
Cookies, sessions and
authentication

TI1506: Web and Database Technology
Claudia Hauff

!
Lecture 7 [Web], 2014/15

1

Course overview [Web]

1. http: the language of Web communication
2. Web (app) design & HTML5
3. JavaScript: interactions in the browser
4. node.js: JavaScript on the server
5. CSS: Lets make things pretty
6. Ajax: asynchronous JavaScript
7. Personalisation: Cookies & sessions &

authentication!
8. Securing your application

2

Learning objectives

• Decide for a given usage scenario whether cookies and/
or sessions are suitable

• Implement code to create/change/delete cookies
• Implement code to create/change/delete sessions
• Implement third-party authentication

3

Introduction to cookies
and sessions

Recall: the HTTP protocol

• HTTP is a stateless protocol
• Every HTTP request contains all information

needed to serve a response
• The server is not required to keep track of the

requests issued
!

• Advantage: simplifies the server architecture
• Disadvantage: clients have to resend the same

information in every request

5

We do a lot of things requiring a
known state …
• bol.com keeps your “Winkelwagentje” full, even when you

leave the website
• statcounter.com (tracking users’ visits) can exclude a

particular visitor from being tracked
• JavaScript games keep track of the game’s status when

you re-visit the website
• Websites can tell you how many times you have visited

them
• Video streaming (if you have time, watch this video

about the virtues of JavaScript!!) 
https://www.youtube.com/watch?v=bo36MrBfTk4

6

http://bol.com
http://statcounter.com
https://www.youtube.com/watch?v=bo36MrBfTk4

Cookies

7

Cookies and sessions are ways to introduce state on top
of the stateless HTTP protocol.

Cookie: a short amount of text (key/value) sent by the
server and stored by the client for some amount of time.

Minimum size requirements (RFC2625 from 2011)
• At least 4096 bytes per cookie
• At least 50 cookies per domain
• At least 3000 cookies total.

Lets take a look at the cookies served at bol.com and tudelft.nl.
We can change the cookies: Cookies Manager+

Where can I find the cookies?

8

http://bol.com
http://tudelft.nl

Cookie & session basics

• Cookies are visible to the users (who make the effort)
• By default, stored in the clear

• Clients (users, i.e. you!) can delete/disallow cookies
• Cookies can be altered by the client!

• Opens up a line of attack: servers should not send
sensitive information in simple cookies

• Sessions are preferable to cookies
• Sessions themselves make use of cookies
• Cookie usually contains a single value (session ID), the

rest is stored on the server

9

A very old piece
of Web technology!
Developed in 1994.

Cookies cannot …

• Execute programs!
• Access information from a user's hard drive!
• Generate spam
• Be read by arbitrary parties!

• Only the server setting the cookie can access it
• But: beware of third-party cookies

10

Cookie basics

11

- Encoded in the HTTP header.
- Web frameworks have designated methods to work with cookies
- Cookies are bound to a site domain name, are only sent back

on requests to this specific site

clients sends the cookie!
back in every request

server sends a cookie once;!
resends when key/value changes

What can be stored in cookies?

• Cookies are the server's short term memory!
• Information in a cookie is decided by the server
!

• Examples:
• User’s login name
• History of page views
• Settings of form elements (can be fully client-side)

12

A word of warning: RFC6265

13Source: http://tools.ietf.org/html/rfc6265

“This document defines the HTTP Cookie and Set-
Cookie header fields.
These header fields can be used by HTTP servers
to store state (called cookies) at HTTP user
agents, letting the servers maintain a stateful
session over the mostly stateless HTTP protocol.
Although cookies have many historical
infelicities that degrade their security and
privacy, the Cookie and Set-Cookie header
fields are widely used on the Internet. “

http://tools.ietf.org/html/rfc6265

Session vs. persistent cookies

• Session (or transient) cookies:
• Exist in memory only, are deleted when the browser is

closed
• Cookies are session cookies if no expiration date is

defined.
• Persistent cookies:

• Cookies remain intact after the browser is closed
• Have a maximum age
• Are send back to the server as long as they are valid

14

Difference in action: clicking the This is a
public computer button before logging in.

Cookie expiration dates

!

• Gmail: 15 cookies (4 session),  
expiration dates in 2014, 2015 and 2016

• Facebook: 13 cookies (5),  
expiration dates in 2014, 2015 and 2016

• Volkskrant: 6 cookies,  
expiration dates in 2014, 2016 and 2017

• Amazon: 21 cookies (1),  
expiration dates in 2014-17, 2028, 2034/36/38 and 2082

15

Cookie fields

• Name=value (only required field, the rest has defaults)
• Expiration date (UNIX timestamp) or max age
• Domain the cookie is associated with;  

cookies can only be assigned to the same domain the
server is running on

• Path the cookie is applied to (automatic wildcarding):  
 / matches all pages, /todos all pages within todos, etc.

• Secure flag
• httpOnly flag
• Signed flag

16

Making cookies more robust

• Secure cookies:
• Setting the secure attribute ensures that the cookies are

sent via HTTPS (i.e. encryption across the network)
• HttpOnly cookies:

• Cookies are not accessible to non-HTTP entities (e.g.
JavaScript)

• Minimises the threat of cookie theft
• Applies to session management cookies, not browser

cookies
• Signed cookies:

• Ensures that the value has not been tampered with by
the client

17

Secure setting via HTTP: cookie will
not be set

Cookies in express

18

 1 var express = require("express");!
 2 var http = require("http");!
 3 var credentials = require('./credentials.js');!
 4 var cookies = require("cookie-parser");!
 5 !
 6 var app = express();!
 7 app.use(cookies(credentials.cookieSecret));!
 8 http.createServer(app).listen(port);!
 9 !
 10 app.get("/sendMeCookies", function (req, res) {!
 11 ! ! console.log("Cookies sent");!
 12 res.cookie("chocolate", "monster");!
 13 res.cookie("signed_choco", "monster", { signed: true});!
 14 res.send();!
 15 });!
 16 !
 17 app.get("/listAllCookies", function (req, res) {!
 18 ! ! console.log("\n++++ /listallcookies (unsigned) ++++");!
 19 console.log(req.cookies);!
 20 ! ! console.log("\n++++ /listallcookies (signed) ++++");!
 21 console.log(req.signedCookies);!
 22 res.send();!
 23 });

module.exports = {
 cookieSecret: 'my_secret',
};

cookie-parser middleware

all that is needed to sign a cookie

creating cookies

reading cookies
simple-cookies.js

Cookies in express

• Cookies Manager+ for Firefox: allows you to easily view/
edit cookies

• What is the difference between signed and unsigned
cookies?
• Check cookie creation
• Change unsigned cookie
• Change signed cookie (first name, then value)

19
simple-cookies.js

Cookies in express

• Accessing the value of a particular key/value pair:  
var val = req.signedCookies.signed_choco;!

!

• Deleting a cookie:  
res.clearCookie(‘chocolate’);

20

cookie key

delete in the response!

A more pessimistic view
on cookies

Often though, we are tracked
without our knowledge

22Ghostery: https://www.ghostery.com/

https://www.ghostery.com/

Third-party cookies

23

served by the 
same ad agencyuser visits

three diff.
websites

Set-Cookie: ads.agency.com

Set-Cookie: ads.agency.com

based on the  
cookies a complete 
user profile 
can be created

Web server x.orgSet-Cookie: x.org

first party

Global Ad Agency!
ads.agency.com

Set-Cookie: ads.agency.com

third party

Evercookie

24Source: http://www.samy.pl/evercookie/

“evercookie is a javascript API available that
produces extremely persistent cookies in a
browser.
Its goal is to identify a client even after they've
removed standard cookies […]
evercookie accomplishes this by storing the cookie
data in several types of storage mechanisms that
are available on the local browser. Additionally, if
evercookie has found the user has removed any of
the types of cookies in question, it recreates them
using each mechanism available.”

http://www.samy.pl/evercookie/

Evercookie

25Source: http://www.samy.pl/evercookie/

http://www.samy.pl/evercookie/

Client-side cookies

Cookies in JavaScript

• Not always necessary to receive cookies from a server
• Cookies can be set in the browser
• Usually to remember form input

27

 1 //set a cookie!
 2 document.cookie = "name=value";!
 3 document.cookie = "name=value; expires=Fri, !
! ! ! ! ! ! ! ! ! ! ! ! 24-Jan-2014 12:45:00 GMT";!
 4 !
 5 //delete a cookie!
 6 document.cookie = "name=value; expires=Fri, !
! ! ! ! ! ! ! ! ! ! ! ! 24-Jan-1970 12:45:00 GMT";!

document.cookie is unlike
any other

28

 1 //adding three cookies!
 2 document.cookie = "couponnum=123";!
 3 document.cookie = "couponval=20%";!
 4 document.cookie = "expires=60";!
 5 !
 6 //delete a cookie!
 7 //document.cookie=null or document.cookie="" has no effect!
 8 document.cookie = "name=value; expires=Thu, !
! ! ! ! ! ! ! ! ! ! ! 01-Jan-1970 00:45:00 GMT";

Example: simple-cookie-example.html

Reading cookies in JavaScript

• Reading cookies is hard
• document.cookie["firstname"] does not work
• String returned by document.cookie needs to be

parsed
!

!

!

!

!

• Alternative: jQuery cookie plugin (118 lines of code)

29

 1 var cookiesArray = document.cookie.split("; ");!
 2 var cookies=[];!
 3 !
 4 for(var i=0; i < cookiesArray.length; i++) {!
 5 var cookie = cookiesArray[i].split("=");!
 6 cookies[cookie[0]]=cookie[1];!
 7 }

https://github.com/carhartl/jquery-cookie

jQuery cookie plugin

30
………

Sessions

Establishing a session

!

• Common scenario: short period of time that users interact
with a web site (a session)

• Goals:
• Track the user without relying (too much) on unreliable

cookies
• Allow larger amounts of data to be stored

• Problem: without cookies the server cannot tell clients apart
• Solution: hybrid approach between client-side cookies and

server-side saved data

32

Sessions in one slide

33

session store

GET /todos?name=Daisy

Set-Cookie: sessionID=133

GET /addTodo
cookie: sessionID=133

- Cookies are used to store a single ID  
on the client

- Remaining user information is stored server-side  
in memory or a database

- Alternative setup (via URL decoration) is also possible

Establishing a session

1. Client requests a first page from the server
2. Server creates unique session ID and initiates the

storage of the session data for that client
3. Server sends back a page with a cookie containing the

session ID
4. From now on, the client sends page requests together

with the cookie
5. Server can use the ID to personalise the response
6. A session ends when no further requests with that

session ID come in (timeout)

34

Sessions in express with
memory stores

• Very easy to set up in express
• Same drawback as any in-memory storage: not persistent

across machine failure
• A middleware component is helping out:  
express-session: https://github.com/expressjs/session

35

https://github.com/expressjs/session

Sessions in express with
memory stores

36

 1 var express = require("express");!
 2 var http = require("http");!
 3 var credentials = require('./credentials.js');!
 4 var cookies = require("cookie-parser");!
 5 var sessions = require('express-session');!
 6 var app = express();!
 7 app.use(cookies(credentials.cookieSecret));!
 8 app.use(sessions(credentials.cookieSecret));!
 9 http.createServer(app).listen(3006);!
 10 !
 11 app.get("/countMe", function (req, res) {!
 12 ! var session = req.session;!
 13 ! if(session.views) {!
 14 ! ! session.views++;!
 15 ! ! res.send("You have been here "+session.views+" times!");!
 16 ! }!
 17 ! else {!
 18 ! ! session.views = 1;!
 19 ! ! res.send("This is your first visit!");!
 20 ! }!
 21 });

cookie &
session
setup

client’s session
object

session exists!

session does not yet exist

A side node on express

• app.use()!

• Add middleware components to your application
• Decide to which part of the application to limit the

component to
• app.get()!

• Request routing via GET
• Every path (URL) you want to make publicly accessible

should be defined this way

37

Sessions are most useful for …

• Authentication!
• Log in once, and remain logged in for some amount of

time

38

Third-party
authentication

Overview

• Weakest link in an authenticated application is the user’s
password [a whole research field by itself!]

• Application-based decision!
• Does the app need authentication?  

Are cookies/sessions enough?
• If authentication is needed, should third-party

authentication be used? (low cognitive burden for the
user)

40

Authentication: verifying a user’s identity

Third-party authentication

• Authenticating users through popular social Web services
(Twitter, Facebook, Google, LinkedIn, etc.)

• Easy to develop
• node.js packages exist

• Trusted social Web platforms provide authentication, no
need to store passwords or employ particular security
measures

• However: there are people who do not use social Web
platforms or do not want to hand their data out

41

Third-party authentication
depicted

42

LOGIN

Web application

Third-party
application

User

Password

authorised

302/307 redirect

302/307 redirect

43

Third-party authentication
depicted in detail

User Browse App. Third party

Image source: Web development with Node and Express, p. 222
4 steps

Third-party authentication
stepwise
• Login method: browser displays options and the user selects

one
• Authentication request construction: construct request to

be send to the third party
• You can ask for more (name, email, etc.)
• Requests differ considerably between services

• Verifying the authentication response: distinguish between
authorised (i.e. valid auth response) and unauthorised access
• Authorised users should be given a session

• Verifying the authorisation: is verified user X allowed to
access Y?
• Store access rights in a database

44

Third-party authentication 
Twitter example

• Works similarly (but not in exactly the same way) across
different services

• Starting point: create an “app” (Twitter app, Facebook
app, etc.)

45

Goal: “Sign in with your Twitter account”

https://apps.twitter.com/

https://apps.twitter.com/

Third-party authentication 
Twitter example

46https://apps.twitter.com/

127.0.0.1 is your localhost

https://apps.twitter.com/

Third-party authentication 
Twitter example cont.

• In application settings, check “Allow this application to be
used to Sign in with Twitter”

• Create access tokens

47

we need this key and secret

Third-party authentication 
Twitter example cont.

• Express can make use of passport, one of the most
popular authentication middleware components
• 140+ authentication strategies
• supports OpenID and OAuth
!

• Twitter still uses OAuth 1.0, other services use 2.0
• passport hides this complexity from you

48
$ npm install passport-twitter

Installing a strategy

http://passportjs.org/
http://passportjs.org/guide/providers/

Third-party authentication 
Twitter example cont.

• passport has a lot of boilerplate code (copy & paste)
• Ensure that you set your own key and secret
• Ensure that you call the middleware components in the

right order (otherwise errors will occur)
• Ensure that you do not mix “localhost” and 127.0.0.1
• Write yourself:

• Server-side node.js script
• Client-side HTML

49

50

Third-party authentication 
Twitter example cont.

 1 // Redirect the user to Twitter for authentication. !
 2 app.get('/auth/twitter', passport.authenticate('twitter'));!
 3 !
 4 // Twitter will redirect the user to this URL after approval.!
 5 app.get('/test-login', !
 6 passport.authenticate('twitter', { failureRedirect: '/failure' }),!
 7 function(req, res) {!
 8 res.redirect('/success');!
 9 });!
 10 !
 11 app.get("/success", function (req, res) {!
 12 console.log("Success!");!
 13 res.send("User login via Twitter successful!");!
 14 });!
 15 !
 16 app.get("/failure", function (req, res) {!
 17 console.log("Failure!");!
 18 res.send("User login via Twitter was unsuccessful!");!
 19 });

Excerpt from the full node.js script

51

Third-party authentication 
Twitter example cont.

 1 <!doctype html>!
 2 <head>!
 3 </head>!
 4 <body>!
 5 ! Sign in with Twitter!
 6 </body>!
 7 </html>

OAuth2

• OAuth: Open Standard to Authorization
• OAuth 2 was finalised in 2012
• OAuth 2 is not backwards compatible with OAuth 1
• Both OAuth 1 & 2 are still in use

52

“The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HTTP service,
either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the
HTTP service, or by allowing the third-party application to
obtain access on its own behalf. “

RFC 6749

http://tools.ietf.org/html/rfc6749

Summary

• Cookies
• Sessions
• Third-party authentication

53

End of Lecture

