The 85% of queries predicted to

perform best, are derived from TREC description topics, a procedure that simulates

AQE. The queries predicted to be among the bottom 15% performing ones are de-

rived from TREC title topics, simulating the use of non-expanded queries. In both

scenarios, selectively expanding queries based on a predictor proves slightly better

than uniformly expanding all queries, with a change in MAP of +0.001.

A similar scenario with a different predictor is evaluated by Amati et al. [4].

Here, a predicted score threshold is fixed in a heuristic fashion and queries with pre-

dicted scores above the threshold are expanded, while queries with predicted scores

below the threshold are not. In the experiments, the greatest improvement reported

is from a MAP of 0.252 when all queries are uniformly expanded, to 0.256 when the

queries are selectively expanded. Better results are reported by Cronen-Townsend

et al. [46], where the threshold of when (not) to expand a query is learned. Of

the data sets evaluated, the largest improvement is an increase in MAP from 0.201
(AQE on all queries) to 0.212 (selective AQE). In the worst case though, a consider-

able degradation in effectiveness is also observed: from a MAP of 0.252 (AQE on all

queries) to 0.221 (selective AQE).

He and Ounis [72] combine selective query expansion with collection enrich-

ment: depending on how the prediction method predicts a query to perform, it is

either left unchanged, expanded based on the ranked list of results of the local cor-

pus or expanded based on the ranked list of results of an external corpus. The eval-

uation yields mixed results, while for one data set MAP improves from 0.220 (AQE

on all queries) to 0.236 (selective AQE), no change in effectiveness is observed for a

second data set when applying the same approach. A follow-up on this work by Peng

et al. [117] applied the same approach to Enterprise document search. Depending

on the choice of external corpus and prediction method, the change in effectiveness

varies. In the bast case, MAP improves from 0.381 (AQE on all queries) to 0.396
(selective AQE), in the worst case MAP degrades from 0.381 to 0.358.

Finally, Macdonald and Ounis [102] introduce a “selective candidate topic cen-

tric” approach to AQE in the realm of expert search [42]. Here, the decision is not

made between which queries to apply AQE to and which queries to leave unaltered

but instead a decision is made between which documents to include in the pool of
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documents to draw the query expansion terms from and which not. In expert search

the task is to retrieve a list of candidate experts in response to a textual query. The

expertise of each candidate is represented by a set of documents assigned to her

and candidates are ranked according to their document profile. AQE is performed

by extracting terms from the top retrieved candidate profiles and their respective

documents. Macdonald and Ounis [102] found considerable topic drift in AQE due

to candidates with diverse areas of expertise and thus a diverse set of profile doc-

uments. They propose the following selective AQE procedure: the cohesiveness

of all top ranked profiles is predicted and profiles with a high predicted cohesive-

ness contribute all their documents to the AQE process, while profiles predicted

to be un-cohesive contribute only a small amount of their profile documents. No-

table is the fact, that the cohesiveness predictor working best is simply the number

of documents assigned to each candidate, outperforming document content based

predictors. The experiments on two data sets showed statistically significant im-

provements, the MAP improves from 0.219 and 0.561 (AQE on all queries) to 0.236
and 0.569 (selective AQE) respectively.

Based on these mixed results it is difficult to comment conclusively on the suit-

ability of predictors in the operational setting of SQE.

4.2.2 Applications of Meta-Search

Yom-Tov et al. [167] also evaluate their predictors in a meta-search setting: a corpus

is partitioned into four parts, each query is submitted to each partition, and the re-

sult lists of each partition are merged with weights according to their predicted per-

formance. In this experiment, MAP increases from 0.305 (merging without weights)

to 0.315 when the results are merged according to the predictor based weights.

Wu and Crestani [160] apply a variety of retrieval algorithms to a single corpus.

For each query and retrieval algorithm, a ranked list of results is derived and its pre-

dicted performance score is determined. Heuristically derived thresholds are used

to classify each result list as either performing poorly, mediumly or well. The result

lists are then merged with fixed weights according to the predicted classification.

The best weighted data fusion method performs 2.12% better than the unweighted

baseline.

Lastly, Winaver et al. [159] propose to generate a large number of relevance

models [97] for each query and then to pick the relevance model that is predicted

to perform best. The results indicate the feasibility of the approach, the predictor-

based model selection strategy significantly outperforms the baseline.

4.2.3 Motivation

Although the evaluation of query effectiveness predictors by reporting correlation

coefficients is the current practice in this research field, this approach to evaluation

is not without problems. The following example will reveal three problems:

• very different predictions can lead to similar correlation coefficients,
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• a query performance predictor that results in a high correlation with retrieval

performance does not necessarily lead to a retrieval performance increase in

an operational setting and vice versa a predictor with a low correlation can

lead to an optimal increase in retrieval effectiveness, and,

• as a corollary from the previous two points we can observe that a single pre-

dictor cannot be a reliable indicator of how large in general the correlation

needs to be to lead to a consistent improvement in retrieval effectiveness over

a wide range of predictor values.

Figure 4.1: The top row contains the true ranking of queries according to their retrieval

effectiveness, with the bottom ranked queries (in grey) assumed to benefit from not applying

AQE. R1, R2 and R3 are predicted rankings of query performance. SQE based on R1 leads to

optimal retrieval effectiveness - all AQE decisions are made correctly. R2 leads to a correct

AQE decision in one third of the queries. Based on R3, fourteen correct expansion decisions

are made.

Figure 4.1 contains an example that highlights the issues just described. In this

instance, consider the operational setting of SQE. Let the query set consist of 18
queries. The true ranking is the ranking of the queries based on their retrieval per-

formance where rank 1 is assigned to the best performing query. Let us further

assume that the worst one third performing queries (in grey) benefit from not per-

forming AQE. Here, R1, R2 and R3 are examples of predicted rankings by different

prediction methods. Ranking R1 does not predict the rank of any query correctly

which is reflected in its correlation coefficient of τR1
= −0.06. However, in the SQE

setup the correct expansion decision is made for each query which results in the

optimal improvement in retrieval effectiveness.

The opposite case is ranking R2 which results in a correlation of τR2
= 0.53.

Note that for twelve queries the wrong decision is made, which leads to a less than

optimal retrieval effectiveness. Finally, based on predicted ranking R3, for four

queries, the wrong AQE decisions are made, although the correlation R3 achieves is

very similar to the correlation of R2: τR3
= 0.49.

This example shows how similar correlations may have completely different im-

pacts on retrieval performance, while different correlations can lead to counter-

intuitive losses or gains in retrieval effectiveness. Although, admittedly, this exam-

ple is somewhat contrived, it highlights why a single predicted ranking can lead to
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misleading conclusions about the rank correlation coefficient required to achieve an

adequate retrieval effectiveness in an adaptive retrieval setting.

4.3 Materials and Methods

In an ideal setting we would conduct an investigation as follows. Given a large

number of query performance prediction methods, a large number of retrieval algo-

rithms and a set of queries:

• let each prediction method predict the queries’ quality and determine the pre-

diction method’s performance in terms of Kendall’s τ ,

• use the predictions in an operational setting and perform retrieval experiments

to derive a baseline and predictor-based result, and,

• finally determine at what level of correlation the predictor-based retrieval re-

sults generally show improvements over the baseline results.

In practice, such a setup is not feasible for two reasons. Most importantly, the

predictors are limited in their accuracy, which would not allow us to investigate the

change in retrieval performance at higher correlations than τ ≈ 0.6. Furthermore,

not all settings may strictly adhere to the particular assumptions made, a noise

factor which needs to be taken into account. For instance, a common assumption

of SQE is that well performing queries improve when AQE is applied. This might

not always be the case though. In the experiments described in the next sections,

we are able to control for these effects and thus are able to precisely investigate the

influence of these factors.

4.3.1 Data Sets

To make our results generalizable and less dependent on a particular retrieval ap-

proach, we utilize TREC data sets and in particular the runs submitted by the TREC

participants to different adhoc retrieval tasks to simulate diverse sets of retrieval ap-

proaches. All TREC runs submitted for each query set with a MAP greater than 0.15
are included in this study. The data sets are listed below. In brackets, the number of

runs per data set are shown.

• TREC-6 (49), TREC-7 (77) and TREC-8 (103) based on the corpus TREC Vol.

4+5,

• TREC-9 (53) and TREC-10 (59) based on the corpus WT10g, and,

• Terabyte-04 (35), Terabyte-05 (50) and Terabyte-06 (71) based on the GOV2

corpus.

Please note, that we changed the terminology with respect to the previous chapters

(TREC-6 instead of 301-350). We do so deliberately to indicate that we deal with

runs now instead of a set of queries. The range in retrieval effectiveness is consid-

erable: while the minimum is fixed to 0.15, the best performing run achieves a MAP

of 0.47.
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4.3.2 Predictions of Arbitrary Accuracy

Since Kendall’s τ is based on ranks (instead of scores), it is possible to construct

predicted rankings for any level of correlation, simply by randomly permutating the

true performance ranking of queries. The smaller the number of permutations, the

closer τ is to 1. Conversely, the larger the number of permutations of the ground

truth based ranking, the closer τ is to 0. From the full correlation coefficient range

of τ ∈ [−1, 1], sixteen intervals CORR = {c0.1, ..., c0.85} were investigated, each of

size 0.05, starting with c0.1 = [0.1, 0.15) and ending with c0.85 = [0.85, 0.9). This

correlation range is sufficient for our purposes, since negative correlations can be

transformed into positive correlations by reversing the ranking and τ = 1 indicates

two perfectly aligned rankings.

For each coefficient interval ci, 1000 rankings were randomly generated with

τ ∈ ci with respect to the true ranking. We rely on such a large number of rankings

due to the issues outlined in Figure 4.1. By considering the application of 1000
predicted rankings for each correlation interval ci, we can consider the change in

retrieval effectiveness on average. Each predicted ranking is utilized in the SQE

and MS experiments in place of a query ranking produced by a query performance

predictor. This setup allows us to analyze the impact of varying levels of correlation

against the change in retrieval effectiveness between the non-adaptive baseline and

the prediction-based system. All query rankings were generated once for query set

sizes of m = {50, 100, 150} and then kept fixed across all experiments.

4.4 Selective Query Expansion Experiments

We analyze the relationship between Kendall’s τ as an evaluation measure of query

performance prediction and the change in retrieval effectiveness when queries are

expanded selectively in a setup analogous to the setup investigated by Yom-Tov et al.

[167].

The effect AQE has on retrieval effectiveness varies considerably and is depen-

dent on the particular AQE approach, the retrieval algorithm and the set of queries

evaluated. The literature on AQE and pseudo-relevance feedback is vast and con-

tains many different observations, which may substantially contradict each other.

What makes pseudo-relevance feedback work is still not perfectly understood, de-

spite significant efforts in the past such as the RIA Workshop [24, 63]. Interest in

this research direction has not diminished, as evident by last year’s TREC, where the

Relevance Feedback track [26] was introduced.

It is beyond the scope of this work, to cover a wide range of literature on AQE;

instead we give an overview of findings that are most pertinent to our experiments.

Whilst across the whole query set, AQE aids retrieval effectiveness with improve-

ments ranging from 3% to 40% [107, 162, 163], not all queries benefit. The per-

centage of queries from a query set that perform worse when AQE is applied varies

between 20% and 40% [4, 95, 107, 162]. Amati et al. [4], Carpineto et al. [32] and

Kwok [95] observe that the worst and the very best performing queries are hurt by
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AQE. As reason for the degradation in performance of the best queries is given that

a highly effective query is actually diluted if additional unnecessary query terms

are added to it and the result quality suffers. Carmel et al. [29] and Xu and Croft

[162] on the other hand only report the worst performing queries to be hurt by the

application of AQE.

4.4.1 Experimental Details

Let us for now assume that all well performing queries improve with the applica-

tion of AQE, while the worst performing queries degrade with AQE. Let θ be a rank

threshold. Our SQE setup is as follows: given a set of m queries, they are ranked

according to their predicted performance. AQE is applied to the best (θ × m − 1)
performing queries, the remaining queries are not expanded. As this setup only re-

quires predicted rankings, we can use our generated predicted rankings of arbitrary

accuracy. To evaluate the retrieval effectiveness of SQE, we require pairs of baseline

(no AQE) and AQE runs. Then, we perform SQE based on the predicted rankings

and consider SQE to be successful when it improves over the retrieval effectiveness

of the AQE run. We derive baseline and AQE run pairs from the runs in our data

sets. As we are not interested in the ranked list of results themselves, but in the ef-

fectiveness of each run on each query q, for the purpose of this chapter, we consider

a run to consist of a list of average precision values, thus run = (apq1 , apq2 , ..., apqm).

Run Pairs

Each run of our data sets is considered as a baseline run runbase, where no AQE

is applied. As the runs consist of m = 50 ap values, in order to obtain baseline

runs for m = 100 and m = 150, the original runs were randomly concatenated. For

each baseline run a corresponding AQE run runaqe is generated. Recall, that we

work with the assumption that AQE improves the effectiveness of the well perform-

ing queries, while degrading the effectiveness of poorly performing queries. Thus,

for each apqi

base in runbase, a respective apqi
aqe value in runaqe is generated such that

apqi
aqe > apqi

base when apqi

base is among the top (θ×m−1) performing queries in runbase,

otherwise apqi
aqe < apqi

base. The apqi
aqe values are randomly sampled (with the outlined

restrictions) from the other runs in the data sets. This strategy is supported by re-

sults reported by Billerbeck and Zobel [19] and Carpineto et al. [32], where no cor-

relation between apqi

base and the amount of improvement, that is ∆ = (apqi
aqe−apqi

base),
∆ > 0, was found. The optimal SQE run runopt is the run where the correct AQE

decision is made for every query, that is apqi

opt = max(apqi

base, apqi
aqe). We only include

run pairs where the MAP of runaqe improves by between 15% and 30% over runbase

and the MAP of runopt improves by at least 3% over runaqe. Due to the random com-

ponent in the run pair generation process 500 run pairs are created for each setting

of θ = {1/2, 2/3, 3/4} and m = {50, 100, 150}. The choice of θ is based on results in

the literature [107, 162], the settings of m are typical TREC topic set sizes.

Table 4.1 contains basic statistics of all generated run pairs. Here, av. MAP is

the MAP of the baseline (base), the expanded (aqe) and the optimal SQE runs (opt),
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m θ #pairs av. MAPbase av. MAPaqe av. MAPopt

50 1/2 500 0.198 0.236 0.256
2/3 500 0.243 0.293 0.306
3/4 500 0.270 0.325 0.337

100 1/2 500 0.199 0.238 0.254
2/3 500 0.243 0.295 0.307
3/4 500 0.281 0.335 0.347

150 1/2 500 0.201 0.241 0.257
2/3 500 0.250 0.301 0.313
3/4 500 0.278 0.331 0.342

Table 4.1: Statistics of run pairs generated for the SQE setting.

averaged over all 500 run pairs. The difference in retrieval effectiveness between the

baseline and the AQE runs are in all instances greater than between the AQE and

the optimal SQE runs. This is explained by the fact that the best performing queries

all come from the AQE run in the optimal SQE run. Furthermore, as θ increases, the

improvement of the optimal SQE runs over the AQE runs degrades slightly as more

queries of the AQE runs occur in the optimal SQE runs.

SQE Experiment

Given the 1000 generated rankings per correlation coefficient interval ci and the 500
run pairs (runbase/runaqe) for each setting of θ and m, SQE is thus performed 500000
times for each ci. A formal description of the experiment is provided in Algorithm 1.

From each run pair and predicted ranking in ci a selective AQE run runsqe is

formed: if according to the predicted ranking apqi

base is among the top (θ ×m − 1)
scores in runbase, then apqi

sqe = apqi
aqe, that is the AQE result is used. The remaining

queries are not expanded and it follows that apqi
sqe = apqi

base. Recorded are the MAP

of runbase, runaqe, runopt and runsqe. We consider SQE to be successful if the MAP

of runsqe is higher than the MAP of runaqe. Since the run pairs lead to different

absolute changes in retrieval effectiveness, we report a normalized value:

vsqe = 100×
MAPsqe −MAPbase

MAPopt −MAPbase

. (4.1)

When the correct AQE decision is made for each query, vsqe = 100. In contrast,

vsqe < 0 if the MAP of runsqe is below the baseline’s runbase MAP. We present the

results, derived for each ci, in the form of box plots [142]. Every box marks the

lower quartile, the median and the upper quartile of the 500000 vsqe values. The

whiskers show the 1.5 inter-quartile range, the remaining separately marked points

are outliers. We also include in the plots the median normalized value of the AQE

runs as a horizontal line - this is the value vsqe must improve upon in order for

SQE to be deemed successful. We chose this type of visualization because it offers a

convenient way of depicting the information we are interested in. Each box element

marks the interval where the middle 50% of the vsqe scores of all test cases, made
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for a single correlation coefficient band, fall. The height of each box indicates the

spread of the results. If the entire box is above the horizontal line, at least 75% of

vsqe values outperform the normalized AQE value. Conversely, if the box is below

the horizontal line, less than 25% of vsqe value outperform the AQE value.

Algorithm 1: Selective query expansion

1 foreach c ∈ CORR do ⊲for all correlation intervals c
2 foreach r ∈ RANKc do ⊲for all rankings with τ ∈ c
3 foreach (runbase, runaqe) ∈ RUNS do ⊲for all run pairs

4 runsqe = ∅, runopt = ∅
5 for i← 1, m do

6 if r[i] < (θ ×m) then ⊲SQE

7 apqi
sqe = apqi

aqe

8 else
9 apqi

sqe = apqi

base

10 end
11 apqi

opt = max(apqi

base, apqi
aqe)

12 end

13 vsqe = 100× MAPsqe−MAPbase

MAPopt−MAPbase

14 vaqe = 100× MAPaqe−MAPbase

MAPopt−MAPbase

15 end

16 end

17 end

4.4.2 Results

We perform two sets of experiments. The first experiment is set up to represent the

ideal situation where the assumption we listed about SQE holds. It was designed to

test the relationship between τ and SQE effectiveness in a noise-free environment.

Thus, the results can be considered as best case. The second experiment tests the

robustness of SQE against noise.

Best-Case Scenario

In this experiment, our assumption that AQE only hurts the worst performing queries

holds for all run pairs. We also assume θ to be known. The results of the experiment

are shown in Figure 4.2. The first row depicts the boxplots for m = 50 queries,

the second row contains the results of m = 100 queries and the last row shows the

development for m = 150 queries.

We observe, that independent of the settings of m and θ, for all correlation in-

tervals ci a number of positive and negative outliers exist, where the MAP of runsqe

improves or degrades over runaqe’s MAP. Thus, even if τ = 0.1, a predictor can be

successful by chance. In contrast, a predicted ranking with τ = 0.9 can still result
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(a) m = 50, θ = 1/2 (b) m = 50, θ = 2/3 (c) m = 50, θ = 3/4

(d) m = 100, θ = 1/2 (e) m = 100, θ = 2/3 (f) m = 100, θ = 3/4

(g) m = 150, θ = 1/2 (h) m = 150, θ = 2/3 (i) m = 150, θ = 3/4

Figure 4.2: SQE best-case scenario. Listed on the x-axis is the starting value of each cor-

relation interval ci, that is the results for c0.2 = [0.2, 0.25) are shown at position 0.2. The

horizontal lines mark the normalized median value of the performance of the AQE runs,

which vsqe must improve upon for SQE to be considered successful.

in a negative change of retrieval effectiveness. This supports the view that a single

experiment and predictor are inadequate indicators to show a predictor method’s

utility in practice.

When the correlation of the predicted ranking with respect to the ground truth

is low, runsqe may perform worse than runbase. This is for instance visible in Fig-

ure 4.2a for θ = 1/2 and m = 50, where the vsqe values are negative. Recall that

the generation process of run pairs (Section 4.4.1) ensures that runbase performs

between 15% and 30% worse than runaqe, thus a poor predictor can significantly

degrade the effectiveness of a system. An increase in τ generally leads to a smaller

spread in performance (the height of the boxes in the plot) of vsqe, indicating that

outliers are rarer and the performance drop is less pronounced.

Increasing the setting of θ yields rises in vaqe, as can be expected: when θ = 3
4
,
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m θ 25% 50% 75% min. 95% opt.

50 1/2 0.30 0.40 0.50 0.20
2/3 0.35 0.45 0.60 0.10
3/4 0.35 0.45 0.60 0.10

100 1/2 0.35 0.45 0.55 0.35
2/3 0.40 0.50 0.60 0.30
3/4 0.35 0.45 0.55 0.20

150 1/2 0.35 0.45 0.50 0.50
2/3 0.45 0.50 0.55 0.45
3/4 0.35 0.45 0.50 0.35

Table 4.2: SQE best-case scenario: summary of τ necessary to improve 25%, 50% and 75%
of runsqe over the median of runaqe. The final column contains the minimum correlation

coefficient interval where at least in one instance runsqe reaches 95% retrieval effectiveness

of runopt.

three quarters of the queries in runaqe outperform the queries of runbase, only very

poorly performing queries have a slightly worse performance when expanded. If on

the other hand θ = 1
2
, the medium performing queries can degrade and the range of

possible degradation is larger.

Finally, the number m of queries also influences the outcome: with increased

query set size the spread of results decreases and the results become more stable.

This is visible in the plots by the decreased height of the boxes as well as the fewer

extreme cases. Thus, the more queries are used in the evaluation, the better the

correspondence between the evaluation measure and the performance in an opera-

tional setting.

To provide an overview of the results, we summarize the most important cor-

relation thresholds in Table 4.2. Reported are the thresholds of τ where 25%, 50%
and 75% of the 500000 test cases overcome the horizontal line in the plots. The

final column of Table 4.2 shows the minimum correlation coefficient for which in at

least one test case runsqe reaches 95% retrieval effectiveness of runopt. This value

is particularly low for m = 50, that is, even if the correlation is not statistically sig-

nificantly different from τ = 0, the ranking can lead to a close to optimal result in

the SQE setting. In short, in the best-case scenario of SQE, where we have perfect

knowledge about which queries improve effectiveness when being expanded and

which degrade, medium correlations are sufficient to improve the effectiveness.

Random Perturbations

The best-case scenario presented in the previous section is unrealistic, as we do not

have perfect knowledge about what queries will improve and degrade with the ap-

plication of AQE. Thus, to complement the first experiment, we now investigate how

imperfect knowledge of the influence of AQE changes the results. This experiment

is motivated by the divergent observations by Amati et al. [4], Kwok [95], Mitra

et al. [107] and Xu and Croft [162] about the change in effectiveness of the best
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performing queries when AQE is applied.

To simulate such violation we turn to perturbing runaqe. Given a pair of runs

(runbase, runaqe), we randomly select a query qi from the top (θ×m−1) performing

queries of runaqe and perturb its score apqi
aqe to âpqi

aqe, which is a random value below

apqi

base. To keep the MAP of runaqe constant, the difference (apqi
aqe− âpqi

aqe) is randomly

distributed among the remaining ap values of runaqe. This ensures that the overall

effectiveness of runaqe remains between 15% and 30% better than runbase. This

procedure is performed for p = {10%, 20%, 30%} of the top (θ ×m − 1) performing

queries. Specifically, the number of queries perturbed for each value of p were

{3, 5, 8} for m = 50, {5, 10, 15} for m = 100 and {8, 15, 23} for m = 150.

(a) m = 50, p = 10% (b) m = 50, p = 20% (c) m = 50, p = 30%

(d) m = 100, p = 10% (e) m = 100, p = 20% (f) m = 100, p = 30%

(g) m = 150, p = 10% (h) m = 150, p = 20% (i) m = 150, p = 30%

Figure 4.3: SQE random perturbation scenario. θ is fixed to 1/2.

The results of this experiment are shown in Figure 4.3. Note, that we fixed θ to

1/2 in order to avoid having another changing parameter in the experiments. It is

evident, that even a small number of perturbed queries already has great influence

on the usability of a query performance predictor in the SQE setting. When p = 10%
of queries are perturbed (Figures 4.3a, 4.3d and 4.3g), the perturbation can still be
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compensated, and a correlation τ ≥ 0.55 is necessary to ensure that for more than

50% of the test cases the selectively expanded runs improve over the fully expanded

runs. The trend of improvement however is already less visible for p = 20%. A

further increase in the number of perturbed queries leads to the situation as visible

for p = 30% (Figures 4.3c, 4.3f and 4.3i), where independent of the actual accu-

racy of the predicted ranking, in less than 25% of all test cases an improvement of

effectiveness over the fully expanded run is possible, although positive outliers still

exist across all levels of ci. Also, notably different from the optimal scenario in the

best-case scenario is the performance of the negative outliers: when p = 30%, for all

m and correlation intervals there exist test cases that perform considerably worse

than runbase such that vsqe is negative.

It should also be pointed out that the median of the normalized AQE value (the

horizontal line), decreases slightly with increasing p. This effect is due to the way

runaqe is perturbed. Since the MAP is kept constant for runaqe and runbase when

perturbing the queries and vaqe is defined as (Algorithm 1):

vaqe = 100×
MAPaqe −MAPbase

MAPopt −MAPbase

, (4.2)

it follows, that the decrease of vaqe is the result of a small increase of MAPopt,

created by the random distribution of (apqi
aqe − âpqi

aqe) remainders.

m p 25% 50% 75% min. 95% opt.

50 10% 0.35 0.55 0.75 0.35
20% 0.45 0.80 - 0.40
30% - - - -

100 10% 0.45 0.55 0.75 0.65
20% 0.65 - - -

30% - - - -

150 10% 0.45 0.60 0.70 -

20% 0.65 0.85 - -

30% - - - -

Table 4.3: SQE random perturbations scenario: summary of τ necessary to improve 25%,

50% and 75% of runsqe over the median of runaqe. The final column contains the minimum

correlation coefficient interval where at least in one instance runsqe reaches 95% retrieval

effectiveness of runopt. In all experiments, θ = 1/2 is fixed.

Table 4.3 summarizes the levels of correlation required in the random perturba-

tion scenario where 25%, 50% and 75% of the test cases improve over the AQE run.

Feasible thresholds can only be achieved for p = 10% perturbations.

4.4.3 Out-of-the-Box Automatic Query Expansion

The pseudo-relevance feedback mechanism employed to determine which terms to

enhance a query with can be very complex with many parameters requiring sub-

stantial tuning. In practice however, out-of-the-box mechanisms are often used as
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Figure 4.4: Scatter plot of behavior of out of the box AQE runs. Each marker stands for one

AQE run. The y-axis shows the number of queries N for which AQE improves the queries’

effectiveness. The x-axis shows the percentage of queries among the top N performing

unexpanded baseline queries that do not improve with AQE.

supplied by Information Retrieval toolkits such as Lucene, Terrier or Lemur/Indri.

In this section, we determine how many of the top performing queries indeed im-

prove with the application of AQE. For this analysis, we relied on the query sets

and corpora already utilized in Chapters 2 and 3. The retrieval approach is fixed to

Language Modeling with Dirichlet smoothing (µ = 500). The title part of the TREC

topics is utilized to form the queries. The AQE experiment is performed with Indri’s

default AQE setup. We varied the number of feedback terms and documents to use

for AQE between 5, 10, 20 and 50 for both parameters. Thus, for each query set,

sixteen (4x4 parameter pairings) different AQE runs are created. We then compare

these runs to the baseline runs where no AQE is employed.

The results of this analysis are shown in Figure 4.4. Each point represents one

AQE run. The vertical axis depicts the number of queries N (out of 50 for each

query set) for which the AQE run exhibits a higher average precision than the non-

expanded baseline run. The horizontal axis depicts the percentage of queries among

the top N performing baseline queries that do not improve with AQE. The closer

that value is to 0% the better the assumption holds that the top performing queries

improve their effectiveness when AQE is applied.

The scatter plot shows that how well the AQE assumption holds is not only de-

pendent on the parameter settings of the AQE mechanism, but also on the query

set. When we consider the results of query set 751-800 the number of queries (out

of 50) that improve with AQE vary between 26 and 45, depending on the setting of

the number of feedback terms and documents. A comparison between the runs of

query set 751-800 and query set 801-850 shows that although both are based on

the same corpus (GOV2), the results differ considerably. For query set 801-850, in

the most favorable parameter setting N = 31 queries improve when AQE is applied,

a strong contrast to most runs of query set 751-800.
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The scatter plot also shows that only a small minority of runs overall have less

than 20% of non-improving queries in the top ranks; for most runs this number lies

between 25% and 45%. In general, the fewer queries N improve overall, the larger

the percentage of queries performing contrary to the common SQE assumption.

4.5 Meta-Search Experiments

The second operational setting for query performance prediction under investiga-

tion is meta-search. From a high level perspective, MS may be described as any

setting where two or more ranked lists of results are returned for a single input

query. The result lists can either contain documents from the same collection or

documents retrieved from different corpora. In the former case, the input query can

be varied, for instance, by adding or deleting query terms such that different results

are returned for each query variation. Alternatively, a range of retrieval approaches

can be employed to retrieve a wider variety of documents. This is the setting we em-

ploy in our experiments, which is analogous to Winaver et al. [159]’s experiments:

given a query and a set of t runs, we pick the run that is predicted to perform best

for the query. We chose this setup over the data fusion setup evaluated by Yom-Tov

et al. [167] and by Wu and Crestani [160], where the merging algorithm introduces

an additional dimension, as it allows us to better control the experimental setting.

4.5.1 Experimental Details

Selecting the run that is predicted to perform best requires some consideration since

we evaluate the rank correlation coefficient τ and thus rely on predicted ranks. The

obvious mechanism is to consider the rank the query is predicted to have in each sys-

tem and then use the system where the query is ranked highest (the rank approach).

This can be misleading though, in particular when the difference in systems’ perfor-

mances is large. To illustrate this point, we formulate the following example. Let

for three queries the average precision scores of system S1 be (0.2, 0.4, 0.1) and for

system S2 let them be (0.8, 0.6, 0.4). An accurate prediction method will predict the

middle query to have rank 1 in S1 and rank 2 in S2, therefore, based on ranks, the

output of S1 would be picked. This is clearly incorrect.

This problem can be alleviated by transforming the ranks into average precision

scores, that is the ith predicted rank is transformed into ith highest average preci-

sion score of the set of queries. Then for each query, the system with the highest

predicted average precision score is chosen (the score approach). Since this exper-

iment assumes knowledge of the true average precision scores, the results can be

considered as a lower bound for τ necessary to reliably improve retrieval effective-

ness. The major results that follow are based on the score approach. For comparison

purposes, we report a number of results of the rank approach as well.

In preliminary experiments we found two parameters influencing the retrieval

effectiveness of predictor based meta-search. These are:

• the number t of runs participating in the MS setup, and,
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• the percentage γ of improvement in MAP between the worst (runlow) and the

best (runhigh) performing run in the set of t runs.

The experimental setup reflects these findings. We derived 500 sets of t runs

from the TREC data sets for various settings of γ: 0%− 5%, 5%− 10%, 10%− 15%,

15%− 20%, 30%− 35% and 50%− 55%. A range of 0%− 5% means, that all t runs

perform very similar with respect to MAP, while in the extreme setting of γ, the MAP

of the best run in the set is between 50% and 55% higher than of the worst run. No

limitations exist for the runs that are neither the best nor the worst in a set of runs.

It should be pointed out, that the setting of γ influences two other factors. Let us

briefly assume t = 2 and MAPr1
≤MAPr2

. The parameter γ influences the number

of times a query of r1 has a higher average precision than the corresponding query

of r2. It also influences the percentage of increase from MAPr2
to MAPopt, the

latter being the MAP of the optimal meta-search run, formed by always picking the

better performing query from r1 and r2. By not further restricting the parameters,

we implicitly make the assumption that the positions at which one run outperforms

another are random and that the amount of improvement or degradation is random

as well.

In order to generate each set of runs, t runs are randomly selected from the TREC

runs of our data sets (for m > 50, runs are randomly concatenated). A set is valid if

the maximum percentage of retrieval improvement lies in the specified interval of γ.

In order to avoid sets of runs where a single spike in the difference in ap overshad-

ows the other query items, no query pair may have a difference in ap larger than

0.42. Recall, that 1000 predicted rankings exist per correlation coefficient interval ci.

As we require t predicted rankings per set of runs, t rankings are randomly chosen

from all rankings of a given ci. This implies that query performance predictors have

similar performances in terms of τ over different systems.

Algorithm 2 offers a formal description of the experiment. The meta-search run

runmeta is created by selecting for each query the result of the run with the highest

predicted ap score. The optimal run runopt is derived by apqi

opt = max(apqi

1 , ..., apqi

t ).
As in to the SQE experiments, we report the normalized performance of runmeta:

vmeta = 100×
MAPmeta −MAPlow

MAPopt −MAPlow

, (4.3)

where MAPlow is the MAP value of the worst of the t runs. When vmeta < 0, runmeta

performs worse than the worst run of the set, a value of vmeta = 100 on the other

hand implies that runmeta’s performance is optimal, that is for every query the cor-

rect run is chosen. For MS to be considered a success, runmeta needs to outperform

the best individual run in the set of t runs. As in the SQE experiments, this threshold

is indicated by the horizontal lines in the box plots, which is the normalized median

of the best runs’ MAP across all sets of runs.

2This value was empirically chosen after evaluating the data sets.
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Algorithm 2: Meta-search

1 foreach c ∈ CORR do ⊲for all correlation intervals c
2 for i← 1, 1000 do

3 r1 = random(r ∈ RANKc)
4 ...

5 rt = random(r ∈ RANKc)
6 foreach (run1, .., runt) ∈ RUNS do ⊲for all run sets

7 runmeta = ∅, runopt = ∅
8 for j ← 1, m do
9 s = max(score(run1, r1[j]), .., score(runt, rt[j]))

10 x = run index of(s)

11 ap
qj

meta = ap
qj
x ⊲MS

12 ap
qj

opt = max(ap
qj

1 , ..., ap
qj

t )

13 end

14 MAPlow = min(MAP1, .., MAPt)
15 MAPhigh = max(MAP1, .., MAPt)

16 vmeta = 100× MAPmeta−MAPlow

MAPopt−MAPlow

17 vhigh = 100×
MAPhigh−MAPlow

MAPopt−MAPlow

18 end

19 end

20 end

Another aspect we consider is whether in cases where the meta-search run im-

proves over the best run in the set of runs, the improvement is statistically signif-

icant. We performed a paired t-test [127] with significance level 0.05 for each of

those run pairs. We report this statistic by the percentage of run results for each

correlation coefficient interval (that is, all 500 sets of systems times 1000 permuta-

tions) where the meta-search run significantly outperforms the best individual run.

4.5.2 Results

To gain an overview, we experimented with run sets of sizes t = {2, 3, 4, 5}. In the

following two sections the results for t = 2 and t = 4 are detailed. Before describing

the results, we define one more quantity, namely

ratiolow =
w

m
, (4.4)

which is the fraction of queries w in runopt that were chosen from the worst per-

forming run; σ(ratiolow) is the corresponding standard deviation over all sets of

runs. With increasing γ, less queries from the worst performing run can be expected

to be utilized in the optimal run. For comparison, if the systems were to be chosen

at random for each query, one would expect approximately 1/t queries to come from

each system.
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Meta-Search with t = 2 Systems

First, we restrict ourselves to sets consisting of two systems each, that is t = 2, and

evaluate the influence the parameter γ has in the settings of 0% − 5%, 5% − 10%,

10% − 15% and 15% − 20%. To get an impression of how γ influences the quantity

ratiolow, consider the results shown Table 4.4. The table contains the development

for all stages of γ. If the queries had been drawn at random from both runs with

equal probability, the mean would have been approximately 0.5. Evidently, with

increasing difference in the runs’ effectiveness, less queries are selected on average

from the worse performing run. To provide more detailed information, the last three

columns of Table 4.4 show the average MAP of the worse and better performing

run per set of systems as well as the MAP of the optimal run, which is derived by

choosing the better performing result for each query from both runs.

We also investigated if queries at certain positions within the query set are more

likely to come from the worse performing run, but the results showed that the posi-

tions across the entire query set were covered uniformly.

m γ #pairs ratiolow σ(ratiolow) av. MAPlow av. MAPhigh av. MAPopt

50 0− 5% 500 0.478 0.057 0.254 0.260 0.298
5− 10% 500 0.432 0.053 0.249 0.268 0.300

10− 15% 500 0.394 0.056 0.235 0.264 0.293
15− 20% 500 0.355 0.055 0.227 0.267 0.292

100 0− 5% 500 0.502 0.080 0.227 0.232 0.268
5− 10% 500 0.457 0.083 0.229 0.246 0.278

10− 15% 500 0.414 0.067 0.215 0.241 0.271
15− 20% 500 0.386 0.076 0.202 0.238 0.264

150 0− 5% 500 0.514 0.080 0.236 0.242 0.277
5− 10% 500 0.468 0.078 0.227 0.244 0.276

10− 15% 500 0.427 0.075 0.217 0.244 0.272
15− 20% 500 0.395 0.076 0.208 0.244 0.269

Table 4.4: Statistics of the sets of runs, generated for the t = 2 experiments.

The results of the MS experiment with the score approach applied are shown in

Figure 4.5 in the form of box plots. Most notably, in contrast to the SQE experiment,

a very low correlation τ can be sufficient to improve the effectiveness of runmeta over

the effectiveness of the better performing individual run. Specifically, the smaller γ,

the lower the correlation τ may be to still lead to an improvement of runmeta. At the

same time, the results show that for γ = 0−5% in particular, the spread of outliers is

very wide, in the positive as well as the negative direction. Thus, while the majority

of test cases improve at low τ , in some instances an extremely poor performance is

recorded, as evident by negative values of vmeta across all parameter settings. Again

the observation can be made that a larger value of m gives more reliable results as

the spread of results degrades.

To gain an understanding of the influence of the score versus the rank approach

in Algorithm 2 (line 9), consider the results in Table 4.5. Analogous to the SQE

experiments, we report the thresholds of τ to improve at least a quarter, half and

three quarters of test cases where runmeta improves over runhigh respectively. This
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(a) m = 50,

γ = 0− 5%
(b) m = 50,

γ = 5− 10%
(c) m = 50,

γ = 10− 15%
(d) m = 50,

γ = 15− 20%

(e) m = 100,

γ = 0− 5%
(f) m = 100,

γ = 5− 10%
(g) m = 100,

γ = 10− 15%
(h) m = 100,

γ = 15− 20%

(i) m = 150,

γ = 0− 5%
(j) m = 150,

γ = 5− 10%
(k) m = 150,

γ = 10− 15%
(l) m = 150,

γ = 15− 20%

Figure 4.5: Meta-Search results with score approach and t = 2 systems in a set.

gives an indication of what kind of τ is necessary to achieve adequate performance

when applying query performance prediction in the MS setting. When γ is low and

thus the difference in effectiveness between the runs is low, there is no difference

between rank and score, the thresholds are the same. However, when γ increases

and thus the difference in performance between the participating systems increases,

the τ required by the rank approach to achieve the same MS performance as the

score approach is between 0.05 and 0.1 higher.

The results of the significance tests are shown in Figure 4.6, where we investi-

gate to what extent runmeta performs better than runhigh in a statistically significant

manner. The plot shows the percentage of test cases in which runmeta significantly

improves over runhigh for each correlation interval ci. Although we showed that

low τ is sufficient to improve the retrieval effectiveness, significant improvements

are considerably more difficult to achieve. The trend is clear: the lower m and the

higher γ, the more difficult it is to obtain significant improvements. If we aim for

at least 50% significant improvements in the test cases, τ ≥ 0.4 for the setting of

m = 150 and γ = 0− 5%. If m = 50, a correlation of τ ≥ 0.6 is required.
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m γ 25% 50% 75% min. 95% opt.

score rank score rank score rank score rank
50 0− 5% 0.10 0.10 0.10 0.10 0.25 0.25 0.10 0.10

5− 10% 0.10 0.10 0.25 0.25 0.35 0.40 0.35 0.35
10− 15% 0.20 0.30 0.35 0.40 0.45 0.55 0.15 0.45
15− 20% 0.30 0.40 0.45 0.55 0.55 0.65 0.40 0.50

100 0− 5% 0.10 0.10 0.10 0.10 0.20 0.20 0.45 0.45
5− 10% 0.10 0.10 0.20 0.20 0.30 0.35 0.35 0.45

10− 15% 0.20 0.25 0.30 0.40 0.40 0.45 0.40 0.50
15− 20% 0.30 0.35 0.35 0.45 0.45 0.55 0.45 0.60

150 0− 5% 0.10 0.10 0.10 0.10 0.15 0.15 0.50 0.60
5− 10% 0.10 0.15 0.20 0.25 0.30 0.30 0.55 0.65

10− 15% 0.25 0.25 0.30 0.35 0.40 0.45 0.60 0.65
15− 20% 0.35 0.40 0.40 0.50 0.50 0.55 0.60 0.75

Table 4.5: Meta-search scenario with t = 2 systems in a set: summary of τ necessary to

improve 25%, 50% and 75% of the sets of systems over the median of the best individual

system for the rank and score approach. The final two columns contain the minimum τ
where at least one MS run reaches 95% performance of the optimal MS run.
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m=50, γ=0−5%
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Figure 4.6: Significance testing for the t = 2 systems setup: percentage of test cases where

runmeta significantly improves over runhigh.

Meta-Search with t = 4 Systems

A MS setting with only two participating systems might not be very realistic. For

this reason we further we experiment with increasing the number of systems. In this

section specifically, the results of the experiments with t = 4 systems are described.

Apart from changing t, larger intervals of γ are evaluated: 0−5%, 15−20%, 30−35%
and 50− 55%. As more systems participate in the meta-search setup, the likelihood

increases that at least one system performs particularly poorly or well.

The statistics of the generated sets of systems are detailed in Table 4.6. At t = 4,

if the run selection were to be random, we expect 25% of the results to come from

each run. As expected, with increasing γ, less results from the worst performing
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m γ #pairs ratiolow σ(ratiolow) av. MAPlow av. MAPhigh MAPopt

50 0− 5% 500 0.234 0.077 0.236 0.245 0.328
15− 20% 500 0.184 0.067 0.220 0.259 0.334
30− 35% 500 0.145 0.059 0.209 0.277 0.344
50− 55% 500 0.115 0.051 0.196 0.298 0.356

100 0− 5% 500 0.229 0.073 0.230 0.239 0.340
15− 20% 500 0.192 0.068 0.212 0.250 0.341
30− 35% 500 0.171 0.061 0.198 0.262 0.341
50− 55% 500 0.138 0.060 0.180 0.275 0.351

150 0− 5% 500 0.235 0.065 0.222 0.231 0.345
15− 20% 500 0.200 0.062 0.211 0.249 0.347
30− 35% 500 0.175 0.057 0.195 0.259 0.348
50− 55% 500 0.145 0.056 0.182 0.277 0.354

Table 4.6: Statistics of the sets of runs, generated for the t = 4 experiments.

run are utilized in the optimal run. Though even for large differences in retrieval

effectiveness (γ = 50% − 55%), the worst performing run still contributes towards

the optimal run. Moreover, with increasing γ, the MAP of the worst performing run

consequently degrades whereas the MAP of the best performing run increases. The

performance of the optimal run on the other hand is not as strongly dependent on

γ, a slight increase in MAP is observed when γ increases.

m γ 25% 50% 75% min. 95% opt.

score rank score rank score rank score rank
50 0− 5% 0.10 0.10 0.10 0.10 0.10 0.15 0.55 0.65

15− 20% 0.10 0.10 0.15 0.20 0.25 0.30 0.60 0.65
30− 35% 0.20 0.30 0.30 0.35 0.35 0.45 0.60 0.65
50− 55% 0.30 0.50 0.40 0.55 0.50 0.65 0.55 0.60

100 0− 5% 0.10 0.10 0.10 0.10 0.10 0.10 0.70 0.75
15− 20% 0.10 0.10 0.10 0.15 0.20 0.20 0.70 0.75
30− 35% 0.15 0.20 0.20 0.30 0.30 0.35 0.70 0.75
50− 55% 0.20 0.30 0.30 0.35 0.35 0.45 0.65 0.80

150 0− 5% 0.10 0.10 0.10 0.10 0.10 0.15 0.80 0.80
15− 20% 0.10 0.10 0.10 0.15 0.20 0.20 0.70 0.80
30− 35% 0.15 0.15 0.20 0.25 0.25 0.30 0.75 0.80
50− 55% 0.25 0.30 0.30 0.35 0.35 0.45 0.75 0.85

Table 4.7: Meta-search scenario with t = 4 systems per set: summary of τ necessary to

improve 25%, 50% and 75% of the sets of systems over the median of the best individual

system for the rank and score approach. The final two columns contain the minimum τ
where at least one MS run reaches 95% performance of the optimal MS run.

The results of the experiments with t = 4 systems are depicted in Figure 4.7.

The trends are similar to the experiment with t = 2 systems (Figure 4.5). When γ is

low and thus the difference in retrieval effectiveness between the retrieval systems

is minor, predictions that achieve low correlations are sufficient to improve runmeta

over the effectiveness of the best run in the set. In contrast to the results for t = 2,

however, the spread of results is considerably smaller; in particular the degradation

over the worst performing individual run is less developed. Although this is partially
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(a) m = 50,

γ = 0− 5%
(b) m = 50,

γ = 15− 20%
(c) m = 50,

γ = 30− 35%
(d) m = 50,

γ = 50− 55%

(e) m = 100,

γ = 0− 5%
(f) m = 100,

γ = 15− 20%
(g) m = 100,

γ = 30− 35%
(h) m = 100,

γ = 50− 55%

(i) m = 150,

γ = 0− 5%
(j) m = 150,

γ = 15− 20%
(k) m = 150,

γ = 30− 35%
(l) m = 150,

γ = 50− 55%

Figure 4.7: Meta-search results with score approach and t = 4 systems in a set.

due to the greater values of γ used as compared to the results in Figure 4.5, this

behavior can also be observed for γ = 0− 5%. So, we can deduce that the chance of

not randomly picking the worst performing system is higher for t = 4 than for t = 2
systems. Finally, again, we can observe that greater m leads to considerably more

reliable results, indicated by the decreased height of the boxes.

Consider Table 4.7 for an overview of the τ thresholds necessary to improve

different quartiles of the meta-search test cases over the best individual systems. As

before, both the rank and the score approaches are reported. The results are similar

to Table 4.5, as with increasing γ the thresholds increase; this is less pronounced for

m = 150 as compared to m = 100 and m = 50. On the other hand, the results of the

last column, which contains the correlation coefficient where first close to optimal

performance is achieved, are considerably different from the results in Table 4.5.

We observe that while for t = 2 and m = 50 at τ = 0.1 at least one test case already

achieved nearly optimal performance, for t = 4 systems the threshold lies at τ = 0.65
and it further increases with increasing m.

The results of the significance tests over the pairs of best individual and meta-

search runs are presented in Figure 4.8. The plot shows the percentage of samples

where runmeta significantly outperforms the best individual run in the run set. At
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m=50, γ=0−5%
m=50, γ=15−20%
m=50, γ=30−35%
m=50, γ=50−55%
m=100, γ=0−5%
m=100, γ=15−20%
m=100, γ=30−35%
m=100, γ=50−55%
m=150, γ=0−5%
m=150, γ=15−20%
m=150, γ=30−35%
m=150, γ=50−55%

Figure 4.8: Significance testing for the t = 4 systems setup: percentage of test cases where

runmeta significantly improves over runhigh.

m = 50, the correlation threshold of τ to improve 50% of the samples significantly,

ranges from τ = 0.4 for γ = 0%− 5% to τ = 0.7 at γ = 50%− 55%. The thresholds

are lower for m = 150: τ = 0.2 (γ = 0% − 5%) and τ = 0.5 (γ = 50% − 55%)

respectively.

4.6 Discussion

The previous two sections established thresholds for τ that a query effectiveness

predictor should reach to be reasonably confident that an adaptive retrieval sys-

tem employing that prediction method will improve over the non-adaptive baseline.

Here, for the sake of comparison, we report once more the rank correlation coef-

ficients of a small number of methods that were introduced in Chapter 2 and 3:

MaxIDF, MaxSCQ, MaxVAR, Clarity Score and the best performing setup of Adapted

Clarity Score.

The results in Table 4.8 are shown for different levels of smoothing. Additionally,

those correlations are marked, that in our SQE and MS experiments have lead to an

– in the case of MS significant – improvement of at least 50% of the test cases over

the non-adaptive approach. The main point to be made is that in most instances,

the reported correlations are sufficient for one specific setting only: meta-search

with t = 4 and γ = 0 − 5%. Of the remaining MS experiments, only Adapted

Clarity and MaxVAR attain a high enough correlation, though only for one particular

test collection (TREC Vol. 4+5). Thus, in the MS setting, the usability of query

performance predictors depends to a large extent on how stark the difference in

performance between the participating systems is.

In the case of SQE, the outcome is less encouraging. Apart from Adapted Clar-

ity, which is adequate in SQE’s best-case scenario for TREC Vol. 4+5, none of the

reported correlations are high enough. When small perturbations of p = 10% are
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TREC Vol.4+5 WT10g GOV2
µ = 100 µ = 1500 µ = 5000 µ = 100 µ = 1500 µ = 5000 µ = 100 µ = 1500 µ = 5000

MaxIDF 0.345 0.355 0.403,5 0.255 0.285 0.305 0.265 0.255 0.325

MaxSCQ 0.335 0.345 0.385 0.285 0.345 0.375 0.275 0.285 0.335

MaxVAR 0.403,5 0.413,5 0.443,5 0.295 0.335 0.365 0.275 0.295 0.305

Clarity Score 0.395 0.305 0.215 0.20 0.19 0.16 0.285 0.315 0.325

Adap. Clarity 0.471,3
5

0.481,3
5

0.501,3
5,6 0.255 0.265 0.265 0.285 0.345 0.365

Table 4.8: Overview of Kendall’s τ correlation coefficients over different levels of smoothing

for the Language Modeling retrieval approach. The markers indicate when a τ lead to a -

for MS significant - improvement in at least 50% of the test cases in our experiments. The

markers stand for the different types of experiments: SQE best-case (1), SQE p = 10% (2),
MS t = 2 ∧ γ = 0 − 5% (3), MS t = 2 ∧ γ = 15 − 20% (4), MS t = 4 ∧ γ = 0 − 5% (5) and

MS t = 4∧ γ = 50− 55% (6). The τ thresholds of the MS experiments used are based on the

score approach.

introduced to the SQE setup, Adapted Clarity also fails across all corpora. The

perturbation result indicates, that in the SQE setting it is not sufficient to apply a

good enough query performance predictor method. It is also crucial that the ini-

tial SQE assumption (well performing queries improve, poorly performing queries

degrade with AQE) is investigated for the particular AQE method used in the appli-

cation. Furthermore, in our experiments we made the simplifying assumption that

the value of θ, which is the threshold to which AQE improves retrieval effectiveness,

is known to us. In a practical setting this value can only be approximated, further

increasing the difficulty to a successful application of query performance predictors

in the SQE setting.

It should also be emphasized once more, that across all parameter settings for

both the SQE and MS experiments, improvements over the baseline are reached at

all levels of τ , that is, even if τ = 0.1 and the majority of test cases degrade, there

are always outliers, that by chance lead to an improved effectiveness of the adaptive

retrieval system.

4.7 Conclusions

In this chapter we have investigated the relationship of one standard evaluation

measure of query performance prediction, namely Kendall’s τ , and the change in

retrieval effectiveness when predictors are employed in two operational settings:

selective query expansion and meta-search. We have primarily focused on inves-

tigating when prediction methods can be considered good enough to be viable in

practice. To this end, we performed a comprehensive evaluation based on TREC

data sets.

We found that the required level of correlation varies and depends on the partic-

ular operational setting a prediction method is employed in. In the case of SQE, in

the best-case scenario, τ ≥ 0.4 is found to be the minimum level of correlation for

the SQE runs to outperform the AQE runs in 50% of the samples. In a second ex-

periment we were able to show the danger of assuming AQE to behave in a certain
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way; slightly violating a commonly made AQE assumption already requires predic-

tors with a correlation of τ ≥ 0.75 for them to be viable in practice, as the more

accurate predictor is able to compensate the less accurate assumption made about

when AQE is beneficial.

The outcome of our investigation was different in the case of meta-search. Here,

the level of correlation was shown to be dependent on the performance differences

of the participating systems but also on the number of systems employed. If the

participating runs are similar, prediction methods with low correlations, that are

not significantly different from zero are sufficient to improve 50% of the runs. If the

differences in retrieval effectiveness between the systems are large, a correlation of

τ = 0.3 is required. To achieve statistically significant improvements for 50% of the

runs under large system differences, correlations of τ = 0.7 (m = 50) and τ = 0.5
(m = 150) can be considered as lower boundaries.

The above results may be summed as showing that query performance prediction

methods need further improvement to become viable in practice, in particular for

the SQE setting. Also, as query set sizes m increase, the evaluation in terms of

Kendall’s τ relates better to the change in effectiveness in an operational setting.

This analysis has serious implications for the area of query performance predic-

tion. It indicates that predictors should not only be tested in isolation, they should

also be studied in the context of an application in order to contextualize the effec-

tiveness, particularly if τ is not very high. While this research provides a guide that

shows the strength of correlation needed in order to achieve improvements, there

are always cases where outliers are likely to have a significantly adverse affect on

performance. From the analysis, it becomes evident that current methods for query

effectiveness prediction need to be further improved in order to realize the potential

gains.



116 | Chapter 4 – When is Query Performance Prediction Effective?



Chapter 5

A Case for Automatic System

Evaluation

5.1 Introduction

Ranking retrieval systems according to their retrieval effectiveness without rely-

ing on costly relevance judgments is a challenging task which was first explored

by Soboroff et al. [133]. The motivation for this research stems from the high costs

involved in the creation of test collections, coupled with more and larger collections

becoming available. As an illustration, while the GOV2 corpus [38], which was in-

troduced to TREC in 2004, contains roughly 25 million documents, the ClueWeb09

corpus, introduced to TREC in 2009, contains already more than one billion docu-

ments, a forty-fold increase in size.

Moreover, in a dynamic environment such as the World Wide Web, where the

collection [58, 113] and user search behavior change over time [155, 156], reg-

ular evaluation of search engines with human relevance assessments is not feasi-

ble [79, 133]. If it becomes possible to determine the relative effectiveness of a set

of retrieval systems, reliably and accurately, without the need for relevance judg-

ments, then the cost of evaluation could be greatly reduced.

Additionally, such estimated ranking of retrieval systems could not only serve as

a way to compare systems, it can also provide useful information for other appli-

cations, such as retrieval model selection [159], where we are interested in finding

the best retrieval model in a query dependent fashion, or data fusion, where the

estimated ranking of systems can be relied upon to derive merging weights for each

system [160, 167].

In recent years, a number of system ranking estimation approaches have been

proposed [9, 114, 133, 135, 161], which attempt to rank a set of retrieval systems

(for a given topic set and test corpus) without human relevance judgments. All

these approaches estimate a performance based ranking of retrieval systems by con-

sidering the relationship of the top retrieved documents across all or a number of

selected systems. While the initial results highlighted the promise of this new direc-

tion, the utility of system ranking estimation methods remains unclear, since they

have been shown to consistently underestimate the performance of the best systems,
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an observation which is attributed to the “tyranny of the masses” effect [9]. This is

a very important limitation, as, in practice, it is often the best systems that we are

most interested in identifying accurately, rather than the average systems.

In the analysis presented in this chapter, we will show that the problem of mis-

ranking the best systems is not inherent to system ranking estimation methods. In

previous work [9, 114, 133, 135, 161], the evaluations were mostly performed on

the TREC-{3,5,6,7,8} data sets. Note that when we refer to a TREC data set, such

as TREC-3, we mean all retrieval runs submitted to TREC for the topics of that task.

Since a retrieval run is the output of a retrieval system, by ranking retrieval runs, we

rank retrieval systems. We will use the terms run and system mostly interchangeably.

In our work, we evaluate system ranking estimation methods on a much wider va-

riety of data sets than previously. We consider a total of sixteen different TREC data

sets. They include a range of non-adhoc task data sets, such as expert search [42]

and named page finding [43], as well as adhoc tasks on non-traditional corpora, for

instance the Blog [115] and Genomics [75] corpora. We observe that the extent of

mis-ranking the best systems varies considerably between data sets and is indeed

strongly related to the degree of human intervention in the best runs of a data set.

This finding suggests that under certain conditions, automatic system evaluation is

a viable alternative to human relevance judgments based evaluations.

In a second set of experiments, we also investigate the number of topics required

to perform system ranking estimation. In all existing approaches, the retrieval re-

sults of the full TREC topic set are relied upon to form an estimate of system perfor-

mance. However, in [61, 109] it is demonstrated that some topics are better suited

than others to differentiate the performance of retrieval systems. Whilst these works

were not performed in the context of system ranking estimation, we consider this

observation as a starting point for our work. We hypothesize, that with the right

subset of topics, the current methods for estimating system rankings without rele-

vance judgment can be significantly improved. To verify this claim, we implement

five different approaches [50, 114, 133, 135] to system ranking estimation and com-

pare their performances to each other. We experimentally evaluate the extent of the

topic dependent performance and perform a range of experiments to determine the

degree to which topic subsets can improve the performance of system ranking esti-

mation approaches. Finally, we attempt to automatically find a good subset of topics

to use for system ranking estimation.

Specifically, in this chapter we will show that:

• the ability to accurately identify the best system of a set of retrieval systems is

strongly related to the amount of human intervention applied to the system:

the larger the amount of human intervention, the less able we are to identify

it correctly,

• across the evaluated system ranking estimation approaches, the original work

by Soboroff et al. [133] is the most consistent and gives the best performance

overall,

• the ability of system ranking estimation methods to estimate a ranking of sys-

tems per topic varies highly,
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• topic subset selection improves on average the performance of the approach

proposed by Soboroff et al. [133] by 26% and up to a maximum of 56% (similar

improvements are observed for the other system ranking estimation methods),

and,

• on average, a subset size of 10 topics yields the highest system ranking estima-

tion performance, a result that is consistent across all data sets and corpora,

independent of the number of topics contained in the full TREC topic set.

This chapter is organized as follows: in Section 5.2, we provide an overview

of related work in the area of system ranking estimation. Then, in Section 5.3,

we introduce the motivation for our experiments in topic subset selection. In Sec-

tion 5.4, the experimental setup is described and the data sets under investigation

are outlined. The empirical analysis, which forms the main part of this chapter, is

described in Section 5.5. It contains a comparison of different ranking estimation

approaches on the full set of topics (Section 5.5.1) and an analysis of the methods’

abilities to determine the correct ranking of systems for each individual topic (Sec-

tion 5.5.2). The amount of possible performance gain when relying on a subset of

topics is discussed in Section 5.5.3. A first attempt to automatically find a good sub-

set of topics is then made in Section 5.5.4. The chapter concludes with a summary

in Section 5.6.

5.2 Related Work

Research aiming to reduce the cost of evaluation has been conducted along two

lines. Specifically, a number of approaches focus on reducing the amount of man-

ual assessments required, while others rely on fully automatic evaluation, foregoing

the need for manual assessments altogether. Approaches in the first category in-

clude the determination of good documents to judge [33, 153], the proposal of

alternative pooling methods [8] in contrast to TREC’s depth pooling, the proposal

of alternative evaluation measures for incomplete judgments [8, 27], the usage of

term relevance judgments instead of document relevance judgments [6] and the

reliance on manually created queries to derive pseudo-relevant documents [55].

Whilst the aforementioned methods have been developed in the context of TREC,

the works by Abdur Chowdhury and his colleagues [16, 17, 37, 79] investigate

the evaluation of Web search engines through automatically generated known item

queries from query logs and manually built Web directories such as the ODP. De-

spite the fact, that the queries are derived automatically, we still consider these

approaches to be part of the efforts aimed at reducing the amount of manual assess-

ments, as the ODP is constantly maintained by human editors.

In this chapter, we consider approaches of the second category, that is, we focus

on algorithms that are completely automatic and require no manual assessments at

all. The first work in the ranking of retrieval systems which did not include man-

ually derived relevance judgments is attributed to Soboroff et al. [133] and was

motivated by the fact that the relative ranking of retrieval systems remains largely
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unaffected by assessor disagreement in the creation of relevance judgments [149].

This observation led to the proposed use of automatically created pseudo relevance

judgments. In this case, the pseudo relevant documents are derived in the following

manner: first, the top retrieved documents across the TREC runs for a particular

topic are pooled together such that a document that is retrieved by x systems, ap-

pears x times in the pool1. Then, a number of documents are drawn at random

from the pool; those are now considered to be the relevant documents. This pro-

cess is performed for each topic and the subsequent evaluation of each system is

performed with pseudo relevance judgments instead of relevance judgments. In the

end, a system’s effectiveness is estimated by its pseudo mean average precision. To

determine the accuracy of this estimate, the pseudo relevance judgment based sys-

tem ranking is compared against the ground truth ranking, that is the ranking of

systems according to a retrieval effectiveness measure such as MAP. All experiments

reported in [133] were performed on the data sets TREC-{3,5,6,7,8}. Although the

reported correlations are significant, one major drawback was discovered: whereas

the ranking of the poorly and moderately performing systems is estimated quite ac-

curately with this approach, the ranks of the best performing systems are always

underestimated. This is not a small issue, the extent of mis-ranking the best sys-

tem(s) is severe. For instance, in the TREC-8 data set, where 129 systems are to

be ranked, the best system according to the ground truth in MAP is estimated to

be ranked at position 113 (Table 5.2), which means it is estimated to be one of the

worst performing systems. It was later suggested by Aslam and Savell [9] that this

observation can be explained by the “tyranny of the masses” effect, where the best

systems are estimated to perform poorly due to them being different from the av-

erage. The evaluation can therefore be considered to be based more on popularity

than on performance.

The exploitation of pseudo relevant documents has been further investigated

by Nuray and Can [114], on a very similar data set, specifically TREC-{3,5,6,7}. In

contrast to Soboroff et al. [133], not all available retrieval systems participate in the

derivation of pseudo relevance judgments. The authors experiment with different

approaches to find a good subset of P% of systems. Overall, the best approach

is to select those systems that are most different from the average system. Once

a subset of systems is determined, the top b retrieved documents of each selected

system are merged and the top s% of the merged result list constitute the pseudo

relevance judgments. Different techniques are evaluated for merging the result lists;

the best performing approach is to rely on Condorcet voting where each document

in the list is assigned a value according to its rank. In this way, it is not only the

frequency of occurrence of a document in various result lists that is a factor as in

[133], but also the rank the document is retrieved at. By placing emphasis on those

systems, that are most dissimilar from the average, this work directly addresses

the “tyranny of the masses” criticism [9] levelled at the approach in [133]. The

results reported in [114] outperform the results reported in [133] for the data sets

evaluated. However, in this chapter, we perform an extensive evaluation across a

1Removal of duplicates from the pool was also investigated in [133], but proved to be less suc-

cessful.



Section 5.3 – Topic Subset Selection | 121

larger number of more recent and varied data sets, and will show that this approach

does not always deliver a better performance.

Another direction of research is to directly estimate a ranking of systems based

on the document overlap between different result lists, instead of deriving pseudo

relevance judgments. Wu and Crestani [161] propose to rank the retrieval systems

according to their reference count. The reference count of a system and its ranked

list for a particular topic is the number of occurrences of documents in the ranked

lists of the other retrieval systems; a number of normalized and weighted counting

methods are also proposed. Experiments on data sets TREC-{3,5,6,7,10} generally

yield lower correlations than in [114, 133].

A variation, which relies on the structure of overlap of the top retrieved docu-

ments between different retrieval systems, is proposed by Spoerri [135]. Spoerri

suggests that instead of ranking all systems at once, as done in the previous ap-

proaches, it is beneficial to repeatedly rank a set of five randomly chosen systems

based on their document overlap structure and average the results across all trials

to gain a ranking over all systems. It is hypothesized, that adding all available sys-

tems at once creates a considerable amount of “noise” as near duplicate systems

are entered, thus boosting some documents in a biased way. While the reported

experiments on TREC-{3,6,7,8} exhibit considerably higher correlations than previ-

ous work, and the best systems are consistently ranked in at least the top half of the

ranking, it needs to be emphasized that the results are not directly comparable to

earlier work. In [135], the evaluation is based only on automatic short runs with the

further restriction that only the best performing run per participating group is in-

cluded. This means for instance, instead of basing the evaluation of TREC-8 on 129
systems as in [9, 114, 133, 161], only 35 systems are evaluated. We will show, that

when including all available systems of a data set in the experiments, this method

does not perform better than previously introduced approaches.

Finally, in [34] it is proposed to circumvent the problem of mis-ranking the best

systems, by assuming those system to be known and reweighting their contribution

towards the pseudo-relevance judgments accordingly. The evaluation, performed on

TREC-{3,4,5,6,7,8}, shows the validity of the approach. Such an approach however

leads to a circular argument - we rely on automatic evaluation methods to rank the

systems according to their performance, but to do so, we require the best systems

to be known in advance.

The aforementioned methods have all assumed that all topics of a TREC topic set

are equally useful in estimating the ranking of systems. However, recent research on

evaluation which relies on manual judgments to rank systems has found that only a

subset of topics is needed [61, 109]. We discuss this in the next section and consider

how the same idea can be applied when relevance judgments are not available.

5.3 Topic Subset Selection

In order to explore the relationship between a set of TREC topics and a set of re-

trieval systems, Mizzaro and Robertson [109] took a network analysis based view.
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They proposed the construction of a complete bipartite Systems-Topic graph where

systems and topics are nodes and a weighted edge between a system and a topic

represents the retrieval effectiveness of the pair.

Network analysis can then be performed on the graph, in particular, Mizzaro &

Robertson employed HITS [87], a method that returns a hub and authority value

for each node. The correspondence between those measures and systems and topics

was found to be as follows

• the authority of a system node indicates the system’s effectiveness,

• the hubness of a system node indicates the system’s ability to estimate topic

difficulty,

• the authority of a topic node is an indicator for topic difficulty, and, finally,

• the hubness of a topic node indicates the topic’s ability to estimate system

performance.

While the study in [109] was more theoretic in nature, a recent follow up on

this work by Guiver et al. [61] has shown experimentally that when selecting the

right subset of topics, the resulting relative system performance is very similar to the

system performance on the full topic set, thus allowing the reduction of the number

of topics required. The same work though concedes concrete ideas of how to select

those topics to future work.Mizzaro [108] also proposed a novel evaluation metric,

the Normalized MAP value, which takes the difficulty of a topic into account when

evaluating systems.

The finding that individual topics vary in their ability to indicate system perfor-

mance provides the basis for our work as it implies that there might be subsets of

topics that are as suited to estimate the system performance as the full set of topics

provided for a TREC task. While the motivation in [61, 109] is to reduce the cost of

evaluation by reducing the topic set size, in this work, we are motivated by the fact

that system ranking estimation does not perform equally well across all topics.

We examine the following research questions:

• By reducing the topic set, can the performance of current system ranking esti-

mation methods be improved and if so to what extent?

• Can the reduced topic sets that improve the estimation be selected automati-

cally?

• To what extent does the performance of system ranking estimation approaches

depend on the set of systems to rank and the set of topics available?

5.4 Materials and Methods

In order to improve the validation power of our results we conduct our analysis on

sixteen data sets and five system ranking estimation methods. We shall refer to the

estimation methods that we employ in the following fashion:
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• the Data Fusion (DF ) approach by Nuray and Can [114],

• the Random Sampling (RS) approach by Soboroff et al. [133],

• the Structure of Overlap (SO) approach by Spoerri [135],

• the Autocorrelation based on Document Scores (ACScore) approach by Diaz

[50], and,

• the Autocorrelation based on Document Similarity and Scores (ACSimScore) ap-

proach by Diaz [50].

Whereas the first three approaches have already been introduced in Section 5.2,

the latter two (ACSimScore and ACScore) have not been applied to system ranking

estimation yet. They are proposed in [50] to evaluate aspect EA3 of Figure 1.1.

The main motivation for evaluating specifically those approaches is their mix of

information sources. In particular, RS relies on document overlap as shown in [9],

SO considers small subsets of systems for ranking, while ACScore and DF take the

particular retrieval score and the rank respectively a system assigns to a document

into account. Finally, the ACSimScore approach goes a step further and considers the

content similarity between ranked documents and the retrieval scores to determine

the relative effectiveness of a system.

Each approach derives a performance score for each pair (ti, sj) of topic ti and

system sj. In order to derive a system’s performance score over a particular topic

set, the scores the system achieves across all topics in the set are averaged. Based

on the scores, assigned to each system by a system ranking estimation approach, the

ranking of retrieval systems is estimated. This ranking is then correlated against the

ground truth ranking of systems. In our experiments, we will rely on two ground

truth rankings of systems:

• Foremost, we rely on the ground truth ranking based on the retrieval effec-

tiveness measure over the entire topic set, which corresponds to aspect EA4

of Figure 1.1. In most instances, this is the ranking of systems according to

MAP. Estimating this ranking correctly is the ultimate goal of system ranking

estimation approaches. It is utilized in most experiments, the only exception

being the experiments in Section 5.5.2.

• In Section 5.5.2, we are interested in how well the ranking of systems can be

estimated for each individual topic. Thus, the ground truth ranking is based

on the retrieval effectiveness measure of a single topic, which corresponds to

aspect EA3 of Figure 1.1. In the experiments of that section, for all but two

data sets, the ground truth is the ranking of systems according to average

precision. This ranking may or may not coincide with the system ranking

based on the retrieval effectiveness measure over the full topic set.

Since we are interested in the ranking of retrieval systems, the evaluation is per-

formed by reporting the rank correlation coefficient Kendall’s τ .
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5.4.1 Data Sets

As previous work, we also rely on TREC adhoc tasks over different years in our ex-

periments. However, whereas earlier studies focused mainly on TREC-{3,5,6,7,8},
we investigate a wider variety of data sets, that include more recent adhoc task data

sets, a range of non-adhoc task data sets, as well as adhoc tasks on non-traditional

corpora. In the previous chapters, we restricted our experiments to three corpora,

namely TREC Vol. 4+5, WT10g and GOV2 and their corresponding adhoc retrieval

tasks. The main reasons are the availability of the corpora and the importance of the

adhoc retrieval task. In the context of system ranking estimation, however, corpus

information or training data is not always required. This is the case for the RS ap-

proach for instance, which relies exclusively on the document identifiers of the top

retrieved documents to determine a ranking of retrieval systems. Such a document-

content independent approach makes it possible to include a larger number of data

sets. In the experiments in this chapter, we take advantage of this fact and evaluate

a cross-section of different tasks that have been introduced to TREC over the years.

All data sets, that is all the runs submitted by the groups participating in TREC, can

be downloaded from the TREC website.

In particular, all experiments are performed on the following TREC data sets:

• TREC-{6,7,8}: adhoc retrieval tasks on TREC Vol. 4+5 [148],

• TREC-{9,10}: adhoc retrieval tasks on WT10g [132],

• TB-{04,05,06}: adhoc retrieval tasks on the TeraByte corpus GOV2 [38],

• CLIR-01: the Cross Language track of 2001 [60] which aims at retrieving

Arabic documents from a mix of English, French and Arabic topics,

• NP-02: the Named Page finding task of 2002 [43] where the task is to find a

particular page in a corpus of Web documents,

• EDISC-05: the Enterprise Discussion search task of 2005 [42] which relies on

a test corpus of e-mails and aims to retrieve e-mails that discuss positive and

negative aspects of a topic,

• EEXP-05: the Enterprise Expert search task of 2005 [42] which focuses on

finding people who are experts on a topic area,

• BLTR-06: the Blog track [115], introduced in 2006 to TREC with its topic

relevance task as an adhoc-style task on a corpus of blog entries,

• GEN-07: the Genomics track of 2007 [75] which focuses on entity based ques-

tion answering tasks on a collection of biomedical journal articles2,

• LEGAL-07: the Legal track of 2007 [141], a recall-oriented track which cen-

ters around searching documents in regulatory and litigation settings, and,

• RELFB-08: the Relevance Feedback track [26] which intends to study the ef-

fects of relevance feedback when different amounts of true relevance feedback

is available.

2Although the Genomics task itself calls for passage retrieval, the submitted runs were also eval-

uated on the document level. The latter interpretation is the one we rely on in our evaluation.
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As in Chapter 4 we use a different notation and terminology from Chapters 2 and

3 (data set instead of topic set and TREC-6 instead of 301-350 for instance) to

distinguish the current experiments on system ranking estimation from the earlier

experiments on query effectiveness prediction.

In all but two data sets, the retrieval effectiveness of a system is measured in

MAP. In the NP-02 data set, where the ranking of one particular document is of

importance, mean reciprocal rank is the evaluation measure of choice, while in the

RELFB-08 data set, the effectiveness measure is statistical MAP [8].

The number of retrieval systems to rank varies between a minimum of 37 (EEXP-

05) and a maximum of 129 (TREC-8). The number of topics in the topic set ranges

from 25 topics for CLIR-01 to 208 topics for RELFB-08. A comprehensive overview

of the number of topics and systems for each data set can be found in Table 5.1. We

include all available runs in our experiments, automatic as well as manual and short

as well as long runs. This also includes runs, that are not part of the official TREC

runs, but are nevertheless available from the TREC website. In the setting of TREC,

a run is labelled automatic, if no human intervention was involved in its creation,

otherwise it is considered to be manual. The amount of human intervention in

manual runs varies, it can range from providing explicit relevance judgments and

manually re-ranking documents to small changes in the topic statement to make

it accessible for a specific retrieval system. Runs are also categorized as short or

long according to the TREC topic part they employ, either the title, description or

narrative.

Only one of the approaches we evaluate, namely, ACSimScore, is based on doc-

ument content. As in earlier chapters, we preprocessed the corpora by applying

Krovetz stemming [90] and stopword removal.

5.4.2 Algorithms

The following sections introduce six system ranking estimation approaches, four of

which - DF , RS, SO and ACScore - will be investigated throughout this chapter. The

document-content based approach ACSimScore is only used for comparison in the

first set of experiments, as we only have the corpora available for TREC-{6-10} and

TB-{04-06}. The system similarity approach by Aslam and Savell [9] is also briefly

described, but excluded from further analysis as it is very similar in spirit to RS. It

also relies on document overlap without consideration the rank or retrieval score of

a document, while at the same time being less effective than RS.

Data Fusion (DF )

We implemented the variation of the data fusion approach, that performed best

in [114], namely Condorcet voting and biased system selection. In this approach, a

number of parameters need to be set, specifically, (i) the percentage P% of systems

to select in a biased way that favors non-average systems for data fusion, (ii) the

number b of top retrieved documents to select from each selected system and (iii)

the percentage s% of documents to use as pseudo relevance judgments from the
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merged list of results. We evaluated a range of values for each parameter:

s = {1%, 5%, 10%, 20%, 30%, 40%, 50%}

b = {10, 20, 30, ..., 100, 125, 150, 175, 200, 250}

P = {10%, 20%, 30%, ..., 100%}.

Each of the 1050 possible parameter combinations was tested. To determine the best

parameter settings for each data set, we trained on the remaining data sets available

for that corpus, that means for instance, that the parameters of the TREC-6 data set

were those that led to the best ranking estimation performance for data sets TREC-

7 and TREC-8. Depending on the training data sets, widely different parameter

combinations were learned, for instance TREC-9 is evaluated on s = 1%, b = 250
and P = 50% while TB-05 is run with s = 50%, b = 60 and P = 80%.

Data sets for training are only available for TREC-{6-10} and TB-{04-06} though.

For the remaining data sets, we evaluated all combinations of parameter settings

that were learned for TREC-{6-10} and TB-{04-06}. We evaluated each setting on

the eight data sets without training data (CLIR-01 to RELFB-08) and chose the set-

ting that across these data sets gave the best performance: s = 10%, b = 50 and

P = 100%. Thus, the best results are achieved when not biasing the selection of

systems (P = 100%) towards non-average systems. Since in effect, we optimized

the parameters on the test sets, we expect DF to perform very well on those data

sets.

Random Sampling (RS)

We follow the methodology from [133] and rely on the 100 top retrieved documents

per retrieval system. We pool the results of all systems that are to be ranked, not

just the official TREC runs. The percentage of documents to sample from the pool is

sampled from a normal distribution with a mean according to the mean percentage

of relevant documents in the relevance judgments and a standard deviation cor-

responding to the deviation between the different topics. Note, that this requires

some knowledge about the distribution of relevance judgments; this proved not to

be problematic however, as fixing the percentage to a small value (5% of the num-

ber of unique documents in the pool) actually yielded little variation in the results.

As in [133], due to the inherent randomness of the process, we perform 50 trials.

In the end, we average the pseudo average precision values for each pair (ti, sj) of

topic and system and rank the systems according to pseudo mean average precision.

System Similarity

A simplification of the RS process was proposed by Aslam and Savell [9], who

observed that retaining duplicate documents in the pool leads to a system ranking

estimate that is geared towards document popularity. That is, systems that retrieve

many popular documents, are assigned top ranks. Put differently, the more similar

a system is to all other systems, the more popular documents it retrieves and thus

the better its rank is estimated to be.



Section 5.4 – Materials and Methods | 127

The similarity between two systems si and sj is determined by the document

overlap of their respective ranked lists of documents Ri and Rj , expressed by the

Jaccard similarity coefficient:

SysSimilarity(si, sj) =
|Ri ∩Rj |

|Ri ∪Rj |
.

The estimated effectiveness score of a system so is then the average over all pairwise

similarities:

Avg(so) =
1

n− 1

∑

si 6=so

SysSimilarity(so, si).

A system’s estimated score decreases with decreasing similarity towards the average

system.

Structure of Overlap (SO)

Recall, that the structure of overlap approach [135], in contrast to the previously

introduced approaches, does not rank all systems at once, but instead repeatedly

ranks random sets of five systems. Let there be n systems to be ranked. A total of

n random groupings of five systems each are then created such that each system

appears in exactly five groupings. Subsequently, for each grouping and for each of

the topics, the percentage %Single of documents in the ranked lists of the top re-

trieved 50 documents found by only one and the percentage %AllFive of documents

found by all five systems is determined. The three scores of %Single, %AllFive and

the difference (%Single−%AllFive) were proposed as estimated system score. These

scores are further averaged across all topics. Since each system participates in five

groupings, the scores across those groupings are again averaged, which leads to the

final system score.

Autocorrelation based on Document Scores (ACScore)

This approach, proposed by Diaz [50] and denoted by ρ(y,yµ) in his work, is based

on document overlap and the particular retrieval scores a system assigns to each

document. Essentially, a retrieval system is estimated to perform well if its scores

are close to the average scores across all systems. First of all, the document scores

are normalized in order to make them comparable across systems [110]. Then,

the average system vector of scores yµ is determined as follows: a set U of the

top 75 retrieved documents of all systems is formed and the average score for each

element in the set is calculated. Thus the length of vector yµ is m = |U|. The linear

correlation coefficient r between yµ and the vector y of scores of the top m retrieved

documents per system is then the indicator of a system’s estimated quality where r
is high when both vectors are very similar to each other.
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Autocorrelation based on Document Similarity and Scores (ACSimScore)

We also evaluate a second approach by Diaz [50] which combines the ACSim ap-

proach (introduced in Chapter 3, Section 3.2.2) with ACScore. This method, orig-

inally referred to as ρ(ỹ,yµ), is based on the notion that well performing systems

are likely to fulfill the cluster hypothesis, while poorly performing systems are not.

Based on a document’s score vector y, a perturbed score vector ỹ is derived, which

is based on the similarity between the ranked documents of a system. Each element

yi is replaced by the weighted average of scores of the 5 most similar documents

(based on TF.IDF) in the ranked list. If the cluster hypothesis is fullfilled, we expect

that the most similar documents will also receive a similar score from the retrieval

system (yi and ỹi will be similar), while in the opposite case, high document similar-

ity is not expressed in similar scores and ỹi will be different from yi. To score each

system, the linear correlation coefficient between yµ and the average system vector

of scores, ỹ, is determined.

5.5 Experiments

In Section 5.5.1, we compare the introduced ranking estimation approaches across

the different data sets. Then, in Section 5.5.2, we will show that the system ranking

cannot be estimated equally well for each topic. In Section 5.5.3, we perform a

number of motivational experiments to determine whether it is possible to exploit

this observation. Finally, in Section 5.5.4, we make a first attempt at automatically

selecting a good subset of topics from the full topic set.

5.5.1 System Ranking Estimation on the Full Set of Topics

In this section, we replicate the experiments reported in [114, 133]. In contrast

to [135], we apply SO to rank all available systems per data set. Additionally,

we investigate ACSimScore and ACScore for their ability to rank retrieval systems,

instead of ranking systems for single topics as reported in [50]. The results of our

experiments are shown in Table 5.1. The highest correlation achieved for each data

set is given in bold; the correlations that are not significantly different from the best

one are underlined. All correlations reported are significantly different from zero

with a p-value < 0.005.

When comparing the correlations in Table 5.1 with those reported in earlier

chapters for the task of predicting the query effectiveness for a particular retrieval

system (Figure 1.1, EA2) , it is evident that the task of estimating a ranking of

retrieval systems is less difficult to achieve. The weakest approach, ACSimScore esti-

mates the ranking of systems with a correlation between τ = 0.42 and τ = 0.65.

Noteworthy are the high correlations the five estimators achieve on the TREC-

{9,10} data sets in comparison to the TREC-{6,7,8} data sets. For the task of query

effectiveness estimation the opposite observation was made in previous chapters:

the performance of queries of TREC Vol. 4+5 can be predicted very well, while
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Kendall’s Tau
#sys #top DF ACSimScore ACScore SO RS

TREC-6 73 50 0.600 0.425 0.429 0.470 0.443
TREC-7 103 50 0.486 0.417 0.421 0.463 0.466
TREC-8 129 50 0.395 0.467 0.438 0.532 0.538

TREC-9 105 50 0.527 0.639 0.655 0.634 0.677

TREC-10 97 50 0.621 0.649 0.663 0.598 0.643
TB-04 70 50 0.584 0.647 0.687 0.614 0.708

TB-05 58 50 0.606 0.574 0.547 0.604 0.659

TB-06 80 50 0.513 0.458 0.528 0.447 0.518
CLIR-01 47 25 0.697 - 0.700 0.650 0.702

NP-02 70 150 0.667 - 0.696 0.668 0.693
EDISC-05 57 59 0.668 - 0.560 0.614 0.666
EEXP-05 37 50 0.589 - 0.682 0.502 0.483
BLTR-06 56 50 0.482 - 0.485 0.357 0.523

GEN-07 66 36 0.578 - 0.500 0.362 0.563
LEGAL-07 68 43 0.754 - 0.680 0.749 0.741
RELFB-08 117 208 0.537 - 0.599 0.544 0.559

Table 5.1: System ranking estimation on the full set of topics. Reported is Kendall’s τ . All

correlations reported are significant (p < 0.005). The highest correlation per topic set is

bold. The correlations that are not statistically different from the best one are underlined.

Column #sys shows the number of systems to rank, #top shows the number of topics in a

data set.

for the queries of WT10g predicting the effectiveness is difficult. As will be shown

later in this chapter, system ranking estimation is more difficult on TREC-{6,7,8}
due to the greater amount of human intervention in the best runs. Manual runs can

be very different from automatic runs, containing many unique documents that are

not retrieved by other systems. This is a problem as system ranking estimation is to

some extent always based on document popularity. A simple solution would be to

prefer runs, that retrieve many unique documents, however this is not possible since

the worst performing runs also retrieve a lot of documents that are not retrieved by

any other run.

DF outperforms RS on TREC-{6,7} as already reported in [114]. The poor re-

sult on TREC-8 is due to an extreme parameter setting found to perform best on

TREC-{6,7}, which was subsequently used to evaluate DF on TREC-8. On the

remaining data sets were DF ’s parameters were trained (TREC-{9,10} and TB-

{04,05,06}), RS outperforms DF , in two instances significantly. The highly col-

lection dependent behavior of DF is due to the method’s inherent bias in the way

in which the subset of systems to select the pseudo relevant documents from are

determined. A system that is dissimilar to the average system, can either perform

very well or very poorly. On the data sets without training data (CLIR-01 to RELFB-

08), DF performs similarly to RS, which is not surprising as the best performing

parameter setting of DF means that the most popular documents are included in
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the pseudo relevant documents, just as for RS. The only exception is data set EEXP-

05, where DF achieves a correlation of τ = 0.59, while RS achieves a correlation

of τ = 0.48. This variation can be explained by the small number of systems to

rank (37) - here a small difference in system rankings has a considerable effect on

Kendall’s τ .

Relying on TF.IDF based content similarity does not help, shown by ACSimScore’s

performance. In four out of eight evaluated data sets, its performance is significantly

worse than the best performing approach. Although the approach ranks systems

higher that are closer to the average (just like RS), the TF.IDF similarity might not

be reflected in the score similarity as is expected in this approach. In particular more

advanced retrieval systems are likely to include more than basic term statistics such

as evidence from external corpora, anchor text, the hyperlink structure, etcetera, all

of which influences the retrieval scores a system assigns to a document.

The SO approach performs similarly to RS on TREC-{6,7,8,9}, while for the

remaining data sets the differences in performance generally become larger. We

suspect that the ranking of five systems is less stable, than the ranking of all systems

at once.

ACScore, which takes the score a retrieval system assigns to a document into

account, is also well performing, for five data sets it achieves the highest correlation.

A potential disadvantage of ACScore though is that it requires knowledge of the

retrieval scores a retrieval system assigns to each document, while DF , SO and RS
require no such knowledge.

In Table 5.1 we have refrained from reporting a mean correlation across all data

sets for each estimator on purpose, due to the different data set sizes, that is the

number of retrieval systems to rank. Instead, we point out, that RS exhibits the

highest correlation for six data sets, while DF and ACScore record the highest cor-

relation on five data sets each. Additionally, RS ’s performance is significantly worse

than the best performing approach in only three instances, DF is significantly worse

in four and ACScore is significantly worse in six data sets. Taking into account, that

DF ’s parameters were optimized on eight of the sixteen data sets, we conclude

that in contrast to earlier work which was performed on a small number of TREC

data sets [9, 114, 135, 161], when evaluating a broader set of data sets, the ran-

dom sampling approach RS is the most consistent and overall the best performing

method.

Rank Estimate of the Best Performing System

As discussed in Section 5.2, the commonly cited problem of automatic system eval-

uation is the mis-ranking of the best systems. As in previous work evaluations have

mostly been carried out on TREC-{3,5,6,7,8}, where the problem of underestimat-

ing the best systems occurs consistently, it has been assumed to be a general issue.

When considering more recent and diverse data sets, we find this problem to be

dependent on the set of systems to rank.To give an impression of the accuracy of

the rankings, in Figure 5.1 scatter plots of the estimated system ranks versus the

ground truth system ranks are shown for a number of data sets and system ranking
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estimation approaches along with the achieved correlation and the estimated rank

(ER) of the best system. Each data point stands for one of the n systems and the

best system is assigned rank 1 in the ground truth ranking. In the ideal case, when

the ranks of all systems are estimated correctly and therefore τ = 1.0, the points

would lie on a straight line from (1, 1) to (n, n).

Estimated Rank
Best Run M/A #sys DF ACScore SO RS

TREC-6 uwmt6a0 [41] M 73 52 55 56 57
TREC-7 CLARIT98COMB [56] M 103 48 70 78 74
TREC-8 READWARE2 [1] M 129 112 117 104 113
TREC-9 iit00m [36] M 105 83 79 76 76

TREC-10 iit01m [2] M 97 80 84 87 83
TB-04 uogTBQEL [120] A 70 23 26 30 30
TB-05 indri05AdmfL [106] A 58 35 45 30 32
TB-06 indri06AtdnD [105] A 80 12 5 28 20
CLIR-01 BBN10XLB [164] A 47 3 2 6 2

NP-02 thunp3 [173] A 70 18 16 20 17
EDISC-05 TITLETRANS [101] A 57 1 2 2 1

EEXP-05 THUENT0505 [59] A 37 8 3 12 10
BLTR-06 wxoqf2 [165] A 56 5 4 13 5
GEN-07 NLMinter [48] M 66 1 1 2 1

LEGAL-07 otL07frw [140] M 68 4 15 8 4

RELFB-08 Brown.E1 [98] M 117 64 61 61 65

Table 5.2: Estimated rank of the system that performs best according to the ground

truth. The evaluation metric of the ground truth is mean reciprocal rank (NP-02), statis-

tical MAP [8] (RELFB-08) and MAP (all other data sets) respectively. M/A indicates if the

best system is manual (M) or automatic (A) in nature. #sys shows the number of systems

(or runs) to rank. The last four columns depict the estimated rank of the best system. Rank

1 is the top rank.

The scatter plots in Figure 5.1a, 5.1b and 5.1c reveal the extent of mis-ranking

the best systems of data sets TREC-{6,8,10} respectively. In case of TREC-6, only

the best system is severely mis-ranked, while in data set TREC-8 the best ten systems

are estimated to perform poorly with estimated ranks of 70 or worse, in fact, the best

system is estimated to be ranked at position 113 out of 129. In the TREC-10 data

set, the two best performing systems are ranked together with the worst performing

systems, while the other well performing systems are ranked towards the top of

the ranking. When we consider the TB-04 data set (Figure 5.1d), a decrease in

the amount of mis-ranking of the best systems is evident. The best correspondence

between estimated and ground truth based ranking can be found in Figure 5.1g

where the results of data set LEGAL-07 are shown. The correlation of τ = 0.75
indicates the quality of the estimated ranking, and the best system has an estimated

rank of four. Better in terms of the best systems performs only DF on EDISC-05

(Figure 5.1e), where the two best performing systems are estimated correctly at
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ranks one and two.

An overview of the estimated rank of the best system across all data sets is given

in Table 5.2, where the best rank estimate of a data set is indicated in bold. For

comparison purposes, we also list the number of systems to rank once more. Note,

that we exclude the approach ACSimScore from further experiments, as it is not

available for all data sets and moreover has shown to be the weakest performing

method on the evaluated data sets. We observe that independent of the system

ranking estimation approach, the problem of underestimating the ranking of the

best system decreases considerably for the data sets TB-{04-06} in comparison to

TREC-{6-10}. With the exception of RELFB-08, the ranks of the best systems are

estimated to a much greater accuracy, in fact five for data sets (CLIR-01, EDISC-05,

BLTR-06, GEN-07, LEGAL-07) DF and RS estimate the best system within the top

five ranks. When we investigated this discrepancy in estimating the rank of the best

system between the different data sets, it became apparent, that the reason for this

behavior lies in the makeup of the best run. Table 5.2 also lists the best system

of each data set according to the ground truth and an indicator if the best system

is manual or automatic in nature. For data sets TREC-{6-10} in all cases, the top

performing run according to the MAP based ground truth ranking is manual. The

amount of manual intervention in each run is significant:

• In TREC-6, the run uwmt6a0 [41] was created by letting four human assessors

spent a total of 105 hours (2.1 hours on average per topic) on the creation of

queries and the judging of documents, which lead to 13064 judgments being

made.

• In TREC-7, the run CLARIT98COMB [56] was created by having each topic

judged by four different assessors. The judged documents were then included

as relevance feedback in the final result run, with additional resorting to move

the documents manually labeled as relevant to the top of the ranking.

• In TREC-8, the run READWARE2 [1] was created by letting a retrieval system

expert create numerous queries for each TREC topic by considering the top

retrieved documents and reformulating the queries accordingly. On average,

12 queries were created per TREC topic.

• In TREC-9, the run iit00m [36] was created by letting an expert derive a query

with constraints for each TREC topic.

• In TREC-10, the run iit01m [2] was created with the aid of manual relevance

feedback: the top ranked documents were assessed and reranking was per-

formed accordingly.

The runs created this way are very different from automatic runs (which one

way or another are dependent on the collection frequencies of the query terms)

and are bound to have a small amount of overlap in the top retrieved documents

in comparison to the automatic runs. This explains why system ranking estimation

approaches uniformly estimate them to be among the worst performing runs. In

contrast, the estimated ranks of the best systems of GEN-07 and LEGAL-07, which

are also classified as manual, are highly accurate. This is explained by the fact,
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(a) TREC-6, DF , τ = 0.60, ER = 52
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(b) TREC-8, RS, τ = 0.54, ER = 113
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(c) TREC-10, ACScore, τ = 0.66,
ER = 84
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(d) TB-04, RS, τ = 0.71, ER = 30
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(e) EDISC-05, DF , τ = 0.67, ER = 1
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(f) BLTR-06, RS, τ = 0.52, ER = 5
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(g) LEGAL-07, DF , τ = 0.75, ER = 4
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(h) RELFB-08, ACScore, τ = 0.60,

ER = 61

Figure 5.1: Scatter plots of system ranks according to system ranking estimation ap-

proaches (x-axis) versus system ranks according to the ground truth (y-axis). Each marker

stands for one retrieval system. Rank 1 is assigned to the best system.
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that in both instances, the runs were created with little human intervention. The

best run of GEN-07, NLMinter [48], is tagged as manual, because the Genomics

topics were manually transcribed into queries for a domain specific external search

engine and the documents retrieved from this engine were used for collection en-

richment. The best run of LEGAL-07, otL07frw [140], is even less manual. Here,

the provided TREC topics were manually transformed into queries suitable for the

search engine without adding any additional knowledge by the human query tran-

scriber. Finally, we note that the poor estimation performance on RELFB-08 and

its best run, Brown.E1 [98], is a result of the task [26], where the performance of

pseudo-relevance feedback algorithms was investigated, by providing four different

sets of relevance judgments, the smallest set with one relevant document per topic,

the largest set with between 40-800 judged documents per topic. We hypothesize

that based on the very different type of relevance information between the runs,

document overlap might not be a good indicator.

A comparison of the performances of DF on data sets TREC-6 and GEN-07 re-

veals, that reporting both the correlation coefficient τ and the estimated rank of the

best performing system offers better insights into the abilities of a system ranking

estimation method. For both data sets, DF performs similarly with respect to the

rank correlation, τ = 0.60 (TREC-6) and τ = 0.58 (GEN-07) respectively. How-

ever, the performances with respect to the estimated rank of the best system are

very different, while the estimate of TREC-6 is highly inaccurate (ER = 52 out of

73 systems), the best system of GEN-07 is identified correctly (ER = 1 out of 66
systems).

Considering the success of estimating the rank of the best system across the

four system ranking estimation approaches, we note that DF and ACScore outper-

form SO and RS by providing the best estimates for seven data sets, while RS and

SO provide the best estimates on five and four data sets respectively. In most in-

stances, the estimated ranks are similar across all approaches, exceptions are data

sets TREC-7 and TB-06 where the maximum difference in ER is 30 and 23 respec-

tively. Although on TREC-7 all four ranking estimation approaches result in similar

correlations (between τ = 0.42 and τ = 0.47), DF ’s estimate of the best system is

considerably better than of the remaining approaches. This reiterates the previous

point, that both τ and ER should be reported to provide a more comprehensive

view of an algorithm’s performance.

5.5.2 Topic Dependent Ranking Performance

In this section, we show that the ability of system ranking estimation approaches

to rank retrieval systems correctly differs significantly between the topics of a topic

set. While for a number of topics the estimated rankings are highly accurate and

close to the actually observed rankings, for other topics system ranking estimation

fails entirely.

We set up the following experiment: for each topic, we evaluated the estimated

ranking of systems (Figure 1.1, EA3) by correlating it against the ground truth rank-

ing that is based on average precision, reciprocal rank or statistical average preci-
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sion. This is different from the ground truth ranking based on MAP, mean reciprocal

rank or statMAP. Here, we are not interested in how well a single topic can be used

to approximate the ranking of systems over the entire topic set. Instead, we are

interested in how well a system ranking estimation method performs for each indi-

vidual topic. To evaluate the range of performances, we record the topic for which

the least correlation is achieved and the topic for which the highest correlation is

achieved. The results are shown in Table 5.3.

DF ACScore SO RS

min. τ max. τ min. τ max. τ min. τ max. τ min. τ max. τ
TREC-6 0.008 0.849† −0.161 0.812† −0.147 0.752† −0.105 0.814†
TREC-7 −0.061 0.765† 0.053 0.695† −0.008 0.764† −0.004 0.693†
TREC-8 0.053 0.792† 0.087 0.740† 0.080 0.723† 0.143 0.731†
TREC-9 −0.234† 0.835† 0.018 0.760† 0.096 0.760† 0.179 0.730†
TREC-10 −0.094 0.688† 0.031 0.722† 0.054 0.707† 0.130 0.821†
TB-04 0.002 0.906† −0.161 0.777† −0.057 0.784† −0.025 0.882†
TB-05 0.040 0.769† −0.161 0.716† −0.052 0.709† −0.083 0.827†
TB-06 −0.070 0.728† 0.055 0.644† −0.159 0.710† −0.152 0.760†
CLIR-01 0.268 0.862† 0.378† 0.837† 0.220 0.876† 0.248 0.862†
NP-02 −0.264 0.607† −0.129 0.760† −0.239 0.621† −0.257 0.649†
EDISC-05 −0.019 0.573† −0.038 0.589† −0.021 0.526† 0.024 0.640†
EEXP-05 −0.250 0.845† −0.224 0.808† −0.294 0.764† −0.208 0.770†
BLTR-06 0.044 0.534† 0.018 0.507† −0.192 0.436† 0.206 0.562†
GEN-07 0.151 0.795† 0.040 0.700† 0.078 0.627† 0.180 0.774†
LEGAL-07 0.027 0.690† −0.004 0.583† −0.058 0.691† −0.008 0.690†
RELFB-08 −0.183† 0.797† −0.115 0.749† −0.172 0.774† −0.137 0.775†

Table 5.3: Topic dependent ranking performance: minimum and maximum estimation

ranking accuracy in terms of Kendall’s τ . Significant correlations (p < 0.005) are marked

with †.

The results are very regular across all data sets and system ranking estimation

methods: the spread in correlation between the best and worst case are extremely

wide; in the worst case, there is no correlation (τ ≈ 0) between the ground truth

and the estimated ranking or in rare cases a significant negative correlation is ob-

served (such as for data sets TREC-9 and RELFB-08). In the best case on the other

hand, the estimated rankings are highly accurate, and with few exceptions τ > 0.7.

Overall, DF exhibits the highest correlation on TB-04, where the maximum achiev-

able correlation is τ = 0.91. Though not explicitly shown, we note that the topics

for which the minimum and maximum τ are recorded vary between the different

system ranking estimation approaches.

These findings form the main motivation for our work: if we were able to deter-

mine a subset of topics for which the system ranking estimation algorithms perform

well, we hypothesize that this would enable us to achieve a higher estimation accu-

racy of the true ranking across the full set of topics.
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5.5.3 How Good are Subsets of Topics for Ranking Systems?

Having shown in the previous section that the quality of ranking estimation varies

across individual topics, we now turn to investigating whether selecting a subset of

topics from the full topic set is useful in the context of system ranking estimation

algorithms. That is, we attempt to determine whether we can improve the accuracy

of the approaches over the results reported in Section 5.5.1 on the full set of topics.

We can choose a subset of topics, for instance, by removing those topics from the full

set of topics the system ranking approach performs most poorly on. To investigate

this point, we experiment with selecting subsets of topics according to different

strategies as well as evaluating a large number of randomly drawn subsets of topics.

Each of the evaluated topic sets consists of m topics, m varies from 25 to 208
(Table 5.1). We therefore test subsets of cardinality c = {1, 2, .., m}. In the ideal

case, for each cardinality we would test all possible subsets. This is not feasible

though, as for each cardinality c, a total of
(

m

c

)

different subsets exist; for a topic

set with m = 50 topics and subsets of cardinality c = 6 for instance this already

amounts to nearly sixteen million subset combinations, that is
(

50
6

)

= 15890700. For

this reason, for each c, we randomly sample 10000 subsets of topics. Apart from this

random strategy, we also include a number of iterative topic selection strategies,

that will be described shortly.

For the topic subsets of each cardinality, we determine the correlation between

the estimated ranking of systems (based on this subset) and the ground truth rank-

ing of systems based on the retrieval effectiveness across the full set of topics. In

contrast to Section 5.5.2, we are now indeed interested in how well a subset of one

or more topics can be used to approximate the ranking of systems over the entire

topic set.

In total, we report results for five subset selection strategies, two based on sam-

ples of subsets and three iterative ones:

• worst sampled subset: given the 10000 sampled subsets of a particular car-

dinality c, reported is the τ of the subset resulting in the lowest correlation,

• average sampled subset: given the 10000 sampled subsets of a particular

cardinality c, reporeted is the average τ across all samples,

• greedy approach: an iterative strategy; at cardinality c, that topic, from the

pool of unused topics, is added to the existing subset of c− 1 topics, for which

the new subset reaches the highest correlation with respect to the ground truth

ranking based on MAP; this approach performs usually as well as or better than

the best sampled subset, which is therefore not listed separately,

• median AP: an iterative strategy; at cardinality c that topic is added to the

existing subset of c− 1 topics, that exhibits the highest median average preci-

sion across all systems; this means that first the easy topics (on which many

systems achieve a high average precision) are added and then the difficult

ones,

• estimation accuracy: an iterative strategy; at cardinality c that topic is added

to the existing subset of c−1 topics, that best estimates the ranking of systems
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according to average precision for that topic; thus, first those topics are added

to the subset that the system ranking estimation method achieves the highest

estimation accuracy for (this strategy draws from results of Section 5.5.2).

We should stress here, that the latter three strategies (greedy, median AP and

estimation accuracy) all require knowledge of the true relevance judgments. This

experiment was set up to determine whether it is at all beneficial to rely on subsets

instead of the full topic set. These strategies were not designed to find a subset of

topics automatically. Therefore this section should be viewed as an indicator that

subset selection is indeed a useful research subject that should be pursued further.

The results of this analysis are shown in Figure 5.2 for selected data sets. After

a visual inspection it becomes immediately evident that the general trend of the re-

sults is similar across all examples. The greedy approach, especially at small subset

sizes between c = 5 and c = 15, yields significantly higher correlations than the

baseline, which is the correlation the method achieves at the full topic set size of

m topics. After a peak, the more topics are added to the topic set, the lower the

correlation. The amount of change of τ is data set dependent, the largest change

in Figure 5.2 is observed for TREC-9 and the DF approach, where τ increases from

the baseline correlation of τ = 0.53 to τ = 0.80 at the peak of the greedy approach.

The worst subset strategy on the other hand shows the potential danger of choos-

ing the wrong subset of topics: τ is significantly lower than the baseline for small

cardinalities.

When averaging τ across all sampled subsets (the average subset strategy) of a

cardinality, at subset sizes of about m/3 topics, the correlation is only slightly worse

than the baseline correlation.

When considering the median AP strategy, which first adds easy topics (topics

with a high median AP) to the subset of topics, the gains in correlation over the

baseline are visible in Figures 5.2a and 5.2f but they are topic dependent and far

less pronounced than the best possible improvement, as exemplified by the greedy

approach.

Better than the median AP strategy is the performance of the estimation accu-

racy strategy, where first those topics are added to the topic subset, for whom the

ranking of systems is estimated most accurately as measured by Kendall’s τ . This

strategy is based on the results of Section 5.5.2. Particularly high correlations are

achieved in Figures 5.2b, 5.2c, 5.2e and 5.2f. Here, the development of the cor-

relation coefficient achieved by the estimation accuracy strategy across different

cardinalities mirrors the development of the greedy subset approach. However, the

improvements are also not consistent across all data sets. In the worst case as seen

in Figure 5.2g, the correlations are not better than for the average subset approach.

Overall though, the estimation accuracy strategy is also a subset selection method

worth pursuing. It remains to be seen though, whether an automatic procedure can

be devised that allows us to estimate the accuracy of the ranking to a high degree.

A summary of the most important results of DF , ACScore, SO and RS on all

data sets are shown in Table 5.4. Listed are the the correlation coefficients on the

full set of topics as well as the correlation of the best performing subset in the
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DF ACScore SO RS

full set greedy ±% full set greedy ±% full set greedy ±% full set greedy ±%
τ τ τ τ τ τ τ τ

TREC-6 0.600 0.804 +34.0% 0.429 0.723 +68.5% 0.470 0.731 +55.5% 0.443 0.654 +47.6%
TREC-7 0.486 0.762 +56.8% 0.421 0.591 +40.4% 0.463 0.633 +36.7% 0.466 0.584 +25.3%
TREC-8 0.395 0.630 +59.5% 0.438 0.606 +38.4% 0.532 0.661 +24.2% 0.538 0.648 +20.4%
TREC-9 0.527 0.800 +51.8% 0.655 0.780 +19.1% 0.634 0.775 +22.2% 0.677 0.779 +15.1%
TREC-10 0.621 0.761 +22.5% 0.663 0.755 +13.9% 0.598 0.711 +18.9% 0.643 0.734 +14.2%
TB-04 0.584 0.898 +53.8% 0.687 0.829 +20.7% 0.614 0.804 +30.9% 0.708 0.846 +19.5%
TB-05 0.606 0.800 +32.0% 0.547 0.743 +35.8% 0.604 0.786 +30.1% 0.659 0.812 +23.2%
TB-06 0.513 0.682 +32.9% 0.528 0.707 +33.9% 0.447 0.632 +41.4% 0.518 0.704 +35.9%
CLIR-01 0.697 0.785 +12.6% 0.700 0.815 +16.4% 0.650 0.771 +18.5% 0.702 0.808 +15.0%
NP-02 0.667 0.839 +25.8% 0.696 0.875 +25.7% 0.668 0.838 +25.4% 0.693 0.853 +23.0%
EDISC-05 0.668 0.776 +16.2% 0.560 0.703 +25.5% 0.614 0.773 +25.9% 0.666 0.801 +20.3%
EEXP-05 0.589 0.900 +52.9% 0.682 0.874 +28.2% 0.502 0.745 +48.5% 0.483 0.718 +48.4%
BLTR-06 0.482 0.617 +28.0% 0.485 0.603 +24.4% 0.357 0.538 +51.0% 0.523 0.601 +14.9%
GEN-07 0.578 0.685 +18.5% 0.500 0.672 +34.5% 0.362 0.569 +57.2% 0.563 0.680 +20.9%
LEGAL-07 0.754 0.864 +14.6% 0.680 0.808 +18.9% 0.749 0.874 +16.6% 0.741 0.865 +16.7%
RELFB-08 0.537 0.878 +63.5% 0.599 0.895 +49.4% 0.544 0.859 +57.9% 0.559 0.872 +56.1%

Table 5.4: Summary of topic subset selection experiments. In bold, the highest correlation coefficient of the greedy strategy per topic

set. The columns marked with ± show the percentage of change between τ achieved on the full topic set and the greedy approach. All

correlations reported are significant (p < 0.005). All differences between the best greedy τ and the τ of the full topic set are statistically

significant.
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(a) TREC-6, RS

1 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

size of topic subset

K
en

da
ll’

s 
τ

 

 

median AP
estimation accuracy
greedy approach
worst subset
average subset

(b) TREC-8, DF
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(c) TREC-9, DF
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(d) TB-05, ACSimScore
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(e) TB-06, ACScore
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(f) EEXP-05, DF
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(g) EDISC-05, ACScore
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(h) BLTR-06, RS

Figure 5.2: Topic subset selection experiments.
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greedy approach, which is the maximum amount of improvement we assume pos-

sible. Though this is not entirely correct, the fact that the best sample among the

random subsets does not perform better than the greedy approach suggests, that

this is an adequate approximation of the true optimal performance. Across all pair-

ings of system ranking estimation approach and topic set, subsets of topics indeed

exist that would greatly improve the performance of system ranking estimation al-

gorithms. Consider for instance, the results of RS on RELFB-08: with the “right”

topic subset, a rank correlation of τ = 0.87 can be reached, a 56% increase over

the performance on the full topic set (τ = 0.56). Given in bold, is the best possible

correlation for each data set. Here, the DF approach shows the most potential, in

particular for eight out of sixteen data sets it records the highest possible improve-

ment.

5.5.4 Automatic Topic Subset Selection

The observations made in the previous two sections can only be useful in practice

if it becomes possible to automatically identify those subsets of topics that lead to

improved system ranking estimation performance. In this section, we make a first

step in that direction.

As RS proved overall to be the best performing algorithm in Section 5.5.1, we

focus on it now. Recall, that RS is based on document popularity, that is, the most

often retrieved documents have the highest chance of being sampled from the pool

and thus being declared pseudo-relevant. This approach therefore assumes that

popularity ≈ relevance. It is clear, that this assumption is not realistic, but we can

imagine cases of topics where it holds: in the case of easy topics. Easy topics are

those where all or most systems do reasonably well, that is, they retrieve the truly

relevant document towards the top of the ranking and then relevance can be ap-

proximated by popularity.

The above observation leads to the basic strategy we employ: adding topics to

the set of topics according to their estimated difficulty. Again, as we do not have

access to relevance judgments, we have to rely on an estimate of collection topic

hardness [7] (see Figure 1.1, EA1), as provided by the Jensen-Shannon Divergence

(JSD) approach by Aslam and Pavlu [7]. The JSD approach estimates a topic’s

difficulty with respect to the collection and in the process also relies on different

retrieval systems: the more diverse the result lists of different retrieval systems as

measured by the Jensen-Shannon Divergence, the more difficult the topic is with

respect to the collection.

Therefore, we perform a prediction task on two levels. First, a ranking of topics

according to their inherent difficulty is estimated by the JSD approach and then

we rely on the topics that have been predicted to be the easiest, to perform system

ranking estimation. The only parameter of the JSD approach is the document

cutoff. We relied on the parameter settings recommended in [7], that is a cutoff of

100 documents for TB-{04-06} and a cutoff of 20 documents for the remaining data

sets.

The results of this two-level prediction approach are presented in Table 5.5.
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Shown are Kendall’s τ on the full set of topics and the correlation achieved by JSD
based selected subsets of c = 10 and c = 20 of topics. The particular size of the topic

subset is of no great importance as seen in the small variation in τ . For nine out of

sixteen data sets, we can observe improvements in correlation, though none of the

improvements are statistically significant. The largest improvement in correlation is

observed for EEXP-05, where the correlation on the full topic set τ = 0.48 increases

to τ = 0.62 when the easiest c = 10 topics are evaluated. The correlation change of

the data sets that degrade with JSD based topic subset selection is usually slight,

the most poorly performing data set is NP-02, where τ = 0.69 on the full set of topics

degrades to τ = 0.60. Considering the potential amount of improvements with the

“right” subsets of topics as evident in Section 5.5.3 and Table 5.4, this result is some-

what disappointing. We suspect two reasons for the low levels of change the JSD
approach achieves: apart from the fact, that the median AP strategy does in a few

instances only perform little better than the baseline correlation (Section 5.5.3), the

JSD approach itself does not estimate the topic’s difficulty to a very high degree.

When evaluating the accuracy of the collection topic hardness results (Figure 1.1,

EA1) , JSD reaches correlations between τ = 0.41 and 0.63, depending on the data

set.

We also evaluated three further automatic topic subset selection mechanisms.

First, we attempted to exploit general knowledge we have about the performance

of a number of retrieval approaches such as the fact that TF.IDF usually performs

worse than BM25 or Language Modeling. In order to rank n systems, we assumed

to have an additional k << n systems available for which we know the performance

ranking based on past experience. The ranking of the n+k systems is then estimated

as usual,and, topic subset selection is performed by first selecting those topics, for

which the k systems are ranked according to our assumption. The hypothesis being,

that topics for which the system ranking estimator is able to derive the ranking of

the known k system correctly, are more likely to also produce good estimates for the

unknown n systems.

A second strategy is to cluster the estimated rankings derived for each topic

and then to choose all topics of the largest cluster as topic subset. The motivation

behind this approach can be explained by the results of Figure 5.3. We took the

10000 random subsets created for topic subsets of cardinality c = 10 in the TREC-

7 data set and the RS approach. We sorted the subset samples according to the

correlation they achieve with respect to the ground truth ranking, that is the MAP

on the full set of m = 50 topics. Then, we created two sets: the set of good subsets,

that are the 250 subsets with the highest correlation and the set of bad subsets, that

are the 250 subsets with the lowest correlation with the ground truth. Now, for each

of the 50 topics in the full topic set, we determined how often it appears in the good

and bad sets. The ratio |G|/(|G|+ |B|) is 1 if a topic only appears in good sets, while

it is 0 if a topic only appears in bad sets, a value of 0.5 means that the topic appears

to the same extent in both types. In the plot in Figure 5.3 each point represents

one topic. Two variations are given: the topics and their correlation to the MAP

based ground truth and the topics and their correlation to the AP based ground

truth. It is evident, that the best subsets are made out of topics which achieve a
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Figure 5.3: Distribution of topics in the best and worst subsets (RS, TREC-7): Of the 10000
random samples of topic subsets with cardinality c = 10, the best and worst performing 250
subsets are kept. For each of the 50 topics in TREC-7, it is recorded how often it appears

in the good and bad subsets, the x-axis contains the ratio. Shown are the topics and their

correlation with AP and their correlation with MAP.

high correlation with MAP. The topics that are predicted to the highest degree (their

correlation with AP) are not necessarily those that are always found in the best sets

– there are inter-relations with the other topics in the subset. As the best subsets are

made out of topics that estimate rankings with a good correlation to the MAP based

ground truth, we clustered the estimated rankings and chose as subset the cluster

with the largest number of topics, estimating that this might be a cluster of good

topics.

Finally, we attempted to approximate the estimation accuracy of a topic (Sec-

tion 5.5.2) by introducing noise to the estimated performance scores and testing

the robustness of the ranking against randomly introduced perturbations. If one es-

timator estimates the performance scores of three documents to be (0.2, 0.201, 0.22)
while a second estimator derives the scores (0.2, 0.6, 1.0) we would have more confi-

dence in the ranking of documents by the second estimator, as the score differences

are larger, whereas the confidence in the document ranking is smaller for the first

estimator, as the estimated performance scores are very similar. We tested this intu-

ition by adding Gaussian noise to the estimated performances scores and determin-

ing by how much the ranking of documents after the introduction of noise differs

from the ranking of documents based on the unperturbed scores. This method was

motivated by the query performance prediction methods that work on query and

document perturbations (Chapter 3).

The evaluation of those three more advanced strategies, however, failed to achieve

better results than the JSD strategy. The reasons for the failure to identify valuable

topic subsets with either of these mechanisms are not well understood yet and re-

quire further investigation.
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RS JSD

full set c=10 c=20

TREC-6 0.443 0.455 0.485

TREC-7 0.466 0.489 0.505

TREC-8 0.538 0.585 0.588

TREC-9 0.677 0.649 0.644
TREC-10 0.643 0.634 0.635
TB-04 0.708 0.760 0.733

TB-05 0.659 0.670 0.612
TB-06 0.518 0.495 0.508
CLIR-01 0.702 0.706 0.698
NP-02 0.693 0.623 0.597
EDISC-05 0.666 0.709 0.729

EEXP-05 0.483 0.616 0.616

BLTR-06 0.523 0.501 0.528

GEN-07 0.563 0.530 0.556
LEGAL-07 0.741 0.695 0.728
RELFB-08 0.559 0.589 0.638

Table 5.5: Overview of Kendall’s τ achieved by RS on the full set of topics and on topic

subsets of cardinality c = 10 and c = 20 of the JSD topic subset selection strategy. In bold,

improvements over the full topic set. All correlations reported are significant (p < 0.005),

though none are statistically significantly different from the highest correlation per data set.

5.6 Conclusions

In this chapter, we have investigated the task of system ranking estimation, which

attempts to rank a set of retrieval systems, for a given topic set and test corpus, ac-

cording to their relative performance without relying on relevance judgments. This

type of automatic evaluation could in the ideal case be used in the context of formal

evaluations though currently the results suggest that this is not a realistic goal yet.

We have described the most common approaches and performed an evaluation of

them on a wider variety of data sets than done previously. In contrast to earlier

findings [9, 114, 133, 135, 161] on a small number of older TREC data sets, we

found the initially proposed approach by Soboroff et al. [133] to be the most stable

and the best performing one. Moreover, we found the commonly reported problem

of system ranking estimation methods, namely the severe underestimation of the

performance of the best systems, not to be an inherent problem of system ranking

estimation approaches. Instead we argue that this is a data set dependent issue, in

particular it depends on the amount of human intervention in the best systems of a

data set. If the best system is automatic in nature, or is derived with a small amount

of human intervention, it can often be identified with a high degree of accuracy,

or for some data sets, even correctly. This result suggests, that especially in practi-

cal applications, where we have a choice of different retrieval approaches it can be

possible to automatically determine the best (or close to the best) performing one.
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In terms of evaluation, it also proved beneficial to report not only the rank cor-

relation coefficient Kendall’s τ as evaluation measure of system ranking estimation

approaches, but also to report the estimated rank of the best system as this measure

provides an alternative view of an approach’s performance.

In a second set of experiments, we turned to investigating the ability of system

ranking estimation approaches to estimate the ranking of systems for each individ-

ual topic. We showed that the quality of the estimated rankings vary widely within

a topic set. Based on this result, we designed a number of motivational experiments

with different subset selection strategies. We were able to confirm the hypothesis

that there exist subsets of topics that are better suited for the system ranking estima-

tion task than others. Having found this regularity is only the first step however, for

this knowledge to be useful in a practical setting, automatic methods are required

that can identify those good subsets of topics to rely on.

We also proposed a strategy to automatically identify good subsets of topics by

relying on topics that have been estimated to be easy. This strategy yielded some

improvements, though they were not consistent across all data sets. Considering

the amount of potential improvement, this can only be considered as a first attempt

at subset selection.



Chapter 6

Conclusions

In this thesis we have investigated the prediction of query and retrieval system ef-

fectiveness. As we introduced the topic we clearly identified its pertinent evaluation

aspects (Figure 1.1) and set the focus on two aspects in particular, namely predicting

the effectiveness of queries for a particular system (EA2) and predicting the relative

effectiveness of systems (EA4).

The motivation for our research efforts stems primarily from the enormous ben-

efits originating from successfully predicting the quality of a query or a system. Ac-

curate predictions enable the employment of adaptive retrieval components which

would have a considerable positive effect on the user experience. Furthermore, if

we would achieve sufficiently accurate predictions of the quality of retrieval systems,

the cost of evaluation would be significantly reduced.

We have conducted our research along four lines: the pre-retrieval and post-

retrieval prediction of query effectiveness, the contrast between the evaluation of

predictors and their effect in practice, and, lastly, the prediction of system effective-

ness.

6.1 Research Themes

6.1.1 Pre-Retrieval Prediction

Pre-retrieval prediction methods are used by retrieval systems to predict the quality

of a ranked list of results retrieved in response to a query without actually retrieving

the result list. Instead of considering the content of the result list, the methods rely

on collection statistics and external resources such as semantic dictionaries to derive

a prediction. The first research theme RT1 revolves around these methods and

considers the following research questions: On what heuristics are the prediction

algorithms based? Can the algorithms be categorized in a meaningful way? How

similar are different approaches with respect to their behavior to each other? How

sensitive are the algorithms to a change in the retrieval approach? What gain can

be achieved by combining different approaches?

We conclude in Chapter 2 that prediction methods are distinguished, in the liter-

ature, in four different classes according to the heuristics they exploit to predict the
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effectiveness of a query. As such, specificity based prediction methods relate more

specific query terms to a better performance, while ambiguity based predictors rely

on the query terms’ level of ambiguity to determine the performance. Ambiguous

query terms are predicted to lead to a poor retrieval effectiveness while unambigu-

ous query terms are viewed as evidence for a high retrieval effectiveness. A number

of prediction methods also rely on the degree of relatedness between query terms to

infer the query’s performance: related query terms are predicted to lead to a better

search result than unrelated query terms. Finally, the ranking sensitivity based pre-

diction methods attempt to infer how difficult it will be for a retrieval approach to

rank the documents that contain the query terms.

We performed an analytical and empirical evaluation of the prediction methods

within each class and showed substantial similarities between them. When evalu-

ating the prediction methods according to their ability to predict the effectiveness

of queries on three different corpora we found their accuracy to be dependent on

the retrieval approach, the query set and the corpus under investigation. We also

showed that the dependency on the retrieval approach is very pronounced, not only

when considering diverse retrieval approaches, but also when considering the dif-

ferent parameter settings of a single retrieval approach.

Overall, our results have indicated that when comparing predictor performances,

a single retrieval setting can be misleading, and when possible, a variety of retrieval

methods should be evaluated before conclusive observations are drawn about the

merits of individual predictors. The general lack of predictor robustness as evinced

from our work also brings into question the merits of pre-retrieval predictors; if

they are unstable and often result in poor prediction accuracy, then the advantage

of being low cost in terms of processing time is lost.

Finally the potential gain in accuracy when combining prediction methods has

been explored. Specifically, we investigated the utility of penalized regression as a

principled approach to combine predictors. The evaluation showed potential, for

two of our three corpora the penalized regression methods led to improvements

over the best single individual predictor.

6.1.2 Post-Retrieval Prediction

Approaches predicting the effectiveness of a query’s result list by indeed considering

the result list are employed after the initial retrieval stage and are thus called post-

retrieval. The questions posed as part of the second research theme RT2 were set

around the post-retrieval predictor Clarity Score [45] and were as follows: How

sensitive is this post-retrieval predictor to the retrieval algorithm? How does the

algorithm’s performance change over different test collections? Is it possible to

improve upon the prediction accuracy of existing approaches?

In Chapter 3 we were able to show on two concrete predictor examples, one

of which was Clarity Score, that post-retrieval prediction methods are as sensitive

to the parameter settings of the retrieval approach as pre-retrieval predictors. The

same observation holds for the performance of Clarity Score on different test cor-

pora; the prediction accuracy varies widely depending on the corpus and the partic-



Section 6.1 – Research Themes | 147

ular query set under investigation. We proposed two adaptations to Clarity Score:

(i) setting the number of feedback documents used in the estimation of the query

language model individually for each query to the number of documents that con-

tain all query terms, and, (ii) ignoring high-frequency terms in the KL divergence

calculation. These adaptations were thoroughly tested on three TREC test collec-

tions. With the exception of one set of queries, one or more of the proposed varia-

tions always outperformed the Clarity Score baseline, often by a large margin.

The main conclusion we draw from the investigations of Chapter 3 is that Adapted

Clarity is a highly competitive post-retrieval approach which, on average across all

evaluated corpora, outperforms all other tested pre- as well as post-retrieval predic-

tors.

6.1.3 Contrasting Evaluation and Application

The third research theme dealt with the relationship of the current evaluation method-

ology for query performance prediction and the change in retrieval effectiveness of

adaptive systems that employ a predictor for selective query expansion or meta-

search. In selective query expansion a predictor is expected to predict when the

application of automatic query expansion will lead to a higher quality result list.

When applied in meta-search, for each query there exists a choice of result lists and

a predictor is expected to identify the one of highest quality.

In particular the posed questions of RT3 were: What is the relationship between

the correlation coefficient as an evaluation measure for query effectiveness estima-

tion and the effect of such a method on retrieval effectiveness? At what levels of

correlation can we be reasonably sure that a query performance prediction method

will be useful in an operational setting?

In Chapter 4 we provide first answers to these questions. We chose these two

operational settings as they are most often mentioned as potential applications

of query effectiveness prediction. Our experiments have shown that the level of

Kendall’s τ required to be confident that a prediction method is viable in practice is

dependent on the particular operational setting it is employed in. In the case of se-

lective query expansion, a value of τ ≥ 0.4 has been found to be the minimum level

of correlation that should be attained provided perfect knowledge of the behav-

ior of the employed automatic query expansion mechanism is available. A second

experimental inquiry evaluated the effect of overly optimistic assumptions such as

that query expansion aids all queries with initially high effectiveness. Under these

circumstances predictors need to achieve a correlation of τ ≥ 0.75 for them to be

viable.

In the meta-search setting, the level of correlation required to reliably improve

the retrieval effectiveness of a meta-search system is shown to be dependent on the

performance differences of the participating systems as well as on the number of

systems employed. Notably, when the effectiveness of all systems is similar, predic-

tion methods acheiving low levels of correlation are already sufficient. However,

when the differences in system performance are large and we are interested in sta-

tistically significant improvements, the level of correlation necessary varies between
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τ = 0.5 (m = 150) and τ = 0.7 (m = 50) depending on the number m of queries

participating in the experiment.

Based on the knowledge we gained in Chapter 2 and Chapter 3 we can convinc-

ingly state our main conclusion as follows: current query effectiveness prediction

methods are not sufficiently accurate to lead to consistent and significant improve-

ments when applied to meta-search and selective query expansion.

6.1.4 System Effectiveness Prediction

In Chapter 5 we turned to estimating the ranking of retrieval systems as set by the

fourth research theme RT4. The questions posed were: Is the performance of sys-

tem ranking estimation approaches as reported in previous studies comparable with

their performance for more recent and diverse data sets? What factors influence

the accuracy of system ranking estimation? Can the accuracy be improved when

selecting a subset of topics to rank retrieval systems?

In order to answer these questions, we have investigated a wide range of data

sets covering a variety of retrieval tasks and a variety of test collections. We found

that in contrast to earlier studies which were mostly conducted on the same small

number of data sets, there are indeed differences in the ability to rank retrieval

systems depending on the data set. The issue that has long prevented this line

of evaluation to be used in practice has been shown to be the mis-ranking of the

best systems. In the extreme case, the most effective systems are estimated to be

among the worst performing ones. In our experiments however, we have discovered

this not to be an inherent problem of system ranking estimation approaches. The

extent of the mis-ranking problem was shown to be data set dependent and, more

specifically, dependent on the amount of human intervention in the best system of

a data set. We conclude that in cases where the best system is (largely) automatic,

the best system can often be identified with a high degree of accuracy.

The evaluation of retrieval systems has always been performed based on some

set of topics. To answer the final question on accuracy improvement we first investi-

gated the variability between topics, that is we evaluated how well the systems can

be ranked for each individual topic. The result of this investigation motivated the

follow up question on whether we can improve the ability of estimating a ranking of

systems when relying on a subset of topics. In a motivational study we have shown

that selecting topic subsets from the full set of topics can lead to a significantly

higher accuracy.

The most important conclusion to have emerged from the work in Chapter 5 is

that automatic system ranking estimation methods are not a lost cause. They are in

fact capable of high quality estimations in contrast to previous findings.

6.2 Future Work

A number of future research avenues have become evident in the course of this

work. One particular direction is the exploration of alternatives to the currently
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employed correlation coefficients, namely Kendall’s τ and the linear correlation co-

efficient r. Blest [21] proposes a rank correlation coefficient that weights errors at

the top end of the ranking more than errors at the bottom of the ranking, which

stands in contrast to Kendall’s τ where all errors are weighted equally. In particular

in the context of system ranking estimation, where we are often most interested in

identifying the best performing systems correctly such an evaluation measure can

be useful. In the context of Information Retrieval, Yilmaz et al. [166] propose a rank

correlation coefficient based on average precision that penalizes errors at the top of

the ranking to a higher degree. Both of the above may be considered as alternative

evaluation measures in future work.

Most experiments in the realm of query performance prediction, including the

experiments reported in this thesis, have been performed on informational queries.

There are also other types of queries, such as navigational queries or transactional

queries [23]. How the current approaches for informational queries can be trans-

lated to those query types largely remains an open question.

With the introduction of the Million Query track [3] to TREC, a much larger

number of topics (10000 topics to be exact) has recently become available than the

standard topic set size of between 50 and 250 topics for earlier test collections. Rel-

evance judgments for such a large number of topics cannot be derived in the same

manner as for a small set of topics though and, therefore, instead of average pre-

cision, new effectiveness measures had to be introduced such as statistical AP [8].

This development naturally leads to two further research questions; first to evaluate

the performance of query performance prediction methods for such topic set sizes,

and, second, to investigate if the novel evaluation measures can also be predicted

reasonably well.

One future work prospect of Chapter 2 is the evaluation of the robustness of the

prediction methods with respect to TREC runs. Since the predictor performances

vary widely, it would be beneficial to analyze for which kind of retrieval approaches

the different prediction methods perform well and for which they fail. Such an

analysis would require an extensive review of all TREC runs and the methods they

employ.

Future work related to Chapter 3 could focus on setting the feedback document

parameter more effectively, specifically by taking into account the dependency be-

tween the query terms. Furthermore, the question of how best to set the N param-

eter automatically arises. An alternative line of investigation in particular for the

Web corpus WT10g would be to preprocess the documents by filtering out the non-

topical content such as navigational information, page decoration, etcetera. Such an

approach has been shown to improve the effectiveness of pseudo-relevance feedback

of the WT10g data set [168], and might also be beneficial for query effectiveness

prediction.

A central assumption of Clarity Score is that for an unambiguous query, the top

retrieved documents are more focused than the corpus. Although this is a valid

assumption if each document contains exactly one topic, often documents covering

multiple topics occur frequently in a collection and unnecessary noise is added to

the query language model. Therefore, a future investigation could be the segmen-
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tation of each document according to subtopics in order to alleviate these effects.

The TextTiling [74] or C99 [35] segmentation algorithms could be employed for

instance and those segmented passages may then be used where query terms oc-

cur in the creation of the query language model rather than relying on the entire

document.

The study of Chapter 4, which investigated the contrast between the evalua-

tion of query performance prediction and the application of prediction methods in

practice, also offers diverse lines of follow-up research. In this work, we restricted

ourselves to an analysis of Kendall’s τ , however, a future effort might perform a sim-

ilar analysis of the linear correlation coefficient r. In contrast to the rank-based τ , r
is based on raw scores, which adds another dimension to the study, namely the dis-

tribution of raw scores. A second measure which might also be investigated further

is the area between the MAP curves [151], already briefly discussed in Section 2.3.2.

Although it has not been widely used in the query performance prediction literature,

we hypothesize that it is particularly useful for the operational setting of selective

query expansion, as it emphasizes the worst performing topics.

Finally, the experiments on automatic system evaluation described in Chapter 5

could also be further explored. On the one hand, for topic subset selection to be ben-

eficial, it is still necessary to develop an automatic method that identifies the most

suitable subsets; here one could concentrate on identifying features that enable us

to distinguish the topics that appear mostly in subsets which improve system rank-

ing estimation, from those topics that appear mostly in poorly performing subsets.

Another direction to consider is the adaptation of the RS approach by selectively

boosting some documents in the pool of documents to sample from. This idea is

motivated by the fact that in the case of easy topics, the very best systems will re-

trieve ranked lists of documents similar to average systems, while for more difficult

topics the result lists will diverge. If we can identify the systems, that appear aver-

age on easy topics and unlike average systems on harder topics, we can boost the

number of documents entered into the pool by them. This would require a compar-

ison of document overlap across different topics, which is a deviation from current

work where each topic is viewed in isolation.

Effectiveness predictors have great potential as adaptive systems that take the

correct query-dependent actions are bound to outperform systems applying a one-

size-fits-all approach. Although this potential is not yet fulfilled as shown in this

thesis, current state-of-the-art methods are slowly beginning to reach the levels of

accuracy required in practical settings, motivating future research in this direction.



Appendix A

ClueWeb09 User Study

In order to investigate how well proficient Web searchers are able to predict the

quality of search results retrieved in response to a query, we took the fifty queries

released for the adhoc task of TREC 2009 on the ClueWeb09 corpus, and asked the

users to judge for each query whether the search results will be of low, medium or

high quality. Since the users were asked to judge the queries without looking at the

result list, they in fact acted as human pre-retrieval predictors. We created an online

questionnaire with the following task description:

For each of the fifty queries, please judge what you would expect the

results to be, if you would submit the query to a Web search engine.

Do you expect the top results to be of high quality (i.e. many results

are relevant to the query), of medium quality or do you believe the top

ranked results will be of low quality (i.e. few or none results will be rel-

evant)? If you have no intuition about the query, please use “unknown”.

Please do NOT actually submit the queries to a search engine, rely on

your intuition only.

A total of thirty-three users (twenty-six male, seven female) participated in our

study. They were recruited from the Database group and the Human Media In-

teraction group, Department of Electrical Engineering, Mathematics and Computer

Science at the University of Twente. All users stated to use the Internet daily, thirty

of them use Web search engines four or more times a day, while three users use

them at least once a day. The age of the participants ranged between 20− 29 years

(nineteen users), 30− 39 years (nine users), 40− 49 years (two users), 50− 59 years

(two users) and 60 years or older (one user).

The queries and the user responses are listed in Table A.1. The last column con-

tains the average query difficulty score we derived for each query based on the user

responses. The scores of 1, 2 and 3 were assigned to the judgments of low, medium

and high quality respectively and then averaged. The user judgment “unknown”

was ignored. Then, the average score column was correlated against the ground

truth. As ground truth we relied on the best and the median estimated AP score

of each query over all runs submitted to TREC 2009 for the adhoc task. The linear

correlation between human prediction and ground truth evaluated to r = 0.35 (best

estimated AP score) and r = 0.46 (median estimated AP score) respectively.
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Query Users Judgments Average Score
unknown low medium high

obama family tree 1 1 10 21 2.625

french lick resort and casino 7 6 7 13 2.269
getting organized 0 21 9 3 1.455

toilet 0 24 7 2 1.333

mitchell college 1 3 12 17 2.438
kcs 21 6 6 0 1.500

air travel information 0 14 12 7 1.788

appraisals 6 23 2 2 1.222
used car parts 2 8 19 4 1.871

cheap internet 0 18 11 4 1.576

gmat prep classes 6 6 11 10 2.148
djs 8 23 2 0 1.080

map 0 26 3 4 1.333
dinosaurs 1 4 18 10 2.188

espn sports 6 2 5 20 2.667

arizona game and fish 3 8 16 6 1.933
poker tournaments 2 5 18 8 2.097

wedding budget calculator 2 1 13 17 2.516

the current 2 29 1 1 1.097
defender 1 27 4 1 1.188

volvo 0 2 11 20 2.545
rick warren 5 3 10 15 2.429

yahoo 0 2 8 23 2.636

diversity 1 23 5 4 1.406
euclid 3 4 16 10 2.200

lower heart rate 0 8 16 9 2.030

starbucks 0 4 5 24 2.606
inuyasha 17 2 2 12 2.625

ps 2 games 3 10 10 10 2.000
diabetes education 1 3 17 12 2.281

atari 2 3 15 13 2.323

website design hosting 0 10 16 7 1.909
elliptical trainer 5 4 15 9 2.179

cell phones 1 15 11 6 1.72

hoboken 15 6 6 6 2.000
gps 0 12 16 5 1.788

pampered chef 12 10 8 3 1.667
dogs for adoption 0 4 19 10 2.182

disneyland hotel 0 3 7 23 2.606

michworks 15 2 7 9 2.389
orange county convention center 1 1 4 27 2.813

the music man 6 17 9 1 1.407

the secret garden 3 11 13 6 1.833
map of the united states 0 0 5 28 2.848

solar panels 0 2 19 12 2.303
alexian brothers hospital 5 0 4 24 2.857

indexed annuity 10 4 13 6 2.087

wilson antenna 7 3 13 10 2.269
flame designs 2 10 15 6 1.871

dog heat 4 16 11 2 1.517

Table A.1: User judgments of the queries of the TREC 2009 Web adhoc task.
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Materials and Methods

B.1 Test Corpora

To perform the experiments, the adhoc retrieval task was evaluated on three differ-

ent corpora, namely, TREC Volumes 4+5 minus the Congressional Records (TREC

Vol. 4+5) [148], WT10g [132] and GOV2 [38]. The three corpora, although in

the general domain, are quite different from each other. To illustrate this, consider

their basic statistics, shown in Table B.1. The table lists the number of documents

in each corpus (#docs), the indexed average document length and the linear cor-

relation coefficient between the document frequency and term frequency of the vo-

cabulary (r(cf, df)). The average document length is dependent on the particular

preprocessing steps such as HTML parsing, tokenization and stemming. All reported

results are based on the Lemur Toolkit for Language Modeling and Information Re-

trieval1, version 4.3.2. The corpora were stemmed with the Krovetz stemmer [90]

and stopwords were removed2.

TREC Vol. 4+5 consists of news reports and is the smallest of the three corpora.

WT10g is a corpus which was extracted from a crawl of the Web; it is rather noisy

and contains numerous pages without text (pages containing images only for ex-

ample), pages containing up to two terms only (“test page”, “under construction”),

copyright notices, etc. The largest corpus is GOV2. It was derived from a crawl of

the .gov domain and resembles to some extend an intranet structure and thus can

be expected to be less noisy than WT10g. To assess this assumption informally, the

ten most frequently occurring terms of documents with a maximum indexed length

of ten and fifty terms respectively are shown in Table B.2. The high frequency terms

construct and copyright in WT10g indicate, that short documents in WT10g might

often not be useful for informational queries.

A different view of the amount of informational pages of a corpus can be gained

by considering the percentage of stopwords per document. TREC Vol. 4+5 con-

sists of news reports of which most can be considered information bearing. The

situation is different for Web pages. Imagine a web site consisting of 2 frames, one

1http://www.lemurproject.org/
2stopword list: http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words

http://www.lemurproject.org/
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
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TREC Vol. 4+5 WT10g GOV2

#docs 528155 1692095 25205179
av. doc. length 266.4 377.6 665.3
r(cf, df) 0.95 0.88 0.67

Table B.1: Basic corpora statistics.

TREC Vol. 4+5 WT10g GOV2

≤ 10 ≤ 50 ≤ 10 ≤ 50 ≤ 10 ≤ 50
edition ft page page slide library

1990 edition home home state session

1989 news return 1996 class public

home home 1996 copyright library time

final company click information locate click

pm 94 ye web washington kalamazoo

thursday said construct return law 2002

county people homepage use patent day

friday world web mail subclass webcat

sunday 93 1 right body 2000

Table B.2: The most frequently occurring terms in documents with less or equals to ten

and fifty indexed terms respectively.
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Figure B.1: Distribution of the amount of stopwords over all (left) and only the relevant

documents (right).

navigational, and one with informative content. The former will appear as a long

list of keywords hardly containing any stopwords, whereas the latter will appear as

an ordinary content-bearing document. When, as in this case, the stopwords are re-

moved in the preprocessing step, the two document types (keyword list and content

page) appear similar in the index. If the percentage of stopwords is plotted against

the percentage of documents, as done in the left part of Figure B.1, the difference

becomes apparent. The vast majority of news reports contain between 30% and
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55% stopwords per document. The graphs for WT10g and GOV2 show a different

picture: the percentage of stopwords varies considerably, there is no pronounced

peak as for TREC Vol. 4+5. For an effective comparison, the right part of Figure B.1

contains the stopword distribution of known content-bearing pages, which in this

example are the relevant documents available for the query sets in our experiments.

The stopword distribution of the relevant documents appears to be similar across

all three corpora: it has a peak at 40% (GOV2) and 45% (TREC Vol. 4+5, WT10g)

respectively and is less spread then the distribution over all collection documents.

B.2 Query Sets

The algorithms are evaluated on informational queries, the most common query

type in TREC evaluations. The system is posed an informational query and returned

are the documents deemed most probable by the system to be relevant. In the adhoc

task, the TREC topics usually consist of a title, description and narrative part. The

title part of a topic contains mostly between 1 and 3 terms. For instance, the title

part of TREC topic 485 is “gps clock”, the description part is shown below:

Clock reliance is a very important consideration in

the operation of a global positioning system (GPS)

What entity is responsible for clock accuracy and

what is the accuracy?

In Table B.3 we present an overview of the query sets used in our experiments

and the corpus they belong to. For reasons of comparison, the average length of the

title queries and description queries, which are derived from the TREC title topics

and TREC description topics respectively, are also shown. Whereas the average

length of title queries is relatively stable across all query sets, the average length

of description queries is significantly longer for the query sets of TREC Vol. 4+5

than of WT10g and GOV2. All reported retrieval experiments are based on queries

derived from TREC title topics.

Corpus Query Set Av. Title Length Av. Descr. Length

TREC Vol. 4+5 301-350 2.54 13.24
351-400 2.50 11.04
401-450 2.40 9.62

WT10g 451-500 2.43 7.26
501-550 2.84 4.78

GOV2 701-750 3.10 5.84
751-800 2.94 5.74
801-850 2.86 6.60

Table B.3: Overview of query sets.
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In query set 451-500, we manually identified and corrected three spelling errors.

Our focus is on investigating performance prediction algorithms and we assume the

ideal case of error-free queries. In practical applications, spelling error correction

would be a preprocessing step.

B.3 The Retrieval Approaches

The goal of prediction algorithms is to predict the actual retrieval performance as

best as possible. The average precision of

• Language Modeling with Dirichlet Smoothing [170],

• Okapi [125], and,

• TF.IDF [13]

is used as ground truth. Additionally, the retrieval runs submitted by the participants

of the TREC tasks are also utilized as they offer diverse retrieval approaches, which

do not solely rely on the document content.

B.3.1 Language Modeling, Okapi and TF.IDF

Table B.4 shows the performance of the three retrieval approaches in mean average

precision (MAP) over all title topic based query sets; the smoothing level of the Lan-

guage Modeling approach is varied between µ = {100, 500, 1000, 1500, 2000, 2500}.
Larger values of µ show no further improvements in retrieval effectiveness.

TF.IDF Okapi Language Modeling with Dirichlet Smoothing
µ = 100 µ = 500 µ = 1000 µ = 1500 µ = 2000 µ = 2500

TREC 301-350 0.109 0.218 0.216 0.227 0.226 0.224 0.220 0.218
Vol. 4+5 351-400 0.073 0.176 0.169 0.182 0.187 0.189 0.190 0.189

401-450 0.088 0.223 0.229 0.242 0.245 0.244 0.241 0.239

WT10g 451-500 0.055 0.183 0.154 0.195 0.207 0.206 0.201 0.203
501-550 0.061 0.163 0.137 0.168 0.180 0.185 0.189 0.189

GOV2 701-750 0.029 0.230 0.212 0.262 0.269 0.266 0.261 0.256
751-800 0.036 0.296 0.279 0.317 0.324 0.324 0.321 0.318
801-850 0.023 0.250 0.247 0.293 0.297 0.292 0.284 0.275

Table B.4: Overview of mean average precision over different retrieval approaches. In bold

the top performing retrieval run for each query set.

Due to the nature of some prediction methods, it is expected that the amount of

smoothing in the Language Modeling approach will have a considerable influence

on their quality. To evaluate the influence of high levels of smoothing, in addition

to the moderate settings of µ listed in Table B.4, µ is evaluated for the settings of

5 × 103, 1 × 104, 1.5 × 104, 2 × 104, 2.5 × 104, 5 × 104, 1 × 105, 1.5 × 105, 2 × 105,

2.5 × 105, 3 × 105 and 3.5 × 105. The development of the retrieval performance in

MAP over all levels of smoothing is illustrated in Figure B.2. Across all query sets,

a performance drop is visible for µ > 2000. The query sets of the GOV2 collection

are the most sensitive to the setting of µ, the drop in performance is considerably

steeper than for the query sets of WT10g and TREC Vol. 4+5.
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Figure B.2: Development of retrieval effectiveness over a range of smoothing values (µ) in

the Language Modeling Approach with Dirichlet Smoothing.

B.3.2 TREC Runs

In contrast to the standard retrieval methods introduced in the last section, retrieval

runs submitted by the participants of TREC tasks cover a variety of retrieval ap-

proaches and consider evidence from diverse sources. Such sources include not

just the content of the documents, but for instance also the link structure, anchor

texts (in the case of WT10g and GOV2) and document titles. Some approaches also

employ collection enrichment strategies.

Corpus Topic set Number Mean Median Min. Max.
of Runs MAP MAP MAP MAP

TREC Vol. 4+5 351-400 23 0.189 0.187 0.115 0.261
401-450 18 0.247 0.256 0.139 0.306

WT10g 451-500 28 0.157 0.163 0.106 0.201
501-550 54 0.169 0.178 0.107 0.223

GOV2 701-750 33 0.206 0.210 0.107 0.284
751-800 40 0.282 0.297 0.112 0.389
801-850 47 0.293 0.299 0.120 0.374

Table B.5: Overview of automatic TREC title topic runs with a MAP above 0.1.

For each topic set, all runs submitted to TREC in the year of the topic set’s in-

troduction have been taken into consideration. All automatic runs exploiting only

the title part of the TREC topics with a MAP above 0.1 are utilized. An overview

of the number of runs and the minimum, maximum, median and mean MAP across

all runs is given in Table B.5. Since for topics 301-350 no summary information is
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available about which part of the TREC topic was used by the participants, the topic

set is excluded from the experiments.
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Abstract

In this thesis we consider users’ attempts to express their information needs through queries,

or search requests and try to predict whether those requests will be of high or low quality.

Intuitively, a query’s quality is determined by the outcome of the query, that is, whether

the retrieved search results meet the user’s expectations. The second type of prediction

methods under investigation are those which attempt to predict the quality of search systems

themselves. Given a number of search systems to consider, these methods estimate how well

or how poorly the systems will perform in comparison to each other.

The motivation for this research effort stems primarily from the enormous benefits orig-

inating from successfully predicting the quality of a query or a system. Accurate predictions

enable the employment of adaptive retrieval components which would have a consider-

able positive effect on the user experience. Furthermore, if we would achieve sufficiently

accurate predictions of the quality of retrieval systems, the cost of evaluation would be

significantly reduced.

In a first step, pre-retrieval predictors are investigated, which predict a query’s effective-

ness before the retrieval step and are thus independent of the ranked list of results. Such

predictors base their predictions solely on query terms, collection statistics and possibly ex-

ternal sources such as WordNet or Wikipedia. A total of twenty-two prediction algorithms

are categorized and their quality is assessed on three different TREC test collections, includ-

ing two large Web collections. A number of newly applied methods for combining various

predictors are examined to obtain a better prediction of a query’s effectiveness. In order to

adequately and appropriately compare such techniques the current evaluation methodology

is critically examined. It is shown that the standard evaluation measure, namely the lin-

ear correlation coefficient, can provide a misleading indication of performance. To address

this issue, the current evaluation methodology is extended to include cross validation and

statistical testing to determine significant differences.

Building on the analysis of pre-retrieval predictors, post-retrieval approaches are then

investigated, which estimate a query’s effectiveness on the basis of the retrieved results.

The thesis focuses in particular on the Clarity Score approach and provides an analysis of

its sensitivity towards different variables such as the collection, the query set and the re-

trieval approach. Adaptations to Clarity Score are introduced which improve the estimation

accuracy of the original algorithm on most evaluated test collections.

The utility of query effectiveness prediction methods is commonly evaluated by reporting

correlation coefficients, such as Kendall’s Tau and the linear correlation coefficient, which

denote how well the methods perform at predicting the retrieval effectiveness of a set of
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queries. Despite the significant amount of research dedicated to this important stage in the

retrieval process, the following question has remained unexplored: what is the relationship

of the current evaluation methodology for query effectiveness prediction and the change

in effectiveness of retrieval systems that employ a predictor? We investigate this question

with a large scale study for which predictors of arbitrary accuracy are generated in order

to examine how the strength of their observed Kendall’s Tau coefficient affects the retrieval

effectiveness in two adaptive system settings: selective query expansion and meta-search.

It is shown that the accuracy of currently existing query effectiveness prediction methods is

not yet high enough to lead to consistent positive changes in retrieval performance in these

particular settings.

The last part of the thesis is concerned with the task of estimating the ranking of retrieval

systems according to their retrieval effectiveness without relying on costly relevance judg-

ments. Five different system ranking estimation approaches are evaluated on a wide range

of data sets which cover a variety of retrieval tasks and a variety of test collections. The

issue that has long prevented this line of automatic evaluation to be used in practice is the

severe mis-ranking of the best systems. In the experiments reported in this work, however,

we show this not to be an inherent problem of system ranking estimation approaches, it is

rather data set dependent. Under certain conditions it is indeed possible to automatically

identify the best systems correctly. Furthermore, our analysis reveals that the estimated

ranking of systems is not equally accurate for all topics of a topic set, which motivates the

investigation of relying on topic subsets to improve the accuracy of the estimate. A study to

this effect indicates the validity of the approach.
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2007-18 Bart Orriëns (UvT), On the development an man-
agement of adaptive business collaborations

2007-17 Theodore Charitos (UU), Reasoning with Dynamic
Networks in Practice

2007-16 Davide Grossi (UU), Designing Invisible Handcuffs.
Formal investigations in Institutions and Organizations for
Multi-agent Systems

2007-15 Joyca Lacroix (UM), NIM: a Situated Computa-
tional Memory Model

2007-14 Niek Bergboer (UM), Context-Based Image Analysis

2007-13 Rutger Rienks (UT), Meetings in Smart Environ-
ments; Implications of Progressing Technology

2007-12 Marcel van Gerven (RUN), Bayesian Networks for
Clinical Decision Support: A Rational Approach to Dynamic
Decision-Making under Uncertainty

2007-11 Natalia Stash (TUE), Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adaptive Hypermedia
System

2007-10 Huib Aldewereld (UU), Autonomy vs. Conformity:
an Institutional Perspective on Norms and Protocols

2007-09 David Mobach (VU), Agent-Based Mediated Service
Negotiation

2007-08 Mark Hoogendoorn (VU), Modeling of Change in
Multi-Agent Organizations
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2000-08 Veerle Coupé (EUR), Sensitivity Analyis of Decision-
Theoretic Networks

2000-07 Niels Peek (UU), Decision-theoretic Planning of
Clinical Patient Management

2000-06 Rogier van Eijk (UU), Programming Languages for
Agent Communication

2000-05 Ruud van der Pol (UM), Knowledge-based Query
Formulation in Information Retrieval.

2000-04 Geert de Haan (VU), ETAG, A Formal Model of
Competence Knowledge for User Interface Design

2000-03 Carolien M.T. Metselaar (UVA), Sociaal-
organisatorische gevolgen van kennistechnologie; een proces-
benadering en actorperspectief.

2000-02 Koen Holtman (TUE), Prototyping of CMS Storage
Management

2000-01 Frank Niessink (VU), Perspectives on Improving
Software Maintenance



SIKS DISSERTATION SERIES | 179

1999-08 Jacques H.J. Lenting (UM), Informed Gambling:
Conception and Analysis of a Multi-Agent Mechanism for Dis-
crete Reallocation.
1999-07 David Spelt (UT), Verification support for object
database design
1999-06 Niek J.E. Wijngaards (VU), Re-design of composi-
tional systems
1999-05 Aldo de Moor (KUB), Empowering Communities: A
Method for the Legitimate User-Driven Specification of Network
Information Systems
1999-04 Jacques Penders (UM), The practical Art of Moving
Physical Objects
1999-03 Don Beal (UM), The Nature of Minimax Search
1999-02 Rob Potharst (EUR), Classification using decision
trees and neural nets

1999-01 Mark Sloof (VU), Physiology of Quality Change
Modelling; Automated modelling of Quality Change of Agricul-
tural Products

1998-05 E.W. Oskamp (RUL), Computerondersteuning bij
Straftoemeting

1998-04 Dennis Breuker (UM), Memory versus Search in
Games

1998-03 Ans Steuten (TUD), A Contribution to the Linguistic
Analysis of Business Conversations within the Language/Action
Perspective

1998-02 Floris Wiesman (UM), Information Retrieval by
Graphically Browsing Meta-Information

1998-01 Johan van den Akker (CWI), DEGAS – An Active,
Temporal Database of Autonomous Objects


	Introduction
	Motivation
	Prediction Aspects
	Definition of Terms
	Research Themes
	Thesis Overview

	Pre-Retrieval Predictors
	Introduction
	A Pre-Retrieval Predictor Taxonomy
	Evaluation Framework
	Evaluation Goals
	Evaluation Measures

	Notation
	Materials and Methods
	Test Corpora
	Retrieval Approaches

	Specificity
	Query Based Specificity
	Collection Based Specificity
	Experimental Evaluation

	Ranking Sensitivity
	Collection Based Sensitivity
	Experimental Evaluation

	Ambiguity
	Collection Based Ambiguity
	Ambiguity as Covered by WordNet
	Experimental Evaluation

	Term Relatedness
	Collection Based Relatedness
	WordNet Based Relatedness
	Experimental Evaluation

	Significant Results
	Predictor Robustness
	Combining Pre-Retrieval Predictors
	Evaluating Predictor Combinations
	Penalized Regression Approaches
	Experiments and Results

	Conclusions

	Post-Retrieval Prediction: Clarity Score Adaptations
	Introduction
	Related Work
	Query Perturbation
	Document Perturbation
	Retrieval System Perturbation
	Result List Analysis
	Web Resources
	Literature Based Result Overview

	Clarity Score
	Example Distributions of Clarity Score

	Sensitivity Analysis
	Sensitivity of Clarity Score
	Sensitivity of Query Feedback

	Clarity Score Adaptations
	Setting the Number of Feedback Documents Automatically
	Frequency-Dependent Term Selection

	Experiments
	Discussion
	Conclusions

	When is Query Performance Prediction Effective?
	Introduction
	Related Work and Motivation
	Applications of Selective Query Expansion
	Applications of Meta-Search
	Motivation

	Materials and Methods
	Data Sets
	Predictions of Arbitrary Accuracy

	Selective Query Expansion Experiments
	Experimental Details
	Results
	Out-of-the-Box Automatic Query Expansion

	Meta-Search Experiments
	Experimental Details
	Results

	Discussion
	Conclusions

	A Case for Automatic System Evaluation
	Introduction
	Related Work
	Topic Subset Selection
	Materials and Methods
	Data Sets
	Algorithms

	Experiments
	System Ranking Estimation on the Full Set of Topics
	Topic Dependent Ranking Performance
	How Good are Subsets of Topics for Ranking Systems?
	Automatic Topic Subset Selection

	Conclusions

	Conclusions
	Research Themes
	Pre-Retrieval Prediction
	Post-Retrieval Prediction
	Contrasting Evaluation and Application
	System Effectiveness Prediction

	Future Work

	ClueWeb09 User Study
	Materials and Methods
	Test Corpora
	Query Sets
	The Retrieval Approaches
	Language Modeling, Okapi and TF.IDF
	TREC Runs


	Bibliography
	Abstract
	SIKS Dissertation Series

