
Claudia Hauff
TI1506: Web and Database Technology 

ti1506-ewi@tudelft.nl

JavaScript: the language 
of browser interactions

mailto:ti1506-ewi@tudelft.nl


2

Densest Web lecture 
of this course.

Coding takes time.

Be friendly with 
Codecademy & Co.

http://www.codecademy.com/en/tracks/javascript


At the end of this lecture, you 
should be able to …

• Employ OO principles in JavaScript coding 

• Explain the principle of callbacks 

• Write interactive Web applications based on 
click, mouse and keystroke events 

• Translate jQuery-based code into jQuery-less 
code

3



Chapter 4 of the Web course 
book

• How to include JavaScript in your Web app 

• Essential JavaScript built-in types & control 
structures 

• How to declare variables & functions 

• The purpose of console.log()

• How to work with arrays 

• How to use basic jQuery features



JavaScript’s reputation

• Until fairly recently it was considered more of a toy 
language 

• Today: (most) important language of the modern 
Web stack

• Tooling has vastly improved (debuggers, 
testing frameworks, etc.) 

• JavaScript runtime engines are efficient 
(especially V8) 

• JavaScript tracks ECMAScript



A language in flux

ES5 was published in 2009, ES6 in 2015, ES7 in 2016.  
ES8 (or ES2017) was finalised in June 2017.  
Yearly releases promised. http://kangax.github.io/compat-table/

http://kangax.github.io/compat-table/


Compiling to JavaScript

7

CoffeeScript TypeScript 
(Microsoft)

Dart 
(Google)

JavaScript

this course: plain JavaScript

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js

All major languages compile to JS



Scripting overview



Requesting & processing a Web 
page in 4 steps

Browser sends a GET request
to a Web server1

2
Execution of
server-side
scripts
(PHP, ASP, 
node.js, etc.)

3 Web server sends (generated)
resources to the browser

4

Execution of
scripts (*.js)
& rendering of
page

JavaScript makes Web apps interactive and 
responsive to user actions.



Server-side scripting

• Source code is private, result of script execution 
is returned (in HTML), not the script itself 

• HTML can be rendered by any browser

• Server-side scripts can access additional 
resources (including databases) 

• Server-side scripts can use non-standard 
language features (you know your server’s 
software)



Client-side scripting

• Source code is visible to everyone



Client-side scripting

• Source code is visible to everyone 

• Script execution by the browser reduces load on 
the Web server

• All raw data necessary (e.g. for visualizations) 
needs to be downloaded and processed by the 
client

• JavaScript is event-driven: code blocks 
executed in response to user actions (click, 
hover, move, etc.)



Objects in JavaScript 

 
Basic constructor

 
Prototype-based 
constructor

 
Module pattern



OO for JavaScript

• JavaScript has functions as first-class citizens 

• OO groups together related data and behaviour 

• Built-in objects: String, Number, Array, etc. 

• Objects can be created in different ways (do 
not get confused, stick to one way)

“A value has first-class status if it can be passed 
as a parameter, returned from a subroutine, or 
assigned into a variable.”        (Michael L. Scott)



Design patterns

• Many design patterns exist, we focus on three 
(the most important ones for our use case) 

• Design patterns develop over time 

• Design patterns often hold across programming 
languages

“Design patterns are reusable solutions to commonly 
occurring problems in software design.” — Addy Osmani



Objects in JavaScript
• new Object() produces an empty object, 

ready to receive name/value pairs 
• Name: any string 
• Value: anything (String, array, Number, etc.) 

apart from undefined 
• Members are accessed through 

• [name] (bracket notation) 
• .name (dot notation)



Another way: object literals



Adding a method

note1.toString()

note2.toString()



Object literals can be complex

inner object 
Param



Are object literals enough?

What happens if we need 1,000 objects of this kind? 
What happens if a method needs to be added to all objects?



Design Pattern (1):
Basic constructor



Recall: constructors in Java



Basic constructor in JavaScript
In JavaScript, functions are first-class citizens.



• An object constructor is just a normal function

• What does JavaScript do with new?  

• new anonymous empty object is created and 
used as this

• returns new object at the end of the function

Basic constructor

common error: forgetting “new”

this can refer 
to anything!



Basic constructor

Objects come with default methods (prototype chaining)

New variables and objects can be added on the fly.



Summary: basic constructor

26

• Advantage: very easy to use

• Issues: 
• Not obvious how to use inheritance (e.g. 
NoteWithDueDate) 

• Objects do not share functions 
• function toString() is not shared between 
note1 and note2 

• All members are public 
• Any piece of code can access/change/delete(!) 

members type and note



Design Pattern (2):
Prototype-based 

constructor



Prototype chaining explained

28

• Properties of the constructor's prototype are also 
accessible in the new object 

• If a member is not defined in the object, the prototype 
chain is followed

Objects have a secret pointer to another object - the 
object's prototype

String.prototype
charAt()
indexOf()
…

__proto__

name.charAt(1)

var name = “Daisy”;
typeof(name); //“string”



Prototype-based constructor

29



Getting to grips  
with JavaScript

WebConsole is your friend!



Prototype-based constructor

31

Prototype changes are also reflected in existing objects!



Prototype-based constructor

32

Inheritance through prototyping.

= prototype chain

1. create a new 
constructor

2. redirect the 
prototype

call() calls a function with a given  
this value and arguments (one by one)



Summary: prototype-based 
constructor

33

• Advantages: 
• Inheritance is easy to achieve 
• Objects share functions

• Issue: 
• All members are public, i.e. any piece of code 

can access/change/delete members type and 
note



Design Pattern (3):
Module



JavaScript scoping

35

• All JavaScript code enters the same namespace

• JavaScript has limited scoping
• var in function: local, limited scope 
• var outside of a function: global scope 
• no var: global scope  

(holds for function names too) 
• let (ES6): block scope 
• const (ES6): block scope, no reassignment or 

redeclaration



JavaScript scoping

What if another JavaScript library used in the  
project defines note1?



Module

37

• Goals: 
• Do not declare any global variables or functions 

unless required 
• Emulate private/public membership 
• Expose only the necessary members to the public 

(as API) 

• Results: 
• Potential conflicts with other JavaScript libraries are 

reduced 
• Public API minimizes unintentional side-effects 

when wrongly used



Module

38



Module

39



Module

40

public

private



})();



Module

the pattern 
can be  
arbitrarily 
complex;



Module

The encapsulating  
function can also  
contain arguments



Summary: module

44

• Advantages: 
• Encapsulation is achieved 
• Object members are either public or private 

• Issues:
• Changing the type of membership (public/

private) costs time 
• Methods added on the fly later on cannot 

access 'private' members



Events & the DOM

https://developer.mozilla.org/en-US/docs/Tools

https://developer.mozilla.org/en-US/docs/Tools


A look at book chapter 4

46

• Uses jQuery extensively (a big time saver) 

• Important to understand what jQuery "covers up” 

• Decide for yourself whether you want to use jQuery in the assignments 
(other JavaScript libraries are not allowed)



A look at book chapter 4

47

• With jQuery: no matter if class or id or ..., the 
access pattern is the same, i.e. $()

• Callback principle: we define what should 
happen when an event fires



$()



});



           });
         });
       });
     });
  });
});

“callback hell”



Step-by-step: making a 
responsive UI control

51

1. Pick a control (e.g. a button)

2. Pick an event (e.g. a click on a button)

3. Write a JavaScript function: what should happen 
when the event occurs? (e.g. a popup appears) 

4. Attach the function to the event ON the 
control



Client-side JS examples

[HTML SLIDES]

http://www.st.ewi.tudelft.nl/~hauff/Web-Lectures/SLIDES_2016_2017/javascript-lecture/js.html#/5

