i
i

|
|

:I u Il ‘

.nl'”m.u!! i

Cookies, sessions and
third-party authenticati

Claudia Hauff
111506: Web and Database Technology
ti1506-ewi @tudelft.nl

3 -‘;'.

S : B Lo -
S|

mailto:ti1506-ewi@tudelft.nl

Learning objectives

* Decide for a given usage scenario whether cookies or
sessions are suitable

 Explain and implement cookie usage
 Explain and implement session usage

* Implement third-party authentication

Introduction to cookies
and sessions

Recal: HT TP

* HI TP Is a stateless protocol

* Every HITTP request contains all information
needed to serve a response

* The server is not required to keep track of the
requests issued

* Advantage: simplifies the server architecture

* Disadvantage: clients have to resend the same
information in every request

We do a lot of things requiring a
known state ...

- bol.com” keeps your Winkelwagentje tull, even when
you leave the website

 StatCeuin (tracking users’ visits) can exclude a
particular visitor from being tracked

e Javascript games can keep track of the game’s status
when you re-visit the game (website)

 Websites can tell you how many times you have visited

Cookies cannot ...

 Execute programs
* Access information from a user's hard drive
 (Generate spam
* Be read by arbitrary parties
* Only the server setting the cookie can access it
e But: beware of third-party cookies

Cookies

Cookies and sessions are ways to introduce state on top of
the stateless HT TP protocol.

Cookie: a short amount of text (key/value) sent by the server

and stored by the client for some amount of time.

Minimum client storage requirements (RFC6265 from 2011)

e Store at
e Store at
e Store at

eas!
eas!

4096 bytes per cookie

- 50 cookies per domain

east 3000 cookies total.

“Servers SHOULD use as few and as small cookies as possible to avoid

reaching these implementation limits and minimise network bandwidth”

Where can | find the cookies!?

Why am | seeing the same
cookies everywhere!

Cookie Default Expiration

. Description
Name Time

--utma 2 years from set/update Used to distinguish users and sessions. The cookie is created when
the javascript library executes and no existing __utma cookies
exists. The cookie is updated every time data is sent to Google
Analytics.

--utmt 10 minutes Used to throttle request rate.

--utmb 30 mins from set/update Used to determine new sessions/visits. The cookie is created when
the javascript library executes and no existing _utmb cookies
exists. The cookie is updated every time data is sent to Google
Analytics.

--utmc End of browser session Not used in ga.js. Set for interoperability with urchin_js. Historically,
this cookie operated in conjunction with the __utmb cookie to
determine whether the user was in a new session/visit.

-.utmz 6 months from set/update Stores the traffic source or campaign that explains how the user
reached your site. The cookie is created when the javascript library
executes and is updated every time data is sent to Google
Analytics.

--utmv 2 years from set/update Used to store visitor-level custom variable data. This cookie is
created when a developer uses the _setCustomVar method with
a visitor level custom variable. This cookie was also used for the
deprecated _setVar method. The cookie is updated every time
data is sent to Google Analytics.

l Google Analytics > Tracking > analytics.js

A very old piece

Cookie & session basics FSaSEREE
eveloped in 1994

 Cookies are visible to the users (who make the effort)
* By default, stored in the clear

e Clients (users, i.e. you!) can delete/disallow cookies

* Cookies can be altered by the client

 Opens up a line of attack: servers should not send
sensitive information in simple cookies

» Sessions are preferable to cookies
e Sessions themselves make use of cookies

* Cookie usually contains a single value (session |ID), the
rest Is stored on the server

10

A word of warning: RFC6265

“This document defines the HTTP Cookie and Set-
Cookie header fields. These header fields can be used
by HT TP servers to store state (called cookies) at HTTP
user agents, letting the servers maintain a stateful
session over the mostly stateless HIT TP protocol.

Although cookies have many historical infelicities
that degrade their security and privacy, the Cookie
and Set-Cookie header fields are widely used on

the Internet. ”

Cookie basics

server sends a cookie once;
resends when key/value changes

1. page request

browser _J(O

2. page response =

3. page request

‘ cookie store \

clients sends the cookie
back in every request

Cookie

* Encoded inthe HTTP header

* Web frameworks have designated methods to work with cookies

* Cookies are bound to a site domain name, are only sent back
on requests to this specific site

12

What can be stored in cookies!?

» Cookies are the server's short term memory

e |Information in a cookie is decided by the server

« Examples:

History of page views

Settings of form elements (can also be fully client-side)

Tracking of user’s Ul prefterences

13

Session vs. persistent cookies

 Session (or transient) cookies: Notir eitabie erindow!

* EXxist in memory only, are deleted when the browser is
closead

* Cookies are session cookies if no expiration date is
defined.

e Persistent cookies:
e Cookies remain intact after the browser is closed
* Have a maximum age

* Are send back to the server as long as they are valid

14

Cookie fields

* Name=value
« Expiration date (UNIX timestamp) or max age

* Domain the cookie Is associated with; cookies can only be
assigned to the same domain the server is running on

 Path the cookie is applied to (automatic wildcarding):
/ matches all pages, /todos all pages within todos,
etc.

* Three flags (add a layer of robustness)
* Secure
* httpOnly
* Signed

15

Making cookies more robust

Secure setting via HTTP: the

e Secure cookies: cookie will not be sent

e Setting the secure attribute ensures that the cookies are
sent via HTTPS (i.e. encryption across the network)

e HitpOnly cookies:

» Cookies are not accessible to non-HTTP entities (e.q.
JavaScript)

* Minimises the threat of cookie theft
e Applies to session management cookies, not browser

cookies Hash Message Authentication Code

» Signed cookies (appended HMAC[value]):

* Ensures that the value has not been tampered with by
the client (offers no privacy)
s%3A . TdcGYBnkcvIsdO0%2FNcE2L%2Bb8M55geOuAQt48mDZ 6 RpoU 16

Cookie domain

* Origin: request domain of the cookie (a cookie is always

applicable to its origin server)

GET http://www.my site.nl/todos =& www.my site.nl

 Port or scheme can differ, the received cookie is also
applicable to https://www.my site.nl:3005

e Domain attribute: a cookie’s Domain attribute has to cover the
origin domain

* |f not set, a cookie is only applicable to its origin domain (a
cookie from www.my site.nl iS Not applicable tO my site.nl)

e |f set, a cookie is applicable to the domain listed in the attribute

and all its subdomains
GET http://www.my site.nl/todos Domain attribute
Set-Cookie: name=value; Path=/; Domain=my_ site.nl [E{ljleiReI-F-Wellle]([e
suffix
applicable 10 www.my _site.nl todos.my site.nl [l)

serverA.admin.todos.my site.nl

17

2

o
#“Example: (1) send cookies to a client that requests them;

(2) list all cookies sent by the client.

@ QuickTime Player File Edit View Window Help 2 ¥ 4 T 9% () 3 Thu15:06 Claudia Haufft Q =
@ P Launch 5 £ D cookieTester.js T X
> VARIABLES 1 var express = require("express");
2 var http = require("http");
b WATCH . o
/O 3 vag credentials = require("./credentials");
» CALL STACK 4 var cookies = require('cookie-parser");
> BREAKPOINTS =
6 var app = express();
7 app.use(cookies(credentials.cookieSecret));]
8 http.createServer(app).listen(3000);
9
10
© 8040 Ln10,Col1 UTF-8 LF JavaScript @
/ e — ,-r — - - A _7 - ':_‘FS ,-7-' :7
localhost:3 ¢ . kabouter 7 - > A L) e* - s =

O

npm install cookie-parser

Cookies in express

0O O U1 & WD K-

NNNMNNRRRRRRRRFRRP B
WNRFROWOWIOUEd WNRE OV

var
var
var
var

var
app.

express = require(express');

http = require("http");

credentials = require('./credentials.js');

cookies = require('cookie-parser");

app = express(); cookie-parser middleware
use (cookies(credentials.cookieSecret));

http.createServer (app).listen(port);

app.

app.

get (" /sendMeCookies", function (req, res) {

console.log(“Handing out cookies");
res.cookie("chocolate"”", "kruemel");
res.cookie("signed choco", "monster", { signed: true});

res.send(); o :
l!i!iii!!l!ﬁ!ﬁi’l

get("/listAllCookies", function (req, res) {
console.log("++++ unsigned ++++");
console.log(req.cookies);

console.log("++++ signed ++++");

console.log(req.signedCookies);
res.send();

19

Cookies in express EXHER

0O O U1 & WD K-

NNNMNNRRRRRRRRFRRP B
WNRFROWOWIOUEd WNRE OV

npm install cookie-parser

cookieSecret: 'abc'
var express = require('express');
var http = require("http");
var credentials = require('./credentials.js');
var cookies = require('cookie-parser");

var app = express():;
app.use(cookies(credentials.cookieSecret));
http.createServer(app).listen(port);

app.get("/sendMeCookies", function (req, res) {

console.log(“Handing out cookies");
res.cookie("chocolate", "kruemel");
res.cookie("signed choco", "monster", { signed: true});
res.send();

})i

app.get("/listAllCookies", function (req, res) {
console.log("++++ unsigned ++++");
console.log(req.cookies);
console.log("++++ signed ++++");
console.log(req.signedCookies);
res.send();

})i 20

Accessing and deleting cookies
In express

 Accessing the value of a particular key/value pair:
var val = req.signedCookies.signed choco;

* Deleting a cookie:

res.clearCookie(‘chocolate’); deleteinthe response!

21

A more pessimistic view
on cookies

Evercookie

‘evercookie Is a javascript APl available that
produces extremely persistent cookies in a browser.
lts goal is to identify a client even after they've
removed standard cookies |...]

evercookie accomplishes this by storing the cookie
data in several types of storage mechanisms that are
avallable on the local browser.

Additionally, it evercookie has found the user has
removed any of the types of cookies in question, it
recreates them using each mechanism available.”

Source: http://www.samyv.pl/evercookie

http://www.samy.pl/evercookie/

Evercookie

Browser Storage Mechanisms

Client browsers must support as many of the following storage mechanisms as possible in order for Evercookie to be
effective.

e Standard HTTP Cookies

¢ Flash Local Shared Objects

¢ Silverlight Isolated Storage

e CSS History Knocking

e Storing cookies in HTTP ETags (Backend server required)

Storing cookies in Web cache (Backend server required)

HTTP Strict Transport Security (HSTS) Pinning (works in Incognito mode)

window.name caching

Internet Explorer userData storage

e HTMLS Session Storage
e HTMLS Local Storage
e HTMLS5 Global Storage
e HTMLS Database Storage via SQLite
¢ HTMLS Canvas - Cookie values stored in RGB data of auto-generated, force-cached PNG images (Backend server
required)
e HTMLS IndexedDB
b

e Java J‘NLP PersistenceService

e Java exploit CVE-2013-0422 - Attempts to escape the applet sandbox and write cookie data directly to the user's
hard drive.

Source: https://github.com/samyk/evercookie 24

https://github.com/samyk/evercookie

Often though, we are tracked

Wlthout our knowledge

. @ & nttps//www.volkskrant.nl Q. Foxbrim Argan oil - voIiNn @ & » | =

% ¥ BANEN TOPICS DIGITALE KRANT

Nieuws Cultuur & Leven (le ‘OII(SI(P -

VOORPAGINA BUITENLAND BINNENLAND OPINIE ECONOMIE SPt

NiCUWS BELANGRIK NET BINNEN Uitgelicht

Blocked: 0 Page Load:

v, % Q

DIT IS INTERNATIONAA
Maar in eigen land is L O Trust Site © Restrict Site Il Pause v
Trump noemt zichzelf 'zeer
stabiel genie' na twijfels
mentale gesteldheid, Bannon MEEST GELEZEN
s 1 . Gratis apps luisteren
bledt €Xcuses aan stiekem mee met de
BUITENLAND De Amerikaanse president Donald Trump 2. Fm“‘?s Groenhuijsen
heeft dit weekend via Twitter verkiaard dat hij wel Veranderds van standpunt
degelijk een ‘soort van echt slim' en een ‘zeer stabiel 3. zijdie over ons
geni. . slavemijverieden het Daan ‘de beer uit Akkrum'
4 Keyvan Shahbazi: Ik hoop 2o Breeuwsma niet langer in de

https://www.ghostery.com

GHOSTERY

https://www.ghostery.com/

First-party cookies are cookies that belong to the same

domain that is shown in the browser's address bar.
Third-party cookies

Set-Cookie: x.0rg

Web server x.org

~ Set-Cookie: ads.agency.com
third party Global Ad Agency
ads.agency.com
Set-Cookie: ads.ag€éncy.com Served by the
5 same ad agency

based on the
cookies a complete

user VISIts .
three different user profile
websites can be created

Set-Cookie: ads.agency.com 26

Client-side cookies

Cookies in JavaScript

* Not always necessary to receive cookies from a server

e Cookies can be set in the browser

o Standard use case: remember form input

1 //set TWO(!) cookies

2 document.cookie
3 document.cookie

"namel=valuel";
"name2=value2; expires=Fri,
24-Jan-2019 12:45:00 GMT";

5 //delete a cookie by RESETTING the expiration date

6 document.cookie

"name2=value2; expires=Fri,
24-Jan-1970 12:45:00 GMT";

28

document.cookie is unlike
any other

1 //adding three cookies

2 document.cookie = "couponnum=123";

3 document.cookie = "couponval=20%";

4 document.cookie = "expires=60";

5

6 //delete a cookie

7 //document.cookie=null or document.cookie="" has no effect
8 document.cookie = "name=value; expires=Thu,

01-Jan-1970 00:45:00 GMT";

Add a cookie : JERESENE

document.cookie is unlike
any other

1 var toadd = document.getElementById(' addCookie').value;

2

3 1if(toadd.length > 0) {

4 document.cookie = toadd;

5)

6 var todel = document.getElementById('deleteCookie').value;
7

8 1if(todel.length > 0) {

9 document.cookie =
10 todel+'; expires=Thu, 01-Jan-1970 00:00:01 GMT';
11 }

Add a cookie : JIERESEE

ISR ol = name=value

30

Reading cookies in JavaScript

e document.cookie["firstname"] does not work

e String returned by document.cookie needs to be

SEIRTIOR - ponnum=123; couponval=20%; expires=60

var cookiesArray = document.cookie.split("; “);
var cookies=[];

for(var 1=0; 1 < cookiesArray.length; i++) {
var cookie = cookiesArray[i].split("=");
cookies[cookie[(0]]=cookie[l];

}

N O O s WD

e Alternative: js-cookie (140 lines of code)

ithub.com/js-cookie/js-cookie

31

https://github.com/js-cookie/js-cookie

Sessions

Establishing a session

« Common scenario: short period of time that users
interact with a web site (a session)

e Goals:

* Track the user without relying (too much) on unreliable
cookies

* Allow larger amounts of data to be stored

e Problem: without cookies the server cannot tell clients
apart

e Solution: hybrid approach between cookies and server-
side saved data

33

Sessions in one slide

4rX L

2, GET /todos?name=Daisy

Set-Cookie:

session store

» Cookies are used to store a single ID
on the client

 Remaining user information is stored server-side
IN memory or in a database

34

Establishing a session

1. Client requests a first page from the server

2. Server creates unique session ID and initiates the
storage of the session data for that client

3. Server sends back a page with a cookie containing the
session |ID

4. From now on, the client sends page requests together
with the cookie

5. Server can use the ID to personalise the response

©6. A session ends when no further requests with that
session ID come in (timeout)

35

Sessions in express with
memory stores

Easy to set up in express

Same drawback as any in-memory storage: not
persistent across machine failure

A middleware component is helping out:
express-session: https://github.com/expressjs/session

Most common use case: authentication

Authentication: verifying a user’s identity

36

https://github.com/expressjs/session

Sessions in express with
memory stores

var
var
var
var
var

var

app.
app.
http.createServer(app).listen() ;

express = require('express'");

http = require("http");

credentials = require("./credentials");
cookies = require('cookie-parser");
sessions = require('express-session');
app = express();

use(cookies(credentials.cookieSecret));

use(sessions(credentials.cookieSecret));

app.get("/countMe", function (req, res) {

})i

var session = reg.session;
i1f (session.views) {

session.views++;
res.send("You have been here " +
session.views + "

times (last visit:

npm install cookie-parser

npm install express-session

+ session.lastVisit + ")");

session.lastVisit = new Date().toLocaleDateString();

}

else {
session.views = 1;
session.lastVisit = new Date().toLocaleDateString();
res.send("This is your first wvisit!");

}

37

Sessions in express with
memory stores

var
var
var
var
var

var

express = require('"express");

http = require("http");

credentials = require("./credentials");
cookies = require('cookie-parser");
sessions = require('express-session');

app = express();

app.use(cookies(credentials.cookieSecret));

app.use(sessions(credentials.cookieSecret));

http.createServer(app).listen(3001);

app.

var session =

get("/countMe", function (req, res) {
req.session;

if (session.views) {

)
else {
session.views = ;
session.lastVisit =
res.send("This is your first visit!");
}
})i

session.views++;
res.send("You have been here

session.views + "
session.lastVisit =

n +

times (last visit:
new Date().toLocaleDateString();

npm install cookilie-parser
npm install express-session

cookle & session

setup

session object avallable
on req object only

+ session.lastVisit + ")");

session exists!

new Date().toLocaleDateString();

session does not yet exist
38

Third-party
authentication

Twitter

G lin
Make the most of your professional life

Google
Facebook
e Yahoo

Privacy Policy, and Cookie Policy

TR
Linkedin

Overview

« Weakest link in an authenticated application is the user’s
password

* Application-based decision
* Does the application need authentication?
* Are cookies/sessions enough?

e |f authentication is needed, should third-party
authentication be used? (low cognitive burden for the
user)

41

Third-party authentication

* Authenticating users through popular social Web services

(Twitter, Face
 Easy to deve

000
Op

K, Google, LinkedIn, etc.)

for popular platforms

* Trusted social Web platforms provide authentication, no
need to store passwords or employ particular security

Mmeasures

« However: some users may not use social Web platforms
or do not like to hand over their data

42

OAuth 2.0 Authorization Framework

"The OAuth 2.0 authorization framework
enables a third-party application to
obtain limited access to an HTTP
service, eilither on behalf of a resource
owner by orchestrating an approval
interaction between the resource owner
and the HTTP service, or by allowing
the third-party application to obtain
access on its own behalf.’

Source: https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

OAuth 2.0 roles

 Resource owner: entity that grants access to a protected
resource

* Resource server: server hosting the protected resources,
capable of accepting and responding to protected resource
requests using access tokens.

a string denoting a specific scope,

lifetime and other access attributes

e Client: an application making protected resource requests on
behalf of the resource owner and with its authorisation

* Authorization server: server issuing access tokens to the
client after successtully authenticating the resource owner and

obtaining authorization
44

OAuth 2.0 roles exemplified

enad
usen

printing service

photo sharing
service

Goal: end user wants to grant
permission to a printing service
to print its private photos

stored at a photo-sharing | |
service without giving away authorization

her username/password.

server

45

OAuth 2.0 roles exemplified

authenticate

photos

photo sharing
service

access token

authorization
server 46

OAuth 2.0 roles exemplified

ena
Q

resource owner jghy
*henticate

photos without
username/pw

% S resource server

printing service

photo sharing
service

access token

authorization server

47

Abstract protocol flow

tmm + S TR
--(A)- Authorization Request -> Resource
Owner
<-(B)-- Authorization Grant ---
o e e o e e e e
e e e e e e e e e e e
—-(C)-- Authorization Grant -->| Authorization
Client Server
<-(D)-==-- Access Token —-—-———----
N
N
——(E)-——-—- Access Token —-—-—---—- > Resource
Server
<-(F)--- Protected Resource ---
tmmm———— + L T

Source: https://tools.ietf.org/html/rfc6749

https://tools.ietf.org/html/rfc6749

Third-party authentication
Twitter example

Goal: “Sign in with your Twitter account”

» Works similarly (but not in exactly v wsesermsens
the same way) across different .
services Twitter Apps
e Starting point: create an “app” e e

(Twitter app, Facebook app, etc.)

user-login-test
Testing Twitter-based user login

W Tweet 3,715

https://apps.twitter.com/

49

https://apps.twitter.com/

Third-party authentication
Twitter example

Create an application

Application Details
Name *

user-login-test

Description *
Testing Twitter-based user login

Website *
http://127.0.0.1/

Callback URL
http://127.0.0.1:3005/test-login

https://apps.twitter.com/

50

https://apps.twitter.com/

Third-party authentication
Twitter example

Create an application

Application Details
Name *

user-login-test

Description *

Testing Tw

Callback URL
http://127.0.0.1:3005/test-login

https://apps.twitter.com/

51

https://apps.twitter.com/

Third-party authentication
Twitter example cont.

* |n application settings, check “Allow this application to be
used to Sign in with Twitter”

e Read out the access tokens

user-login-test Tost OAuth

Details Settings Keys and Access Tokens Permissions

APP""Ca(t“"?“ ’S‘etf','?gs B e need this key and secret |

Consumer Key (APl Key) usqAEPbH710gJV3oxqyf04KZW

Consumer Secret (APl Secret) SIXThWZZEYgqUhFTuOIPfWPIZTNUtTIEUUZ2mTLyAMrefHrfbfx

Access Level Read and write (modify app permissions)
Owner CharlotteHase
Owner ID 305474242

52

Third-party authentication
Twitter example cont.

 Express can make use of passport, one of the most
popular authentication middleware components

« 300+ authentication strategies
o Supports OpenlD and OAuth

« Passport hides a lot of complexity from you

S npm i1nstall passport

S npm i1nstall passport-twitter

Installing a strategy

http://passportijs.org/

53

http://passportjs.org/
http://www.apple.com

@ Code File Edit View Goto Window Help ® 3 2 T 43% W) (@ Fri01:22 Claudia Hauff Q =

e » credentials.js - Example11
@ EXPLORE credentials.js s X
> WORKING FILES 1 module.exports = {
) e 2 cookieSecret: 'my_secret_abc_123',
p 3 secret: 'my_secret_abc_123',
» .vscode 4 cookie : {maxAge : 6000},
> static 5 [twitter : {
0 R 6 consumerkKey: "UBA4b3divWaTMQoZgqJKNe21d3",
Sl 7 consumerSecret: "hABOEMCbolyieggH41fDqI2t@XfPIYNadzxX808caN16cAbGMW", -
jsconfig.json 8 callbackURL: "http;//127.0.0,1:3005/test-login"
twitterLogin.js 9 }
10 };
1|
12

Ln11,Col1 UTF8 LF JavaScript @

Third-party authentication
Twitter example cont.

00 O U1l WD K-

e e e
O 0O UT s WN P OV

app.get('/auth/twitter', passport.authenticate('twitter'));

app.get('/test-login',
passport.authenticate('twitter', { failureRedirect: '/failure'
function(req, res) {
res.redirect('/success');

})i

app.get("/success", function (req, res) {
console.log("Success!");
res.send("User login via Twitter successful!");

})i

app.get("/failure", function (req, res) {
console.log("Failure!");
res.send("User login via Twitter was unsuccessful!");

})i

}) s

55

Third-party authentication
Twitter example cont.

1 <!doctype html>

2 <head>

3 </head>

4 <body>

5 Sign in with Twitter
6 </body>

7 </html>

56

Summary

e Cookies
e Sessions

e [hird-party authentication

57

End of Lecture

