Cookies, sessions and
authentication

T11506: Web and Database Technology
Claudia Hauft

Lecture 7 [Web], 2014/15

Course overview [Web]

. http: the language of Welb communication
. Web (app) design & HTML5

. JavaScript: interactions in the browser

. node.|s: JavaScript on the server

. CSS: Lets make things pretty
. Ajax: asynchronous JavaScript

~N OO O B WO NN =

. Personalisation: Cookies & sessions &
authentication

8. Securing your application

Learning objectives

* Decide for a given usage scenario whether cookies and/
Or Sessions are suitable

 Implement code to create/change/delete cookies

* Implement code to create/change/delete sessions
* Implement third-party authentication

Introduction to cookies
and sessions

Recall: the HT TP protocol

o« HTTP

* Every

s a stateless protocol

T TP request contains all information

needed to serve a response

* The server is not required to keep track of the
requests issued

* Advantage: simplifies the server architecture

* Disadvantage: clients have to resend the same
information in every request

We do a lot of things requiring a
known state ...

bol.com keeps your “Winkelwagentje” tull, even when you

leave the website
statcounter.com (tracking users’ visits) can exclude a

particular visitor from being tracked

Javascript games keep track of the game’s status when
you re-visit the website

Websites can tell you how many times you have visited
them

Video streaming (if you have time, watch this video
about the virtues of JavaScript!!)
hitps://www.youtube.com/watch?v=bo36MrBfTk4

http://bol.com
http://statcounter.com
https://www.youtube.com/watch?v=bo36MrBfTk4

Cookies

Cookies and sessions are ways to introduce state on top
of the stateless HT TP protocol.

Cookie: a short amount of text sent by the
server and stored by the client for some amount of time.

Minimum size requirements (RFC2625 from 2011)
o At least 4096 bytes per cookie

o At least 50 cookies per domain

e At least 3000 cookies total.

Where can | find the cookies!?

(4\) ;C\ tudelft.nl c (8- Q) ln-]

“’a This web site does not supply identity information. TU Delft Studentenportal TU Delft Medewerkers English Contact [w»
H Your connection to this web site is not encrypted.

[More Information...] {

Doorzoek de site

’

Studeren bij de TU Delft Onderzoek bij de TU Delft Ondernemen met de TU Delft Laatste nieuws
Dies Natalis 2014: Safety Over Rijnwater, meisjes en Introductie in
mattarc! claannillon Mndornomorcahan 11
— 23 januari 2014 11:32
ve TU Delft start Extension
School voor wereldwijd
online onderwijs
_ Het College van Bestuur van de
S h TU Delft heeft prof...
De viering van de 172nd Dies Wetenschappers van de TU Delft Entrepreneurship Kaleidoscope: Een Lees verder

Natalis heeft plaatsgevonden op 10 geven een gedetailleerd beeld van nieuw vak waarin je kennismaakt

| ets take a look at the cookies served at bol.com and tudelit.nl.

We can change the cookies: Cookies Manager+

http://bol.com
http://tudelft.nl

A very old piece

Cookie & session basics [SRERESREEEY
Developed in 1994,

* Cookies are visible to the users (who make the effort)
» By default, stored in the clear

* Clients (users, i.e. you!) can delete/disallow cookies

» Cookies can be altered by the client

 Opens up a line of attack: servers should not send
sensitive information in simple cookies

 Sessions are preferable to cookies
e Sessions themselves make use of cookies

« Cookie usually contains a single value (session |ID), the
rest Is stored on the server

Cookies cannot ...

- Execute programs
* Access information from a user's hard drive
* (Generate spam
- Be read by arbitrary parties
* Only the server setting the cookie can access it

* But: beware of third-party cookies

10

Cookie basics

server sends a cookie once;
resends when key/value changes

1. page request

browser (O

‘ cookie store \

clients sends the cookie
back in every request

- Encoded in the HTTP header.
- Web frameworks have designated methods to work with cookies

- Cookies are bound to a site domain name, are only sent back
on requests to this specific site N

What can be stored in cookies!?

* Cookies are the server's short term memory
* |nformation in a cookie is decided by the server

« Examples:

e User's login name

* History of page views

o Settings of form elements (can be fully client-side)

A word of warning: RFC6265

“This document defines the HT TP Cookie and Set-
Cookie header fields.

These header fields can be used by HT TP servers
to store state (called cookies) at HT TP user
agents, letting the servers maintain a stateful

session over the mostly stateless HT TP protocol.

Source: http://tools.ietf.org/html/rfc6265

13

http://tools.ietf.org/html/rfc6265

Session vs. persistent cookies

e Session (or transient) cookies:

e EXist in memory only, are deleted when the browser is
closed

« Cookies are session cookies if no expiration date is
defined.

* Persistent cookies:
« Cookies remain intact after the browser is closed
 Have a maximum age
e Are send back to the server as long as they are valid

Difference In action: clicking the

button before logging In.

14

Cookie expiration dates

« Gmail: 15 cookies (4 session),
expiration dates in 2014, 2015 and 2016

 Facebook: 13 cookies (5),
expiration dates in 2014, 2015 and 2016

 Volkskrant: 6 cookies,
expiration dates in 2014, 2016 and 2017

« Amazon: 21 cookies (1),
expiration dates in 2014-17, 2028, 2034/36/38 and 2082

15

Cookie fields

- Name=value (only required field, the rest has defaults)
» Expiration date (UNIX timestamp) or max age

 Domain the cookie is associated with;
cookies can only be assigned to the same domain the
Server Is running on

* Path the cookie is applied to (automatic wildcarding):

/ matches all pages, /todos all pages within todos, etc.

* Secure flag
* httpOnly flag
» Signed flag

16

Making cookies more robust

Secure setting via HTTP: cookie will

e Secure cookies:
not be set

e Setting the secure attribute ensures that the cookies are
sent via HTTPS (i.e. encryption across the network)

o HitpOnly cookies:

« Cookies are not accessible to non-HT TP entities (e.g.
Javascript)

e Minimises the threat of cookie theft

e Applies to session management cookies, not browser
cookies

* Signed cookies:

 Ensures that the value has not been tampered with by
the client

17

Cookies in express FEiaeress

cookieSecret: 'my_secret’,

var express = require('express'); k

var http = require("http");

var credentials = require('./credentials.js');
var cookies = require('cookie-parser");

var app = express():;
app.use(cookies(credentials.cookieSecret)) ; Wieolel[=EorlEcImagilolol(SAWE(E
http.createServer(app).listen(port);

00 J O O » WD -

9
10 app.get("/sendMeCookies", function (req, res
11 console.log("Cookies sent"); : :
. ' creating cookies
12 res.cookie("chocolate"”, "monster"); J
13 res.cookie("signed choco", "monster", { signed: true});

res.send();
all that is needed to sign a cookie

.get("/listAllCookies", function (req, res) {

18 console.log("\n++++ /listallcookies (unsigned) ++++");
19 console.log(reqg.cookies);
20 console.log("\n++++ /listallcookies (signed) ++++");

21 console.log(req.signedCookies);
res.send();

simple-cookies.|s

18

Cookies in express

» Cookies Manager+ for Firefox: allows you to easily view/
edit cookies

* What is the difference between signed and unsigned
cookies?

e Check cookie creation

* Change unsigned cookie
» Change signed cookie (first name, then value)

simple-cookies./s

19

Cookies in express

. . : cookie ke
* Accessing the value of a particular key/value palr:

var val = req.signedCookies.signed choco;

* Deleting a cookie:

res.clearCookie(‘chocolate’); delete in the response!

20

A more pessimistic view
on cookies

Often though, we are tracked
without our knowledge

<.':' ot www.volkskrant.nl C B-L soqle c_1) ﬁ E $ »ﬁ J @ L

AL ZieZo

per maand van Zilveren Kruis

¥ «¥ BANEN ABONNEER DIGITALE KRANT SERVICE WINKEL VOORDEEL

Nieuws Cultuur & Leven (leVOll(SI(l'ant

BUITENLAND BINNENLAND OPINIE ECONOMIE SPORT TECH MEDIA WETENSCHAP

BidSwitch
ChartBeat

S | Crazy Egg

Ghostery: https://www.ghostery.com/

DoubleClick

Ghostery Privacy Notice
Google Adsense
Google Analytics
Google Tag Manager
Platform161

Rubicon

Usabilla

Weborama

https://www.ghostery.com/

Third-party cookies

user VISItS
three diff.
websites

Set-Cookie: x.0rg

Web server x.org

Set-Cookie: ads.agency.com

third party Global Ad Agency
ads.agency.com

Set-Cookie: ads.ageaCy.com served by the

X048 . same ad agency

based on the

ST = cookies a complete
user profile
can be created

Set-Cookie: ads.agency.com 03

Evercookie

‘evercookie is a javascript APl available that
produces extremely persistent cookies in a
browser.

lts goal is to identify a client even after they've
removed standard cookies |...]

evercookie accomplishes this by storing the cookie
data in several types of storage mechanisms that
are available on the local browser. Additionally, if
evercookie has found the user has removed any of
the types of cookies in question, it recreates them
using each mechanism available.”

Source: htto://www.samy.pl/evercookie

http://www.samy.pl/evercookie/

Evercookie

Specifically, when creating a new cookie, it uses the

following storage mechanisms when available:

- Standard HTTP Cookies

- Local Shared Objects (Flash Cookies)

- Silverlight Isolated Storage

- Storing cookies in RGB values of auto-generated, force-cached

PNGs using HTML5 Canvas tag to read pixels (cookies) back out

- Storing cookies in Web History

- Storing cookies in HTTP ETags

- Storing cookies in Web cache

- window.name caching

- Internet Explorer userData storage

- HTML5 Session Storage

- HTML5 Local Storage

- HTML5 Global Storage

- HTML5 Database Storage via SQLite

- HTML5 IndexedDB

- Java JNLP PersistenceService

- Java CVE-2013-0422 exploit (applet sandbox escaping)

Source: http://www.samy.pl/evercookie/

25

http://www.samy.pl/evercookie/

Client-side cookies

Cookies in JavaScript

* Not always necessary to receive cookies from a server
» Cookies can be set in the browser
* Usually to remember form input

1
2 document.cookie = "name=value";

3 document.cookie "name=value; expires=Fri,
24-Jan-2014 12:45:00 GMT";

4

5

6 "name=value; expires=Fri,
24-Jan-1970 12:45:00 GMT";

document.cookie

27

document.cookie is unlike
any other

1

2 document.cookie
3 document.cookie
4 document.cookie

"couponnum=123";
"couponval=20%";
"expires=60";

5
6
7
8 document.cookie = "name=value; expires=Thu,
01-Jan-1970 00:45:00 GMT";

Add a cookie : JiEWESENE

Modify cookies

Show cookies

Example: simple-cookie-example.html

28

Reading cookies in JavaScript

 Reading cookies is hard
e document.cookie["firstname"] does not work

e String returned by document .cookie needs to be
parsed

1 var cookiesArray = document.cookie.split("; ");
2 var cookies=[];

3

4 for(var 1=0; i < cookiesArray.length; i++) {

5 var cookie = cookiesArray[i].split("=");

6 cookies[cookie[0]]=cookie[l];

7}

» Alternative: |Query cookie plugin (118 lines of code)

29

https://github.com/carhartl/jquery-cookie

jQuery cookie plugin

Create session cookie:
$.cookie('name', 'value'):

Create expiring cookie, 7 days from then:
$.cookie('name', 'value', { expires: 7 });

Create expiring cookie, valid across entire site:

$.cookie('name', 'value', { expires: 7, path:

'‘/' });

30

Sessions

Establishing a session

« Common scenario: short period of time that users interact
with a web site (a session)

e Goals:

* Track the user without relying (too much) on unreliable
cookies

* Allow larger amounts of data to be stored
* Problem: without cookies the server cannot tell clients apart

« Solution: hybrid approach between client-side cookies and
server-side saved data

32

Sessions in one slide

Set-Cookie: sessionlD=133
| — @ —

cookie: sessionlD=133

session store

- Cookies are used to store a single 1D
on the client

- Remaining user information is stored server-side
IN memory or a database

- Alternative setup (via URL decoration) is also possible

33

Establishing a session

1. Client requests a first page from the server

2. Server creates unigue session ID and initiates the
storage of the session data for that client

3. Server sends back a page with a cookie containing the
session |D

4. From now on, the client sends page requests together
with the cookie

5. Server can use the ID to personalise the response

6. A session ends when no further requests with that
session ID come in (timeout)

34

Sessions in express with
memory stores

e Very easy to set up in express

 Same drawback as any in-memory storage: not persistent
across machine failure

A middleware component is helping out:
express-session: https://github.com/expressis/session

35

https://github.com/expressjs/session

Sessions in express with @
memory stores

var express = requlire('express');

var http = require("http");

var credentials = require('./credentials.js');
var cookies = require('cookie-parser"); i
var sessions = require(express-session'); COOkIe &
var app = express(); SeSSiOH
app.use(cookies(credentials.cookieSecret));
app.use(sessions(credentials.cookieSecret)); Setup
http.createServer(app).listen(3006);

0 4 o O & LW IN -

=
o

11 app.get("/countMe", function (req, res) {
12 var session = reg.session;

13 if(session.views) {

14 session.views++;

client’s session

object

15 res.send("You have been here "+session.views+" times!");
18 session.views = 1;

16 } . .

17 else { session exists!
19 res.send("This is your first visit!");

20 } _ |
21 }); session does not yet exist

A side node on express

* app.use()

 Add middleware components to your application

* Decide to which part of the application to limit the
component to

* app.get()
 Request routing via GET

* Every path (URL) you want to make publicly accessible
should be defined this way

37

Sessions are most useful for ...

- Authentication

* L oginonce, and remain logged in for some amount of
time

38

Third-party
authentication

Overview

Authentication: verifying a user’s identity

 Weakest link in an authenticated application is the user’s
password [a whole research field by itself!]

- Application-based decision

* Does the app need authentication”
Are cookies/sessions enough?

* |f authentication is needed, should third-party
authentication be used? (low cognitive burden for the
user)

40

Third-party authentication

* Authenticating users through popular social Web services
(Twitter, Facebook, Google, LinkedlIn, etc.)

 Easy to develop

* Node.|s packages exist

* Trusted social Web platforms provide authentication, no
need to store passwords or employ particular security
measures

 However: there are people who do not use social Web
platforms or do not want to hand their data out

41

Third-party authentication

depicted

302/307 redirect

authorised

Web application

-
:

nird-party

oplication

42

Third-party authentication
depicted in detail

Visit /login

Browse

—> Request /login ~——

— Display «—

@4—

(Click “Facebook”

—> Request /auth/fb ~__

Redirect <

App. Il Third party

T — .
-y Serve /login

Construct auth
@ request; serve
redirect to Facebook

\ Show auth screen

— Display <—

@4—

Enter credentials &
approve access

Image source: Web development with Node and Express, p. 222

——>» Request ———7 __

\-b Construct auth resposne;
serve redirect
/ to Meadowlark

~» g Verify auth response;
—— redirect to /account

S o Verify authorized &
- senve Jaccount

4 steps

43

Third-party authentication
stepwise

Login method: browser displays options and the user selects
one

Authentication request construction: construct request to
be send to the third party

* You can ask for more (hame, email, etc.)
* Requests difter considerably between services

Verifying the authentication response: distinguish between
authorised (i.e. valid auth response) and unauthorised access

* Authorised users should be given a session

Verifying the authorisation: is verified user X allowed to
access Y?

e Store access rights in a database
44

Third-party authentication
Twitter example

Goal: “Sign in with your Twitter account”

* Works similarly (but not in exactly the same way) across
different services

o Starting point: create an app (Twitter app, Facebook
app, etc.) C |

W Application Management

Twitter Apps

user-login-test
Testing Twitter-based user login

https://apps.twitter.com/

45

https://apps.twitter.com/

Third-party authentication
Twitter example

Create an application

Application Details

Name *

user-login-test

Description *

Testing Twitter-based user login

Website *
http://127.0.0.1/

B 27.0.0.1 is your localhost
Callback URL

http://127.0.0.1:3005/test-login

https://apps.twitter.com/

46

https://apps.twitter.com/

Third-party authentication
Twitter example cont.

* |n application settings, check “Allow this application to be
used to Sign in with Twitter”

e Create access tokens

user-login-test-2

Details Settings Keys and Access Tokens Permissions

Application Settings

we need this key and secret

Consumer Key (APl Key) YjhSEoPwH2gtOnZraWhTFdmwx

Consumer Secret (AP| Secret) 9QqYIWWTdtpyTsOYJVIqTDBMoOgpS64it10KCqdoAspYIfVJIAT

Access Level Read-only (modify app permissions)
Owner CharlotteHase
Owner ID 305474242

47

Third-party authentication
Twitter example cont.

 Express can make use of passport, one of the most
popular authentication middleware components

e 140+ authentication strategies

e supports OpenID and OAuth

o Twitter still uses OAuth 1.0, other services use 2.0

e passport hides this complexity from you

Installing a strategy

S npm i1nstall passport-twitter

48

http://passportjs.org/
http://passportjs.org/guide/providers/

Third-party authentication
Twitter example cont.

 passport has a lot of boilerplate code (copy & paste)
 Ensure that you set your own key and secret

* Ensure that you call the middleware components in the
right order (otherwise errors will occur)

* Ensure that you do not mix “localhost” and 127.0.0.1
* Write yourself:

e Server-side node.js script

* Client-side HTML

49

Third-party authentication
Twitter example cont.

0O O U1 s WDN K

N e
U WNEHE O\

16
17
18
19

app.get('/auth/twitter', passport.authenticate('twitter'));

app.get('/test-login’',
passport.authenticate('twitter', { failureRedirect: '/failure'
function(req, res) {
res.redirect('/success');

})i

app.get("/success", function (req, res) {
console.log("Success!");
res.send("User login via Twitter successfull!");

})i

app.get("/failure", function (req, res) {
console.log("Failure!");
res.send("User login via Twitter was unsuccessful!");

})i

Excerpt from the full node.|s script

}) o

50

Third-party authentication
Twitter example cont.

1 <!doctype html>

2 <head>

3 </head>

4 <body>

5 Sign in with Twitter
6 </body>

7 </html>

51

OAuth2

REC 6749

“The OAuth 2.0 authorization framework enables a third-party
application to obtain limited access to an HI TP service,
either on behalf of a resource owner by orchestrating an

approval interaction between the resource owner and the
HTTP service, or by allowing the third-party application to
obtain access on its own behalf. *

e OAuth: Open Standard to Authorization

 OAuth 2 was finalised in 2012

e OAuth 2 is not backwards compatible with OAuth 1
e Both OAuth 1 & 2 are still in use

52

http://tools.ietf.org/html/rfc6749

Summary

e Cookies
e SESsSsIoNs
e [hird-party authentication

53

End of Lecture

