"

il
i

|
|

CSS: the language of
Web design

Claudia Hauff
111506: Web and Database Technology
ti1506-ewi @tudelft.nl

mailto:ti1506-ewi@tudelft.nl

At the end of this lecture, you
should be able to ...

* Position and style HTML elements according to a given
design of a Web page

 Employ pseudo-classes and pseudo-elements

* Employ CSS’s data access/creation facilities and reflect
upon them

 Write CSS media queries

e Create simple CSS-based animations

A bit of context

A brief history of CSS

 CSS 1: a W3C recommendation in 1996

e Support for fonts, colours, alignment, margins, ids and classes
* CSS 2: a W3C recommendation in 1998

* Support added for media queries, element positioning
* CSS 2.1: a W3C recommendation in 2011

* Fixed errors and added support for features widely
implemented in major browsers

 CSS 3: currently under development; specification is split up into
modules; progress varies between modules

e CSS 4: some modules have reached “level 4” status

http://www.w3.org/Style/CSS/current-work

CSS 3+:a tale of many modules

Completed Current Upcoming
CSS Snapshot 2017
CSS Snapshot 2015
CSS Snapshot 2010
CSS Snapshot 2007
CSS Color Level 3
CSS Namespaces
Selectors Level 3

CSS Level 2 Revision |
CSS Level |

CSS Print Profile
Media Queries

CSS Style Attributes

Abbreviation Full name

First Public Working Draft
Working Draft

CR Candidate Recommendation
PR Proposed Recommendation

REC Recommendation

CSS 3+:a tale of many modules

Stable Current Upcoming

CSS Backgrounds and Borders Level 3 CR _

CSS Conditional Rules Level 3 CR CR
CSS Multi-column Layout Level |
CSS Values and Units Level 3

CR

CSS Cascading and Inheritance Level 3 CR

CSS Fonts Level 3 CR

CSS Writing Modes Level 3 CR

CSS Counter Styles Level 3 CR

Testing Current Upcoming
CSS Image Values and Replaced Content Level 3 |CR CR

CSS Speech CR CR

CSS Flexible Box Layout Level | <t PR

Abbreviation Full name

First Public Working Draft
Working Draft

CR Candidate Recommendation

Proposed Recommendation
Recommendation

CSS 3+:a tale of many modules

Non-element Selectors

CSS Inline Layout Level 3
Motion Path Level |

CSS Round Display Level |

CSS Basic User Interface Level 4
CSS Text Level 4

CSS Painting API Level |

CSS Properties and Values API Level |
CSS Typed OM Level |
Worklets Level |

CSS Color Level 4

CSS Fonts Level 4

CSS Rhythmic Sizing Level |

Abbreviation Full name

First Public Working Draft
Working Draft

Candidate Recommendation

Proposed Recommendation

Recommendation

CSS 3

e Impossible to write complex CSS that relies on modern features
and works across all browsers

* Implementation of CSS 3 features should be decided based on
e intended users (mostly in the US or China or ... ?)
* the mode of usage (smartphone, touch-screen or ...7)
* the type of Web app (are 3D animations necessary?)

o JavaScript libraries can help front-end developers to build
Cross-browser apps (e.g. Modernizr)

Revision: chapter 3

Chapter 3 of the course book

CSS describes how elements in the DOM should be rendered.

body { * Three types of style sheets:
background-color: #f£f££f00; : _
widths 800px; (1) browser’s style sheet4*
margin: auto; (2) author’s style sheet
r}11 (3) user’s style sheet ,
{ overrides

color: maroon;

) I Style sheets are

p span { _ processed Iin order; later
color: gray; declarations override

}border‘ tpx solid gray; earlier ones (if they are
p#last { on the same level)
color: green; limportant overrides

} .
all other declarations

my file.css 10

Pseudo-elements
and
pseudo-classes

(this means fewer “styling hooks™)

A detour: the rendering engine

* More than 30 pseudo-classes
e Support varies according to the rendering engine

A rendering engine (or browser engine, layout engine) is

responsible for translating HTML+CSS (among others) to the screen.

Rendering engine Browser
Gecko Firefox

from Trident to

Internet Explorer
EdgeHTML

WebKit Safari, older versions of Google Chrome

Blink Google Chrome (new versions), Opera

12

Pseudo-class

Pseudo-class: a keyword added to a selector which indicates a
particular state or type of the corresponding element.

Pseudo-classes allow styling according to (among others) document
external factors (e.g. mouse movements, user browsing history).

selector:pseudo-class {
property: value;
property: value;

}

B W N R

13

Popular pseudo-classes

:nth-child (X) any element that is the Xt child element
of its parent

:nth-of-type (X) any element that is the Xt sibling of its
type

p:nth-child(2) {
color:red;

1 <main>

2 <h2>Todos</h2>

3 <p>Today’'s todos</p>

4 <p>Tomorrow’s todos</p>
5 <p>Saturday’s todos</p>
6 <p>Sunday'’s todos</p>

7 </main>

p:nth-of-type(2) {
background-color:green;

~N O O D WO DN

14

Popular pseudo-classes

:nth-child (X) any element that is the Xth child element
of its parent

:nth-of-type (X) any element that is the Xt sibling of its
type

2. child

p:nth-child(2) {
color:red;

$» <main> N
. 2 <h2>Todos</h2> Mg
parent<p>Today’s todos</p>
4 <p>Tomorrow’s todos</p>
5 <p>Saturday’s todos</p>
6 <p>Sunday'’s todos</p>
7 </main>

p:nth-of-type(2) {
background-color:green;

~N O O D WO DN

15

odos

Popular pseudo-classes Today's todos

Saturday's todos

:nth-child (X) any element that is the Xt child

. Sunday’s todos
element of its parent

:nth-of-type(X) any element that is the Xt sibling of its
type (X can be an int or formula, e.g “2n+17)

n represents a number starting at O and incrementing

<main> p:nth-child(2) {
<h2>Todos</h2> color:red:;
<p>Today’s todos</p> }
sibling <p>Tomorrow'’s todos</p>
<p>Saturday’s todos</p> p:nth-of-type(2) {
<p>Sunday'’s todos</p> background-color:green;

</main> }

16

Popular pseudo-classes

:first-child Isequivalentto :nth-child(1)
:last-child IS equivalentto :nth-last-child (1)

:first-of-typeis equivalentto :nth-of-type(1)

:last-of-type IS equivalentto :nth-last-of-type(1l)

17

Popular pseudo-classes

:hover a pointing device (mouse) hovers over the element

:active the element is currently being active (e.g. clicked)

button { button:hover {
background: white; color:white;
color: darkgray; background:darkgray;
width:100px; }
padding:5px;
font-weight:bold; button:active {
text-align: center; border:1px dashed;
border:1lpx solid darkgray; border-color: black;
} }

REERRERERRRRRRRRRRRRRERRERRES

¢ %
. .
. =
. .
. »
. .
. =

...................... & IR RLI
18

.

AN

Popular pseudo-classes

:enabled an element that can be clicked/selected

:disabled an element that cannot be clicked/selected

1 button {

2

! * Enabled/disabled buttons
5 button:enabled:hover { look the same

§ - * Enabled buttons change
: their look when being
iobutton:enabled:active { aCtivated or at hOvering
11 }

19

Popular pseudo-classes

snot (X)

matches all elements that are not represented by selector X

1 <main>

2 <h2>Todos</h2>

3 <p id="firsttodo">Today's todos</p> Todos

4 <p class="todo">Tomorrow's todos</p>

5 <p class="todo">Saturday's todos</p> Today’s todos

6 <p>Sunday'’s todos</p> Tomorrow’s todos
7 </main> aamemcinn

Saturyday’s todos

Sunday’s todos

I maigg*:not(.todo) {
2 Jcolor:orange;

ell el2: Selects all <el2> elements inside <ell>

whitespace in selectors implies the universal selector: * 20

Popular pseudo-classes

:in-range :out-of-range

can be used to style elements with range limitations

1 <main>
2 <input type="text" placeholder="add your pb6do" />
3 <input id="dl" name="dl" type="number” min="1" max="30"
4 placeholder=“Days to deadline” required />
5 <label for="deadlinel"> </label>
6 </main>
adjacent selector

1 input[type=text] { I input:valid + label::after {
2 border: Opx; 2 content:” \2714";
3 width: 150px; 3 color: rgba(0,100,0,0.7);
. 3 5 __unicode
5 input[type=number] ({ 5
6 width: 100px; 6 input:invalid + label::after {
7 / content:” (invalid)”;

8 color: rgba(255,0,0,0.7);

7}

rgb & alpha ¥

Popular pseudo-classes

:in-range :out-of-range

can be used to style elements with range limitations

add your todo Days to deadline @ (invalid deadline)

Create a lecture {123\ :} (invalid deadline)

invalid deadline)

h Create a lecture 123fdsfds

browser check

Pseudo-elements

Pseudo-element: creates an abstractions about the document tree
beyond those specified by the document language; it provides
access to an element’s sub-part.

:: notation, but ... one-colon notation also acceptable for older
pseudo-elements

Pseudo-elements

first-letter

sfirst-line

Canonical example:
enlarge the first letter/line of a paragraph

1l <p>
p::first-line ({ To be, or not to be, that

color:gray; is the question—
font-size:125%; 4 </p>

} 5 <p>

Whether 'tis Nobler in the

p::first-letter { mind to suffer
font-size:200%; The Slings and Arrows of

} outrageous Fortune,..

10 </p>

24

Pseudo-elements

sfirst-letter

sfirst-line

Canonical example:
enlarge the first letter/line of a paragraph

| p::first-line { 'To be, or not to be, that 1s the

color:gray;

font-size:125%; [duestion—

}
p::first-letter { hether 'tis Nobler 1n the mind to

font-size:200%;

O J O O WIN

suffer The Slings and Arrows of outrageous

}

25

Pseudo-elements

:after used to add (cosmetic) content after an element

:before used to add (cosmetic) content before an element

<cite>
2 To be, or not
3 to be ..

4 </cite>

1 cite::before {

2 content: "\201C";
}

4 cite::after {

5 content: "\201D";

}

Canonical example:
add quotation marks to quotes

h “To be, or not to be ...” |

20

Data in CSS

CSS & data (one way)

CSS does not only describe the style, it can carry data too.

<main>
<h2>Todos</h2>

<p id="t1">Walk the dogs</p>
<p id="t2">Wash the cups</p>
<p id="t3">Clear the pens</p>

</main>

‘Todos

Walk the dogs

Wash the cups

Clear the pens

due 1/1/2015

due 12/12/2014

due 1/12/2014

p::after {
background-color:gold;
border: lpx solid;
font-size: 70%;
padding: 2px;
margin-left: 50px;

}

p#tl::after {
10 content: " due 1/1/2015";

}

p#t2::after {
14 content: " due 12/12/2014";

}

p#t3::after {
18 content: " due 1/12/2014";

t
28

CSS & data (one way)

CSS does not only describe the style, it can carry data too.

<main> p::after {

<h2>Todos</h2> background-color:gold;
border: lpx solid;

<p id="t1">Walk the dogs</p> font-size: 70%:;

<p id="t2">Wash the cups</p> padding: 2px;

<p id="t3">Clear the pens</p> margin-left: 50px;
</main> }

Issues:
1. Data is distributed across HTML and CSS files.

2. CSS is conventionally not used to store data.

3. Content is not part of the DOM (accessibility problem)

Clear the pens due 1/12/2014 18 content: " due 1/12/2014";
}

CSS & data-* (the preferred way)

CSS can make use of data stored in HTML elements.

Recall; HTML elements can have data-* attributes.

<main>
<h2>Todos</h2> 4 L
<p id="t1" data-due="1/1/2015" *®Walk the dogs</p>
<p id="t2" data-due="12/12/2014">Wash the cups</p>
<p id="t3" data-due="1/12/2014">Clear the pens</p>
</main>

p::after {
background-color:gold;
border: 1lpx solid;
font-size: 70%;
padding: 2px;
margin-left: 50px;

Todos

® Walk the dogs due 1/1/2015

content: "due " attr(data-due); ® Wash the cups due 12/12/2014
}
p::before { ® (Clear the pens due 1/12/2014
content: url(http://www.abc.de/dot.png);
} 30

CSS & data-* (the preferred way)

CSS can make use of data stored in HTML elements.

Recall; HTML elements can have data-* attributes.

<main>
<h2>Todos</h2> * A
3 <p id="t1" data-due="1/1/2015" *®Walk the dogs</p>
4 <p id="t2" data-due="12/12/2014">Wash the cups</p>
5 <p id="t3" data-due="1/12/2014">Clear the pens</p>
6 </main>
1 p:rafter {
2 background-color:gold; TOdOS
3 border: 1lpx solid;
¢ font-size: T0%; attr () retrieves the
5 padding: 2px; . ® Walk the dogs due 1/1/2015
5 et dlefmey SO value of an attribute |
content: "due " attr(data-due); ® Wash the cups due 12/12/2014
9 1}>= B content attribute can also reference a url EXGEIEITRISN due 17122014

}

content: url(http://www.abc.de/dot.png);

31

CSS & data-* (the preferred way)

Another example: a simple tooltip

1l
<li data-name="Cascading Style Sheets">CSS</1i>
<li data-name="HyperText Markup Language">HTML</1li>
<li data-name="Hypertext Transfer Protocol">http
<li data-name="Hypertext Transfer Protocol Secure">https</1li>

6

1i {
2 cursor:help;
}

4 li:hover::after {
background-color:rgba(10,10,10,0.7)
color: gold;
border: 1lpx dashed;
padding: 5px;
font-size: 70%;

10 content: attr(data-name);
position:relative;
bottom: 15px;
left:5px;

we can change the cursor type

Hypertext Transfer Protocol

CSS counters

CSS counters can count the number of times a ruleset is called.

Counters are set and maintained by CSS.

<main>
<h2>Todos</h2>
<p id="t1" data-due="1/1/2015" >Walk the dogs</p>
<p id="t2" data-due="12/12/2014">Wash the cups</p>
<p id="t3" data-due=“1/12/2014" >Clear the pens</p>

</main>
body { - -
/* initialize counter to 0 */ "Todos
3 counter-reset: countTodo;
} :
T Todo 1: Walk the dogs
/* increment at each <p> */
7 counter-increment: countTodo; Todo 2: Wash the cups
/* counter written out */
9 content:" Todo " counter(countTodo)": "; Todo 3: Clear the pens
}

33

Nested CSS counters

Child elements receive their own counter instance.

Different counter instances are combined via counters ().

~N O O s W I

10
11
12
13

Today's todos

Walk the dogs</1li>
Wash the cups</1li>
Clear the pens</1li>

</1li>
Tomorrow's todos

Walk the dogs</1li>
Wash the dishes</1i>

</1li>

ul {
counter-reset: cli;
list-style-type: none;

-

li::before {
counter-increment: cli;
confent: counters(cli,".") "; ";

O 00O ~J O U1 & WD K-

-

1: Today's todos
1.1: Walk the dogs
1.2: Wash the cups
1.3: Clear the pens

2: Tomorrow's todos
2.1: Walk the dogs
2.2: Wash the dishes

34

Deciding which CSS
features to use

Canluse attr() !

s it an established (accepted) part of the CSS specification”

1. W3C CSS specification
- Candidate Recommendation or Recommendation?
- CSS2 or CSS3?
- Exhaustive overview of all aspects (by necessity)

2. Mozilla Developer Network

- Focuses on the most important aspects of a
technology (not exhaustive)

- Up-to-date information

- Easy to get a quick overview
36

http://www.w3.org/Style/CSS/Overview.en.html
https://developer.mozilla.org/en-US

Browser-specific prefixes

CSS is under active development, many features are not stable,
are often used with browser vendor prefixes, and,

might change in the future (as the specification changes).

I main:-webkit-full-screen { ¢ Advantage: eXCiting new
, /7 Chrome ¥/ features can be used

4 main:-moz-full-screen { early on

5 } /* Firefox */

6]

7 main:-ms-fullscreen { ° DlsadvantagE: d new

0} /* Internet Explorer */ browser release might

9 :

10 main:fullscreen { break the implemented

11 } /* W3C proposal */ CSS

37

Browser-specific prefixes

CSS is under active development, many features are not stable,
are often used with browser vendor prefixes, and,

might change in the future (as the specification changes).

Recent move towards disabling experimental features in
browsers by default; explicit reset by user required.

But ... vendor prefixes will not go away anytime soon (that
would break a lot of pages on the WeDb).

5 } /* Internet Explorer */ browser release might
9

10 main:fullscreen { break the implemented
11 } /* W3C proposal */ CSS

38

-webkit!? Google Chrome is not
based on Webkit anymore ...

Will we see a -chrome- vendor prefix now?

We've seen how the proliferation of vendor prefixes has caused pain for developers and we don't want to exacerbate this. As
of today, Chrome is adopting a policy on vendor prefixes, one that is similar to Mozilla's recently announced policy.

In short: we won't use vendor prefixes for new features. Instead, we’ll expose a single setting (in about: £1lags) to enable
experimental DOM/CSS features for you to see what's coming, play around, and provide feedback, much as we do today with
the “Experimental WebKit Features"/"Enable experimental Web Platform features"” flag. Only when we're ready to see these
features ship to stable will they be enabled by default in the dev/canary channels.

For legacy vendor-prefixed features, we will continue to use the -webkit- prefix because renaming all these prefixes to
something else would cause developers unnecessary pain. We've started looking into real world usage of HTMLS and CSS3
features and hope to use data like this to better inform how we can responsibly deprecate prefixed properties and APls. As for
any non-standard features that we inherited (like -webkit-box-reflect), over time we hope to either help standardize or
deprecate them on a case-by-case basis.

http://www.chromium.org/blink/developer-fag

Element positioning
with float,position
and display

Elements “flow” by default

Block-level are surrounded by line-breaks. They can contain block-level and
inline elements. The width is determined by their containing element.

€.g. <main> Or <p>

Inline elements can be placed within block/inline elements. They can contain
other inline elements. The width is determined by their content.

e.g. Or <a>

<main>
<p>
This 1is a paragraph containing a link
</p>
<p>
This i1s another paragraph

with a span and a link in the span

</p>
</main>

Elements “flow” by default

Block-level are surrounded by line-breaks. They can contain block-level and
inline elements. The width is determined by their containing element.

€.g. <main> Or <p>

Inline elements can be placed within block/inline elements. They can contain
other inline elements. The width is determined by their content.

e.g. or <a>

T anothr paagrph [t span an [k e oo |

8° with a span and a linK | main {width: auto;;E

9
</p>

11 </main>

Elements “flow” by default

Block-level are surrounded by line-breaks. They can contain block-level and
inline elements. The width is determined by their containing element.

€.g. <main> Or <p>

Inline elements can be placed within block/inline elements. They can contain
other inline elements. The width is determined by their content.

e.g. or <a>

This is a paragraph containing -

Chisis another paragraph | with a span and

6 a link in the span I

8] with a span and a lin} ! main {width: 400px;}§

9 L N r Y=Y YL
</p>

11 </main>

Taking elements out of the flow

float:left (or :right) takes an element out of the flow; it is
moved to the leftmost (or rightmost) possible position in the

containing element —«either the element edge or another float.

s s a paragraph conamng o okl
Is Is another paragraph -

1 a {float:

none; }

44

Taking elements out of the flow

float:left (or :right) takes an element out of the flow; it is
moved to the leftmost (or rightmost) possible position in the

containing element —«either the element edge or another float.

a link|This is a paragraph containing
his is another paragraph jwithaspanand] |

1 a {float:

left;}

45

Taking elements out of the flow

float:left (or :right) takes an element out of the flow; it is
moved to the leftmost (or rightmost) possible position in the

containing element —«either the element edge or another float.

his 1s a paragraph containing
is is another paragraph jwithaspanand] |a link in the span

1 a {float: right;}

46

Resetting the flow with clear

Canonical example: adding sidebars to a layout

 ———————————————————————————— i s ~— -
o Goto page 1
1. Go to page 2
« Go to page 3
e Goto page 4
e Gotopage5
Go to page 6
e Go to page 7

e Gotopage 8

e Go to page 9 naV#naV1

e January 2014
o February 2014
e March 2014

e nav#nave

This is the 1. paragraph

This is the 2. paragraph maln
And this is footer information fO Ot e r

Resetting the flow with clear

Canonical example: adding sidebars to a layout

-

] o January 2014 « Gotopagel
L. February 2014 « Go to page 2
« March 2014
e April 2014

This is the 1. paragraph

This is the 2. paragraph

And this is footer information

#navl {float: right;}

48

Resetting the flow with clear

~

This is the 1. paragraph

; . January 2014

L 2014 This is the 2. paragraph
+ March 2014 And this is footer information
« April 2014

« Gotopage 1
« Goto page 2
» Goto page3

« Gotopage4d

-~

Canonical example: adding sidebars to a layout

#navl {float: right;}

#nav2 {float:

left;}

49

Resetting the flow with clear

Canonical example: adding sidebars to a layout

v e e e T T e ma ~

This is the 1. paragraph

o January 2014 « Gotopage 1
« February 2014 11 1sthe 2. paragraph « Goto page 2
« March 2014 « Gotopage3

And this is footer information

#navl {float: right;}
#nav2 {float: left;}

footer{clear: left;}

50

Resetting the flow with clear

Canonical example: adding sidebars to a layout

~

-

This is the 1. paragraph

« January 2014 « Goto page |
o February 2014 1his is the 2. paragraph « Go to page 2
« March 2014 « Gotopage3

And this is footer information

can be used
instead

#navl {float:
#nav2 {float:

footer{clear:

<:t’ footer{clear:

footer{clear:

right;}
left;}
left;}
right;}

both;}

51

Fine-grained movement of

elements: position

position enables elements to be moved around in any direction
(up/down/left/right) by absolute or relative units.

position:static ne default

position:relative the element is adjusted on the fly,
other elements are not affected
e

position:absolute elementis taken out of the normal

flow (no space is reserved for it)

position:fixed MG aMea curtently being Viewsd .

viewport

position:sticky IN-between relative and fixed

CSS coordinate system

y extends downward. x extends to the right.

Image source: http:

http://msdn.microsoft.com/en-us/library/ie/jj665791(v=vs.85).aspx

position:relative

the element is adjusted on the fly, other elements are not affected

movement is relative to its original position

1 #egg2 {
2 position:relative;
bottom:20px;
%i:::: left:20px;
}

7 #eggd {

8 position:relative;
bottom:50px;
right:10px;

}

unchanged

Distance the element's left edge is moved to the right from its position. 54

id=" eggj 4" \\ Distance the element's bottom edge moves above its position.

position:absolute

the element is taken out of the normal flow (no space is reserved)

positioning Is relative to nearest ancestor or the window

-

1 #egg2 { | A

2 position:absolute; ,
» bottom:50px; “é%%%y
> left:0px; N1 2
}

7 #egg4d {

8 position:absolute;
bottom:0px;
right:0px;
}

window

\ Distance between the element’s bottom edge (BE) and that of its containing block.
Distance between the element’s left edge and that of its containing block. Sle

1d="egg4d”

position: fixed

similar to absolute, but the containing “element” is the viewport

area of the document visible in the browser

elements with position: fixed are always visible

claudiahaufi/64405

o (G () Mozilla Foundation [US] nttps

/thimble.mozilla.org/user/

Q CSS pseudo-classes Hi, claudiahauff

PREVIEW

<html>

<heac> | o : Ads should
index.htm! <title>My todos</title> always be
. _ « Correct MSc report visible.
<link rel="stylesheet” type="text/css" href="style.css"> « Buy milk
</head> o Write email to John
<body> . :
<main> 28/11/2015 ADD TODO
<div i1d="todaysdate"> I
Ads shcd®ld always be visible.
</div> e Prepare workshop presentation
<div> « Work on todo list project (issuc#12)

. e Make dinner
Today's todos

27/11/2815

<button id="addtoday">ADD TODO</button> ' ’

display

display:inline element rendered with an inline element box

display:block element rendered with a block element box

display:none element (and its descendants) are hidden

most useful to us from view; no space is reserved in the layout

This is paragraph one.

[Span element one | [Span element two.| |Span element three.

This is paragraph two.

S57

display

display:inline element rendered with an inline element box

display:block element rendered with a block element box

display:none element (and its descendants) are hidden

most useful to us from view; no space is reserved in the layout

-

This is paragraph one.

I span {display: block; }

58

display

display:inline element rendered with an inline element box

display:block element rendered with a block element box

display:none element (and its descendants) are hidden

most useful to us from view; no space is reserved in the layout

1S 18 paragraph one.

ISpan element one.

I span {display: block; }

s 18 paragraph two. 2 p {display: inline;}

59

display

display:inline element rendered with an inline element box

display:block element rendered with a block element box

display:none element (and its descendants) are hidden

most useful to us from view; no space is reserved in the layout

fiﬁ:s is paragraph one | ﬁlﬂis 1s paragraph tw01 i

I span {display: block; }
2 p {display: 1inline;}

3 span {display: none;}

60

CSS media queries

Not just one device but many...

e Ditferent devices should be served ditferent styles, e.q.

* Printing a todo list: ideally only b/w, no color blocks

* Viewing a todo list on a small screen: remove non-
essential information (footer, etc.)

* Viewing a todo list on a large screen: present all
available information

* Text-to-speech devices: remove non-essential
information (e.g. http://responsivevoice.org/)

 CSS media queries enable the use of device-dependent
(i.e. media-type dependent) stylesheets

HTML: write once

CSS: write once per device

http://responsivevoice.org/

Media queries can be complex

Media types: all, print, screen, speech

1 <link rel="stylesheet”

2 media="screen and (min-width: 800px),

3 (min-width: 3000px)" : :

4 href="large-device.css"> dedicated CSS files

5 ..

6 <style> : . - -

5 P L P rules for different devices in one file

8 body {

9 color: black !important; B, :
10 width: 100%: when printing, use black and white
11 } _

12 } “and”: logical and

13 @media screen and (max-width: 300px) {

14 #sidebar ({ | . |

15 display: none; hide the sidebar for small devices
16 }

17 }

18 </style> 63

Animations and
transitions

CodePen: front-end developer playground.
SCSS: “Sassy CSS7, a CSS preprocessor.

€ CSSanimated Xmas Tree
A PEN Y dodozhang21 B

@ HTML (sim) v @ CSS (scss)
div.xmasTree @import "compass/css3”;

Sgray
Syellow

https://codepen.io/dodozhang21/pen/imlvg

https://codepen.io/dodozhang21/pen/imIvg

In general ...

 CSS styles (states) are defined by the user, the rendering
engine takes care of the transition between styles

e Animations consist of:

e an animation style (linear, etc.)
e anumber of “keyframes” that act as transition waypoints

* Transitions are animations (with a simpler syntax):

e that consist of exactly 2 states: start and end state

66

CSS vs. JavaScript animations

e Easy to use (standard CSS) — no need to learn JavaSscript

* Rendering engines are optimised for CSS-based
animations

 CSS animations can do much more than animating buttons

67

CSS animation example (Firefox)

1 #pl {

2 animation-duration: 5s;
3 animation-name: pToRight;

4 top: 5px; left: 5px; animation name (@keyframes)
5 }

6

/ @keyframes pToRight ({

8 from {

; topt5px; left:sp; P Wi
10 background-color: lightgreen;

11 }

12 50% {

13 background-color: red;
14 }

15 to {

16 top:5px; left:250px; _
17 background-color: lightblue; AL

18 }

19 }

http://jsfiddle.net/Lyh5gvfo/1/ 68

http://jsfiddle.net/Lyh5qvfo/1/

CSS animation example (-webkit-)

-webkit-animation-duration: 5s;
-webkit-animation-name: pToRight;

5px; left: 5px;

top:5px; left:5px;
background-color:

{

background-color:

@-webkit-keyframes pToRight {

lightgreen;

red;

top:5px; left:250px;

background-color:

1 #pl {

2

3

4 top:
5 }

6

7

8 from {
9
10
11 }
12 50%
13
14 }
15 to {
16
17
18 }
19 }

lightblue;

to support different
browsers, the
code needs to

be repeated

for every browser
prefix

69

CSS animation control

animation-iteration-count
number of times an animation is executed (default: 1); value either a
positive number or infinite

animation-direction
by default the animation restarts at the starting keyframe; if set to
alternate the animation direction change every iteration

animation-delay
number of seconds until the animation starts (default 0s)

CSS transitions

1

10

13
14

17

.box {

}

width: 100px;
height: 100px;
background-color: red;
.box:hover {
background-color: green;

}

border-style: solid;
border-width: 1px;
display: block;

width:200px;
height:200px;

end state

-webkit-transform:rotate(180deqg);

transform:rotate(180deqg);

PRk L e

We have been using (default) transitions all the time.

71

Today we covered

* the basics of CSS positioning

* the CSS box model

 CSS pseudo-classes and pseudo-elements
 CSS media queries

e the basics of CSS animations

/2

