
Claudia Hauff
TI1506: Web and Database Technology

ti1506-ewi@tudelft.nl

Cookies, sessions and
third-party authentication

mailto:ti1506-ewi@tudelft.nl

Learning objectives

• Decide for a given usage scenario whether cookies or
sessions are suitable

• Explain and implement cookie usage

• Explain and implement session usage

• Implement third-party authentication

2

Introduction to cookies
and sessions

Recall: HTTP

• HTTP is a stateless protocol
• Every HTTP request contains all information

needed to serve a response
• The server is not required to keep track of the

requests issued
• Advantage: simplifies the server architecture
• Disadvantage: clients have to resend the same

information in every request

4

We do a lot of things requiring a
known state …

• keeps your Winkelwagentje full, even when
you leave the website

• (tracking users’ visits) can exclude a
particular visitor from being tracked

• JavaScript games can keep track of the game’s status
when you re-visit the game (website)

• Websites can tell you how many times you have visited

5

Cookies cannot …

• Execute programs
• Access information from a user's hard drive
• Generate spam
• Be read by arbitrary parties

• Only the server setting the cookie can access it
• But: beware of third-party cookies

6

Cookies

7

Cookies and sessions are ways to introduce state on top of
the stateless HTTP protocol.

Cookie: a short amount of text (key/value) sent by the server
and stored by the client for some amount of time.

Minimum client storage requirements (RFC6265 from 2011)
• Store at least 4096 bytes per cookie
• Store at least 50 cookies per domain
• Store at least 3000 cookies total.

“Servers SHOULD use as few and as small cookies as possible to avoid
reaching these implementation limits and minimise network bandwidth”

Where can I find the cookies?

8

Why am I seeing the same
cookies everywhere?

Cookie & session basics

• Cookies are visible to the users (who make the effort)
• By default, stored in the clear

• Clients (users, i.e. you!) can delete/disallow cookies
• Cookies can be altered by the client

• Opens up a line of attack: servers should not send
sensitive information in simple cookies

• Sessions are preferable to cookies
• Sessions themselves make use of cookies
• Cookie usually contains a single value (session ID), the

rest is stored on the server

10

A very old piece
of Web technology!
Developed in 1994.

A word of warning: RFC6265

11

“This document defines the HTTP Cookie and Set-
Cookie header fields. These header fields can be used
by HTTP servers to store state (called cookies) at HTTP
user agents, letting the servers maintain a stateful
session over the mostly stateless HTTP protocol.

Although cookies have many historical infelicities
that degrade their security and privacy, the Cookie
and Set-Cookie header fields are widely used on
the Internet. ”

Cookie basics

12

• Encoded in the HTTP header
• Web frameworks have designated methods to work with cookies
• Cookies are bound to a site domain name, are only sent back

on requests to this specific site

clients sends the cookie
back in every request

server sends a cookie once;
resends when key/value changes

Set-Cookie

Cookie

What can be stored in cookies?

• Cookies are the server's short term memory
• Information in a cookie is decided by the server

• Examples:
• History of page views
• Settings of form elements (can also be fully client-side)
• Tracking of user’s UI preferences
• …

13

Session vs. persistent cookies

• Session (or transient) cookies:
• Exist in memory only, are deleted when the browser is

closed
• Cookies are session cookies if no expiration date is

defined.
• Persistent cookies:

• Cookies remain intact after the browser is closed
• Have a maximum age
• Are send back to the server as long as they are valid

14

Not the tab or window!

Cookie fields

• Name=value

• Expiration date (UNIX timestamp) or max age
• Domain the cookie is associated with; cookies can only be

assigned to the same domain the server is running on
• Path the cookie is applied to (automatic wildcarding): 
 / matches all pages, /todos all pages within todos,
etc.

• Three flags (add a layer of robustness)
• Secure
• httpOnly
• Signed

15

the only required field

Making cookies more robust

• Secure cookies:
• Setting the secure attribute ensures that the cookies are

sent via HTTPS (i.e. encryption across the network)
• HttpOnly cookies:

• Cookies are not accessible to non-HTTP entities (e.g.
JavaScript)

• Minimises the threat of cookie theft
• Applies to session management cookies, not browser

cookies
• Signed cookies (appended HMAC[value]):

• Ensures that the value has not been tampered with by
the client (offers no privacy)

16

Secure setting via HTTP: the
cookie will not be sent

Hash Message Authentication Code

s%3Amonster.TdcGYBnkcvJsd0%2FNcE2L%2Bb8M55geOuAQt48mDZ6RpoU

Cookie domain

• Origin: request domain of the cookie (a cookie is always
applicable to its origin server)  
GET http://www.my_site.nl/todos www.my_site.nl
• Port or scheme can differ, the received cookie is also

applicable to https://www.my_site.nl:3005
• Domain attribute: a cookie’s Domain attribute has to cover the

origin domain
• If not set, a cookie is only applicable to its origin domain (a

cookie from www.my_site.nl is not applicable to my_site.nl)
• If set, a cookie is applicable to the domain listed in the attribute

and all its subdomains  
GET http://www.my_site.nl/todos  
Set-Cookie: name=value; Path=/; Domain=my_site.nl

17

applicable to www.my_site.nl todos.my_site.nl
serverA.admin.todos.my_site.nl

Domain attribute
cannot be a public
suffix
(.com, .nl, …)

18

 Example: (1) send cookies to a client that requests them;  
 (2) list all cookies sent by the client.

Example 9

Cookies in express

19

cookie-parser middleware

creating cookies

reading cookies

npm install cookie-parser

 1 var express = require("express");
 2 var http = require("http");
 3 var credentials = require('./credentials.js');
 4 var cookies = require("cookie-parser");
 5
 6 var app = express();
 7 app.use(cookies(credentials.cookieSecret));
 8 http.createServer(app).listen(port);
 9
 10 app.get("/sendMeCookies", function (req, res) {
 11 console.log(“Handing out cookies");
 12 res.cookie("chocolate", "kruemel");
 13 res.cookie("signed_choco", "monster", { signed: true});
 14 res.send();
 15 });
 16
 17 app.get("/listAllCookies", function (req, res) {
 18 console.log("++++ unsigned ++++");
 19 console.log(req.cookies);
 20 console.log("++++ signed ++++");
 21 console.log(req.signedCookies);
 22 res.send();
 23 });

signing a cookie

Cookies in express

20

module.exports = {
 cookieSecret: 'abc'
};

npm install cookie-parser

 1 var express = require("express");
 2 var http = require("http");
 3 var credentials = require('./credentials.js');
 4 var cookies = require("cookie-parser");
 5
 6 var app = express();
 7 app.use(cookies(credentials.cookieSecret));
 8 http.createServer(app).listen(port);
 9
 10 app.get("/sendMeCookies", function (req, res) {
 11 console.log(“Handing out cookies");
 12 res.cookie("chocolate", "kruemel");
 13 res.cookie("signed_choco", "monster", { signed: true});
 14 res.send();
 15 });
 16
 17 app.get("/listAllCookies", function (req, res) {
 18 console.log("++++ unsigned ++++");
 19 console.log(req.cookies);
 20 console.log("++++ signed ++++");
 21 console.log(req.signedCookies);
 22 res.send();
 23 });

Accessing and deleting cookies
in express

• Accessing the value of a particular key/value pair:  
var val = req.signedCookies.signed_choco;

• Deleting a cookie:  
res.clearCookie(‘chocolate’);

21

cookie key

delete in the response!

A more pessimistic view
on cookies

Evercookie

23Source: http://www.samy.pl/evercookie/

“evercookie is a javascript API available that  
produces extremely persistent cookies in a browser.
Its goal is to identify a client even after they've
removed standard cookies […]
evercookie accomplishes this by storing the cookie
data in several types of storage mechanisms that are
available on the local browser.  
Additionally, if evercookie has found the user has
removed any of the types of cookies in question, it
recreates them using each mechanism available.”

http://www.samy.pl/evercookie/

Evercookie

24Source: https://github.com/samyk/evercookie

https://github.com/samyk/evercookie

Often though, we are tracked
without our knowledge

25
https://www.ghostery.com/

https://www.ghostery.com/

Third-party cookies

26

served by the  
same ad agency

user visits
three different
websites

Set-Cookie: ads.agency.com

Set-Cookie: ads.agency.com

based on the  
cookies a complete 
user profile 
can be created

Web server x.orgSet-Cookie: x.org

first party

Global Ad Agency
ads.agency.com

Set-Cookie: ads.agency.com

third party

First-party cookies are cookies that belong to the same
domain that is shown in the browser's address bar.

Client-side cookies

Cookies in JavaScript

• Not always necessary to receive cookies from a server
• Cookies can be set in the browser
• Standard use case: remember form input

28

 1 //set TWO(!) cookies
 2 document.cookie = "name1=value1";
 3 document.cookie = "name2=value2; expires=Fri,

24-Jan-2019 12:45:00 GMT";
 4
 5 //delete a cookie by RESETTING the expiration date
 6 document.cookie = "name2=value2; expires=Fri,

24-Jan-1970 12:45:00 GMT";

document.cookie is unlike
any other

29

 1 //adding three cookies
 2 document.cookie = "couponnum=123";
 3 document.cookie = "couponval=20%";
 4 document.cookie = "expires=60";
 5
 6 //delete a cookie
 7 //document.cookie=null or document.cookie="" has no effect
 8 document.cookie = "name=value; expires=Thu,

01-Jan-1970 00:45:00 GMT";

Example 12

document.cookie is unlike
any other

30

 1 var toadd = document.getElementById('addCookie').value;
 2
 3 if(toadd.length > 0) {
 4 document.cookie = toadd;
 5 }
 6 var todel = document.getElementById('deleteCookie').value;
 7
 8 if(todel.length > 0) {
 9 document.cookie =
 10 todel+'; expires=Thu, 01-Jan-1970 00:00:01 GMT';
 11 }

Example 12

Reading cookies in JavaScript

• document.cookie["firstname"] does not work
• String returned by document.cookie needs to be

parsed

• Alternative: js-cookie (140 lines of code)

31

 1 var cookiesArray = document.cookie.split("; “);
 2 var cookies=[];
 3
 4 for(var i=0; i < cookiesArray.length; i++) {
 5 var cookie = cookiesArray[i].split("=");
 6 cookies[cookie[0]]=cookie[1];
 7 }

couponnum=123; couponval=20%; expires=60

https://github.com/js-cookie/js-cookie

https://github.com/js-cookie/js-cookie

Sessions

Establishing a session

• Common scenario: short period of time that users
interact with a web site (a session)

• Goals:
• Track the user without relying (too much) on unreliable

cookies
• Allow larger amounts of data to be stored

• Problem: without cookies the server cannot tell clients
apart

• Solution: hybrid approach between cookies and server-
side saved data

33

Sessions in one slide

34

session store

GET /todos?name=Daisy

Set-Cookie: sessionID=133

GET /addTodo

cookie: sessionID=133

• Cookies are used to store a single ID  
on the client

• Remaining user information is stored server-side  
in memory or in a database

Establishing a session

1. Client requests a first page from the server
2. Server creates unique session ID and initiates the

storage of the session data for that client
3. Server sends back a page with a cookie containing the

session ID
4. From now on, the client sends page requests together

with the cookie
5. Server can use the ID to personalise the response
6. A session ends when no further requests with that

session ID come in (timeout)

35

Sessions in express with
memory stores

• Easy to set up in express

• Same drawback as any in-memory storage: not
persistent across machine failure

• A middleware component is helping out:  
express-session: https://github.com/expressjs/session

• Most common use case: authentication

36

Authentication: verifying a user’s identity

https://github.com/expressjs/session

Sessions in express with
memory stores

37

npm install cookie-parser
npm install express-session

var express = require("express");
var http = require("http");
var credentials = require("./credentials");
var cookies = require("cookie-parser");
var sessions = require("express-session");

var app = express();
app.use(cookies(credentials.cookieSecret));
app.use(sessions(credentials.cookieSecret));
http.createServer(app).listen(3001);

app.get("/countMe", function (req, res) {
var session = req.session;
if (session.views) {

session.views++;
res.send("You have been here " +  

 session.views + " times (last visit: " + session.lastVisit + ")");
session.lastVisit = new Date().toLocaleDateString();

}
else {

session.views = 1;
session.lastVisit = new Date().toLocaleDateString();
res.send("This is your first visit!");

}
});

Example 10

Sessions in express with
memory stores

38

cookie & session
setup

session object available
on req object only

session exists!

session does not yet exist

npm install cookie-parser
npm install express-session

var express = require("express");
var http = require("http");
var credentials = require("./credentials");
var cookies = require("cookie-parser");
var sessions = require("express-session");

var app = express();
app.use(cookies(credentials.cookieSecret));
app.use(sessions(credentials.cookieSecret));
http.createServer(app).listen(3001);

app.get("/countMe", function (req, res) {
var session = req.session;
if (session.views) {

session.views++;
res.send("You have been here " +  

 session.views + " times (last visit: " + session.lastVisit + ")");
session.lastVisit = new Date().toLocaleDateString();

}
else {

session.views = 1;
session.lastVisit = new Date().toLocaleDateString();
res.send("This is your first visit!");

}
});

Example 10

Third-party
authentication

Twitter

Google

Facebook

Yahoo

LinkedIn
…

Overview

• Weakest link in an authenticated application is the user’s
password

• Application-based decision

• Does the application need authentication?

• Are cookies/sessions enough?

• If authentication is needed, should third-party
authentication be used? (low cognitive burden for the
user)

41

Third-party authentication

• Authenticating users through popular social Web services
(Twitter, Facebook, Google, LinkedIn, etc.)

• Easy to develop for popular platforms
• Trusted social Web platforms provide authentication, no

need to store passwords or employ particular security
measures

• However: some users may not use social Web platforms
or do not like to hand over their data

42

OAuth 2.0 Authorization Framework

Source: https://tools.ietf.org/html/rfc6749

“The OAuth 2.0 authorization framework
enables a third-party application to
obtain limited access to an HTTP
service, either on behalf of a resource
owner by orchestrating an approval
interaction between the resource owner
and the HTTP service, or by allowing
the third-party application to obtain
access on its own behalf.”

https://tools.ietf.org/html/rfc6749

OAuth 2.0 roles

• Resource owner: entity that grants access to a protected
resource

• Resource server: server hosting the protected resources,
capable of accepting and responding to protected resource
requests using access tokens.

• Client: an application making protected resource requests on
behalf of the resource owner and with its authorisation

• Authorization server: server issuing access tokens to the
client after successfully authenticating the resource owner and
obtaining authorization

44

a string denoting a specific scope,
lifetime and other access attributes

OAuth 2.0 roles exemplified

45

printing service
photo sharing
service

end
user

authorization 
server

Goal: end user wants to grant
permission to a printing service
to print its private photos
stored at a photo-sharing
service without giving away
her username/password.

print m
y p

ics!1

OAuth 2.0 roles exemplified

46

printing service
photo sharing
service

end
user

trusted

authenticate
2

access token
3

access private  
photos

4

authorization 
server

print m
y p

ics!1

OAuth 2.0 roles exemplified

47

photo sharing
service

end
user

trusted

authenticate
2

access token
3

access private  
photos without 
username/pw

4

client resource owner

resource server

authorization server

printing service

Abstract protocol flow

Source: https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

Third-party authentication 
Twitter example

• Works similarly (but not in exactly  
the same way) across different  
services

• Starting point: create an “app”  
(Twitter app, Facebook app, etc.)

49

Goal: “Sign in with your Twitter account”

https://apps.twitter.com/

https://apps.twitter.com/

Third-party authentication 
Twitter example

50https://apps.twitter.com/

https://apps.twitter.com/

Third-party authentication 
Twitter example

51https://apps.twitter.com/

127.0.0.1 is your localhost

URL to callback from third party with result

https://apps.twitter.com/

Third-party authentication 
Twitter example cont.

• In application settings, check “Allow this application to be
used to Sign in with Twitter”

• Read out the access tokens

52

we need this key and secret

Third-party authentication 
Twitter example cont.

• Express can make use of passport, one of the most
popular authentication middleware components
• 300+ authentication strategies
• Supports OpenID and OAuth

• Passport hides a lot of complexity from you

53

$ npm install passport-twitter

Installing a strategy

http://passportjs.org/

$ npm install passport

http://passportjs.org/
http://www.apple.com

54

Example: authenticating through TwitterExample 11

55

Third-party authentication 
Twitter example cont.

 1 // Redirect the user to Twitter for authentication.
 2 app.get('/auth/twitter', passport.authenticate('twitter'));
 3
 4 // Twitter will redirect the user to this URL after approval.
 5 app.get('/test-login',
 6 passport.authenticate('twitter', { failureRedirect: '/failure' }),
 7 function(req, res) {
 8 res.redirect('/success');
 9 });
 10
 11 app.get("/success", function (req, res) {
 12 console.log("Success!");
 13 res.send("User login via Twitter successful!");
 14 });
 15
 16 app.get("/failure", function (req, res) {
 17 console.log("Failure!");
 18 res.send("User login via Twitter was unsuccessful!");
 19 });

56

Third-party authentication 
Twitter example cont.

 1 <!doctype html>
 2 <head>
 3 </head>
 4 <body>
 5 Sign in with Twitter
 6 </body>
 7 </html>

Summary

• Cookies

• Sessions

• Third-party authentication

57

End of Lecture

